#include #include #include "bus.h" // for (at least) ADDR_PSW #include "gen.h" #include "log.h" #include "mmu.h" #include "utils.h" mmu::mmu() { reset(); } mmu::~mmu() { } void mmu::begin(memory *const m, cpu *const c) { this->m = m; this->c = c; reset(); } void mmu::reset() { memset(pages, 0x00, sizeof pages); CPUERR = MMR0 = MMR1 = MMR2 = MMR3 = PIR = CSR = 0; } void mmu::dump_par_pdr(console *const cnsl, const int run_mode, const bool d, const std::string & name, const int state, const std::optional & selection) const { if (state == 0 || state == 2) cnsl->put_string_lf(name); else cnsl->put_string_lf(format("%s DISABLED", name.c_str())); cnsl->put_string_lf(" PAR PDR LEN"); for(int i=0; i<8; i++) { if (selection.has_value() && i != selection.value()) continue; uint16_t par_value = pages[run_mode][d][i].par; uint16_t pdr_value = pages[run_mode][d][i].pdr; uint16_t pdr_len = (((pdr_value >> 8) & 127) + 1) * 64; cnsl->put_string_lf(format("%d] %06o %08o %06o %04o D%d A%d", i, par_value, par_value * 64, pdr_value, pdr_len, !!(pdr_value & 8), pdr_value & 7)); } } void mmu::show_state(console *const cnsl) const { cnsl->put_string_lf(MMR0 & 1 ? "MMU enabled" : "MMU NOT enabled"); cnsl->put_string_lf(format("MMR0: %06o", MMR0)); cnsl->put_string_lf(format("MMR1: %06o", MMR1)); cnsl->put_string_lf(format("MMR2: %06o", MMR2)); cnsl->put_string_lf(format("MMR3: %06o", MMR3)); dump_par_pdr(cnsl, 1, false, "supervisor i-space", 0, { }); dump_par_pdr(cnsl, 1, true, "supervisor d-space", 1 + (!!(MMR3 & 2)), { }); dump_par_pdr(cnsl, 0, false, "kernel i-space", 0, { }); dump_par_pdr(cnsl, 0, true, "kernel d-space", 1 + (!!(MMR3 & 2)), { }); dump_par_pdr(cnsl, 3, false, "user i-space", 0, { }); dump_par_pdr(cnsl, 3, true, "user d-space", 1 + (!!(MMR3 & 2)), { }); } uint16_t mmu::read_pdr(const uint32_t a, const int run_mode) { int page = (a >> 1) & 7; bool is_d = a & 16; uint16_t t = pages[run_mode][is_d][page].pdr; return t; } uint16_t mmu::read_par(const uint32_t a, const int run_mode) { int page = (a >> 1) & 7; bool is_d = a & 16; uint16_t t = pages[run_mode][is_d][page].par; return t; } void mmu::setMMR0_as_is(uint16_t value) { MMR0 = value; } void mmu::setMMR0(uint16_t value) { value &= ~(3 << 10); // bit 10 & 11 always read as 0 if (value & 1) value &= ~(7l << 13); // reset error bits if (MMR0 & 0160000) { if ((value & 1) == 0) value &= 254; // bits 7...1 are protected } MMR0 = value; } void mmu::setMMR0Bit(const int bit) { assert(bit != 10 && bit != 11); assert(bit < 16 && bit >= 0); MMR0 |= 1 << bit; } void mmu::clearMMR0Bit(const int bit) { assert(bit != 10 && bit != 11); assert(bit < 16 && bit >= 0); MMR0 &= ~(1 << bit); } void mmu::setMMR2(const uint16_t value) { MMR2 = value; } void mmu::setMMR3(const uint16_t value) { MMR3 = value; } bool mmu::get_use_data_space(const int run_mode) const { constexpr const int di_ena_mask[4] = { 4, 2, 0, 1 }; return MMR3 & di_ena_mask[run_mode]; } void mmu::clearMMR1() { MMR1 = 0; } void mmu::addToMMR1(const int8_t delta, const uint8_t reg) { assert(reg >= 0 && reg <= 7); assert(delta >= -2 && delta <= 2); assert((getMMR0() & 0160000) == 0); // MMR1 should not be locked MMR1 <<= 8; MMR1 |= (delta & 31) << 3; MMR1 |= reg; } void mmu::write_pdr(const uint32_t a, const int run_mode, const uint16_t value, const word_mode_t word_mode) { bool is_d = a & 16; int page = (a >> 1) & 7; if (word_mode == wm_byte) { assert(a != 0 || value < 256); update_word(&pages[run_mode][is_d][page].pdr, a & 1, value); } else { pages[run_mode][is_d][page].pdr = value; } pages[run_mode][is_d][page].pdr &= ~(32768 + 128 /*A*/ + 64 /*W*/ + 32 + 16); // set bit 4, 5 & 15 to 0 as they are unused and A/W are set to 0 by writes TRACE("mmu WRITE-I/O PDR run-mode %d: %c for %d: %o [%d]", run_mode, is_d ? 'D' : 'I', page, value, word_mode); } void mmu::write_par(const uint32_t a, const int run_mode, const uint16_t value, const word_mode_t word_mode) { bool is_d = a & 16; int page = (a >> 1) & 7; if (word_mode == wm_byte) update_word(&pages[run_mode][is_d][page].par, a & 1, value); else pages[run_mode][is_d][page].par = value; pages[run_mode][is_d][page].pdr &= ~(128 /*A*/ + 64 /*W*/); // reset PDR A/W when PAR is written to TRACE("mmu WRITE-I/O PAR run-mode %d: %c for %d: %o (%07o)", run_mode, is_d ? 'D' : 'I', page, word_mode == wm_byte ? value & 0xff : value, pages[run_mode][is_d][page].par * 64); } uint16_t mmu::read_word(const uint16_t a) { uint16_t v = 0; if (a >= ADDR_PDR_SV_START && a < ADDR_PDR_SV_END) v = read_pdr(a, 1); else if (a >= ADDR_PAR_SV_START && a < ADDR_PAR_SV_END) v = read_par(a, 1); else if (a >= ADDR_PDR_K_START && a < ADDR_PDR_K_END) v = read_pdr(a, 0); else if (a >= ADDR_PAR_K_START && a < ADDR_PAR_K_END) v = read_par(a, 0); else if (a >= ADDR_PDR_U_START && a < ADDR_PDR_U_END) v = read_pdr(a, 3); else if (a >= ADDR_PAR_U_START && a < ADDR_PAR_U_END) v = read_par(a, 3); return v; } uint8_t mmu::read_byte(const uint16_t addr) { uint16_t v = read_word(addr); if (addr & 1) return v >> 8; return v; } void mmu::write_word(const uint16_t a, const uint16_t value) { // supervisor if (a >= ADDR_PDR_SV_START && a < ADDR_PDR_SV_END) write_pdr(a, 1, value, wm_word); else if (a >= ADDR_PAR_SV_START && a < ADDR_PAR_SV_END) write_par(a, 1, value, wm_word); // kernel else if (a >= ADDR_PDR_K_START && a < ADDR_PDR_K_END) write_pdr(a, 0, value, wm_word); else if (a >= ADDR_PAR_K_START && a < ADDR_PAR_K_END) write_par(a, 0, value, wm_word); // user else if (a >= ADDR_PDR_U_START && a < ADDR_PDR_U_END) write_pdr(a, 3, value, wm_word); else if (a >= ADDR_PAR_U_START && a < ADDR_PAR_U_END) write_par(a, 3, value, wm_word); } void mmu::write_byte(const uint16_t a, const uint8_t value) { // supervisor if (a >= ADDR_PDR_SV_START && a < ADDR_PDR_SV_END) write_pdr(a, 1, value, wm_byte); else if (a >= ADDR_PAR_SV_START && a < ADDR_PAR_SV_END) write_par(a, 1, value, wm_byte); // kernel else if (a >= ADDR_PDR_K_START && a < ADDR_PDR_K_END) write_pdr(a, 0, value, wm_byte); else if (a >= ADDR_PAR_K_START && a < ADDR_PAR_K_END) write_par(a, 0, value, wm_byte); // user else if (a >= ADDR_PDR_U_START && a < ADDR_PDR_U_END) write_pdr(a, 3, value, wm_byte); else if (a >= ADDR_PAR_U_START && a < ADDR_PAR_U_END) write_par(a, 3, value, wm_byte); } void mmu::trap_if_odd(const uint16_t a, const int run_mode, const d_i_space_t space, const bool is_write) { int page = a >> 13; if (is_write) set_page_trapped(run_mode, space == d_space, page); MMR0 &= ~(7 << 1); MMR0 |= page << 1; } memory_addresses_t mmu::calculate_physical_address(const int run_mode, const uint16_t a) const { const uint8_t apf = a >> 13; // active page field if (is_enabled() == false) { bool is_psw = a == ADDR_PSW; return { a, apf, a, is_psw, a, is_psw }; } uint32_t physical_instruction = get_physical_memory_offset(run_mode, 0, apf); uint32_t physical_data = get_physical_memory_offset(run_mode, 1, apf); uint16_t p_offset = a & 8191; // page offset physical_instruction += p_offset; physical_data += p_offset; if ((getMMR3() & 16) == 0) { // offset is 18bit physical_instruction &= 0x3ffff; physical_data &= 0x3ffff; } if (get_use_data_space(run_mode) == false) physical_data = physical_instruction; uint32_t io_base = get_io_base(); bool physical_instruction_is_psw = (physical_instruction - io_base + 0160000) == ADDR_PSW; bool physical_data_is_psw = (physical_data - io_base + 0160000) == ADDR_PSW; return { a, apf, physical_instruction, physical_instruction_is_psw, physical_data, physical_data_is_psw }; } std::pair mmu::get_trap_action(const int run_mode, const bool d, const int apf, const bool is_write) { const int access_control = get_access_control(run_mode, d, apf); constexpr const trap_action_t map[8][2] { { T_ABORT_4, T_ABORT_4 }, { T_TRAP_250, T_ABORT_4 }, { T_PROCEED, T_ABORT_4 }, { T_ABORT_4, T_ABORT_4 }, { T_TRAP_250, T_TRAP_250 }, { T_PROCEED, T_TRAP_250 }, { T_PROCEED, T_PROCEED }, { T_ABORT_4, T_ABORT_4 }, }; assert(map[1][false] == T_TRAP_250); assert(map[1][true ] == T_ABORT_4 ); return { map[access_control][is_write], access_control }; } void mmu::mmudebug(const uint16_t a) { #if !defined(TURBO) for(int rm=0; rm<4; rm++) { auto ma = calculate_physical_address(rm, a); TRACE("RM %d, a: %06o, apf: %d, PI: %08o (PSW: %d), PD: %08o (PSW: %d)", rm, ma.virtual_address, ma.apf, ma.physical_instruction, ma.physical_instruction_is_psw, ma.physical_data, ma.physical_data_is_psw); } #endif } void mmu::verify_page_access(const uint16_t virt_addr, const int run_mode, const bool d, const int apf, const bool is_write) { const auto [ trap_action, access_control ] = get_trap_action(run_mode, d, apf, is_write); if (trap_action == T_PROCEED) [[likely]] return; if (is_write) set_page_trapped(run_mode, d, apf); if (is_locked() == false) { uint16_t temp = getMMR0(); temp &= ~((1l << 15) | (1 << 14) | (1 << 13) | (1 << 12) | (3 << 5) | (7 << 1) | (1 << 4)); if (is_write && access_control != 6) temp |= 1 << 13; // read-only // if (access_control == 0 || access_control == 4) temp |= 1l << 15; // not resident else temp |= 1 << 13; // read-only temp |= run_mode << 5; // TODO: kernel-mode or user-mode when a trap occurs in user-mode? temp |= apf << 1; // add current page temp |= d << 4; setMMR0_as_is(temp); TRACE("MMR0: %06o", temp); } if (trap_action == T_TRAP_250) { TRACE("Page access %d (for virtual address %06o): trap 0250", access_control, virt_addr); c->trap(0250); // trap throw 5; } else { // T_ABORT_4 TRACE("Page access %d (for virtual address %06o): trap 004", access_control, virt_addr); c->trap(004); // abort throw 5; } } void mmu::verify_access_valid(const uint32_t m_offset, const int run_mode, const bool d, const int apf, const bool is_io, const bool is_write) { if (m_offset >= m->get_memory_size() && !is_io) [[unlikely]] { TRACE("TRAP(04) (throw 6) on address %08o", m_offset); if (is_locked() == false) { uint16_t temp = getMMR0(); temp &= 017777; temp |= 1l << 15; // non-resident temp &= ~14; // add current page temp |= apf << 1; temp &= ~(3 << 5); temp |= run_mode << 5; setMMR0_as_is(temp); } if (is_write) set_page_trapped(run_mode, d, apf); c->trap(04); throw 6; } } void mmu::verify_page_length(const uint16_t virt_addr, const int run_mode, const bool d, const int apf, const bool is_write) { uint16_t pdr_len = get_pdr_len(run_mode, d, apf); if (pdr_len == 127) return; uint16_t pdr_cmp = (virt_addr >> 6) & 127; bool direction = get_pdr_direction(run_mode, d, apf); if (direction == false ? pdr_cmp > pdr_len : pdr_cmp < pdr_len) [[unlikely]] { TRACE("mmu::calculate_physical_address::p_offset %o versus %o direction %d", pdr_cmp, pdr_len, direction); TRACE("TRAP(0250) (throw 7) on address %06o", virt_addr); c->trap(0250); // invalid access if (is_locked() == false) { uint16_t temp = getMMR0(); temp &= 017777; temp |= 1 << 14; // length temp &= ~14; // add current page temp |= apf << 1; temp &= ~(3 << 5); temp |= run_mode << 5; temp &= ~(1 << 4); temp |= d << 4; setMMR0_as_is(temp); } if (is_write) set_page_trapped(run_mode, d, apf); throw 7; } } uint32_t mmu::calculate_physical_address(const int run_mode, const uint16_t a, const bool is_write, const d_i_space_t space) { uint32_t m_offset = a; if (is_enabled() || (is_write && (getMMR0() & (1 << 8 /* maintenance check */)))) { bool d = space == d_space && get_use_data_space(run_mode); uint16_t p_offset = a & 8191; // page offset uint8_t apf = a >> 13; // active page field m_offset = get_physical_memory_offset(run_mode, d, apf); m_offset += p_offset; if ((getMMR3() & 16) == 0) // off is 18bit m_offset &= 0x3ffff; verify_page_access(a, run_mode, d, apf, is_write); // e.g. ram or i/o, not unmapped uint32_t io_base = get_io_base(); bool is_io = m_offset >= io_base; verify_access_valid(m_offset, run_mode, d, apf, is_io, is_write); verify_page_length(a, run_mode, d, apf, is_write); } return m_offset; } JsonDocument mmu::add_par_pdr(const int run_mode, const bool is_d) const { JsonDocument j; JsonDocument ja_par; JsonArray ja_par_work = ja_par.to(); for(int i=0; i<8; i++) ja_par_work.add(pages[run_mode][is_d][i].par); j["par"] = ja_par; JsonDocument ja_pdr; JsonArray ja_pdr_work = ja_pdr.to(); for(int i=0; i<8; i++) ja_pdr_work.add(pages[run_mode][is_d][i].pdr); j["pdr"] = ja_pdr; return j; } JsonDocument mmu::serialize() const { JsonDocument j; for(int run_mode=0; run_mode<4; run_mode++) { if (run_mode == 2) continue; for(int is_d=0; is_d<2; is_d++) j[format("runmode_%d_d_%d", run_mode, is_d)] = add_par_pdr(run_mode, is_d); } j["MMR0"] = MMR0; j["MMR1"] = MMR1; j["MMR2"] = MMR2; j["MMR3"] = MMR3; j["CPUERR"] = CPUERR; j["PIR"] = PIR; j["CSR"] = CSR; return j; } void mmu::set_par_pdr(const JsonVariantConst j_in, const int run_mode, const bool is_d) { JsonArrayConst j_par = j_in["par"]; int i_par = 0; for(auto v: j_par) pages[run_mode][is_d][i_par++].par = v; JsonArrayConst j_pdr = j_in["pdr"]; int i_pdr = 0; for(auto v: j_pdr) pages[run_mode][is_d][i_pdr++].pdr = v; } mmu *mmu::deserialize(const JsonVariantConst j, memory *const mem, cpu *const c) { mmu *m = new mmu(); m->begin(mem, c); for(int run_mode=0; run_mode<4; run_mode++) { if (run_mode == 2) continue; for(int is_d=0; is_d<2; is_d++) m->set_par_pdr(j[format("runmode_%d_d_%d", run_mode, is_d)].as(), run_mode, is_d); } m->MMR0 = j["MMR0"]; m->MMR1 = j["MMR1"]; m->MMR2 = j["MMR2"]; m->MMR3 = j["MMR3"]; m->CPUERR = j["CPUERR"]; m->PIR = j["PIR"]; m->CSR = j["CSR"]; return m; }