// (C) 2024 by Folkert van Heusden // Released under MIT license // Some of the code is translated from Neil Webber's PDP11/70 emulator #include #include #include "bus.h" #include "cpu.h" #include "error.h" #include "gen.h" #include "log.h" #include "rp06.h" #include "utils.h" constexpr const int NSECT = 22; // sectors per track constexpr const int NTRAC = 19; // tracks per cylinder constexpr const int SECTOR_SIZE = 512; constexpr const char *regnames[] { "Control", "Status", "Error register 1", "Maintenance", "Attention summary", "Desired sector/track address", "Look ahead", "Drive type", "Serial no", "Offset", "Desired cylinder address", "Current cylinder address", "Error register 2", "Error register 3", "ECC position", "ECC pattern" }; rp06::rp06(bus *const b, std::atomic_bool *const disk_read_activity, std::atomic_bool *const disk_write_activity) : b(b), disk_read_activity (disk_read_activity ), disk_write_activity(disk_write_activity) { } rp06::~rp06() { } void rp06::begin() { reset(); } void rp06::reset() { } void rp06::show_state(console *const cnsl) const { } JsonDocument rp06::serialize() const { JsonDocument j; return j; } rp06 *rp06::deserialize(const JsonVariantConst j, bus *const b) { rp06 *r = new rp06(b, nullptr, nullptr); r->begin(); return r; } uint8_t rp06::read_byte(const uint16_t addr) { uint16_t v = read_word(addr & ~1); if (addr & 1) return v >> 8; return v; } uint16_t rp06::read_word(const uint16_t addr) { const int reg = (addr - RP06_BASE) / 2; uint16_t value = 0; TRACE("RP06: read \"%s\"/%o: %06o", regnames[reg], addr, value); return value; } int rp06::reg_num(uint16_t addr) const { return (addr - RP06_BASE) / 2; } void rp06::write_byte(const uint16_t addr, const uint8_t v) { uint16_t vtemp = registers[reg_num(addr)]; if (addr & 1) { vtemp &= ~0xff00; vtemp |= v << 8; } else { vtemp &= ~0x00ff; vtemp |= v; } write_word(addr, vtemp); } uint32_t rp06::compute_offset() const { // cyl num, track num, sector num, which were written like this: uint16_t cn = registers[reg_num(RP06_DC)]; uint16_t tn = (registers[reg_num(RP06_DA)] >> 8) & 0377; uint16_t sn = registers[reg_num(RP06_DA)] & 0377; // each cylinder is NSECT*NTRAC sectors // each track is NSECT sectors uint32_t offs = cn * NSECT * NTRAC; offs += tn * NSECT; offs += sn; offs *= SECTOR_SIZE; return offs; } uint32_t rp06::getphysaddr() const { constexpr const uint16_t A16 = 0400; constexpr const uint16_t A17 = 01000; // low 16 bits in UBA, and tack on A16/A17 bool cur_A16 = registers[reg_num(RP06_CS1)] & A16; bool cur_A17 = registers[reg_num(RP06_CS1)] & A17; uint16_t cur_A1621 = 0; // but also bits may be found in bae... the assumption here is // if these bits are non-zero they override A16/A17 but they // really need to be consistent... if (registers[reg_num(RP06_BAE)]) { cur_A16 = false; // subsumed in A1621 cur_A17 = false; // subsumed cur_A1621 = registers[reg_num(RP06_BAE)] & 077; } return registers[reg_num(RP06_UBA)] | (cur_A16 << 16) | (cur_A17 << 17) | (cur_A1621 << 16); } void rp06::write_word(const uint16_t addr, uint16_t v) { const int reg = reg_num(addr); TRACE("RP06: write \"%s\"/%06o: %06o", regnames[reg], addr, v); registers[reg] = v; if (reg == RP06_CS1) { if (v & 1) { int function_code = v & 63; if (function_code == 070) { // READ uint32_t offs = compute_offset(); uint32_t addr = getphysaddr(); uint32_t nw = 65536 - registers[reg_num(RP06_WC)]; uint32_t nb = nw * 2; uint8_t xfer_buffer[SECTOR_SIZE] { }; for(uint32_t cur_offset = offs; cur_offsetread(offs, SECTOR_SIZE, xfer_buffer, SECTOR_SIZE)) { DOLOG(ll_error, true, "RP06 read error %s from %u", strerror(errno), cur_offset); //registers[(RK05_ERROR - RK05_BASE) / 2] |= 32; // non existing sector //registers[(RK05_CS - RK05_BASE) / 2] |= 3 << 14; // an error occured break; } for(uint32_t i=0; iwriteUnibusByte(addr++, xfer_buffer[i]); } registers[reg_num(RP06_WC)] = 0; registers[reg_num(RP06_CS1)] |= 0200; // drive ready if (registers[reg_num(RP06_CS1)] & 0100) // IE? (interrupt enable) b->getCpu()->queue_interrupt(5, 0254); } } } }