// (C) 2018-2022 by Folkert van Heusden // Released under Apache License v2.0 #include #include #include #include "bus.h" #include "gen.h" #include "cpu.h" #include "log.h" #include "memory.h" #include "tm-11.h" #include "tty.h" #if defined(ESP32) // ESP32 goes in a crash-loop when allocating 128kB // see also https://github.com/espressif/esp-idf/issues/1934 constexpr int n_pages = 12; #else constexpr int n_pages = 16; #endif bus::bus() { m = new memory(n_pages * 8192); memset(pages, 0x00, sizeof pages); CPUERR = MMR0 = MMR1 = MMR2 = MMR3 = PIR = CSR = 0; } bus::~bus() { delete c; delete tm11; delete rk05_; delete rl02_; delete tty_; delete m; } void bus::clearmem() { m -> reset(); } void bus::init() { MMR0 = 0; MMR3 = 0; } uint16_t bus::read(const uint16_t a, const bool word_mode, const bool use_prev, const bool peek_only) { uint16_t temp = 0; if (a >= 0160000) { if (word_mode) DOLOG(debug, false, "READ I/O %06o in byte mode", a); if (a == 0177750) { // MAINT DOLOG(debug, !peek_only, "read MAINT"); return 1; // POWER OK } if (a == 0177570) { // console switch & display register DOLOG(debug, !peek_only, "read console switch"); return debug_mode ? 128 : 0; } if (a == 0172540) { // KW11P programmable clock DOLOG(debug, !peek_only, "read programmable clock"); return 128; } if (a == 0177772) { // PIR DOLOG(debug, !peek_only, "read PIT"); return PIR; } if (a == 0177546) { // line frequency clock and status register DOLOG(debug, !peek_only, "read line freq clock"); return lf_csr; } if (a == 0177514) { // printer, CSR register, LP11 DOLOG(debug, !peek_only, "read LP11 CSR"); return 0x80; } /// MMU /// if (a >= 0172200 && a < 0172240) { int page = (a >> 1) & 7; bool is_d = a & 16; uint16_t t = pages[001][is_d][page].pdr; DOLOG(debug, !peek_only, "read supervisor %c PDR for %d: %o", is_d ? 'D' : 'I', page, t); return word_mode ? (a & 1 ? t >> 8 : t & 255) : t; } else if (a >= 0172240 && a < 0172300) { int page = (a >> 1) & 7; bool is_d = a & 16; uint16_t t = pages[001][is_d][page].par; DOLOG(debug, !peek_only, "read supervisor %c PAR for %d: %o (phys: %07o)", is_d ? 'D' : 'I', page, t, t * 64); return word_mode ? (a & 1 ? t >> 8 : t & 255) : t; } else if (a >= 0172300 && a < 0172340) { int page = (a >> 1) & 7; bool is_d = a & 16; uint16_t t = pages[000][is_d][page].pdr; DOLOG(debug, !peek_only, "read kernel %c PDR for %d: %o", is_d ? 'D' : 'I', page, t); return word_mode ? (a & 1 ? t >> 8 : t & 255) : t; } else if (a >= 0172340 && a < 0172400) { int page = (a >> 1) & 7; bool is_d = a & 16; uint16_t t = pages[000][is_d][page].par; DOLOG(debug, !peek_only, "read kernel %c PAR for %d: %o (phys: %07o)", is_d ? 'D' : 'I', page, t, t * 64); return word_mode ? (a & 1 ? t >> 8 : t & 255) : t; } else if (a >= 0177600 && a < 0177640) { int page = (a >> 1) & 7; bool is_d = a & 16; uint16_t t = pages[003][is_d][page].pdr; DOLOG(debug, !peek_only, "read userspace %c PDR for %d: %o", is_d ? 'D' : 'I', page, t); return word_mode ? (a & 1 ? t >> 8 : t & 255) : t; } else if (a >= 0177640 && a < 0177700) { int page = (a >> 1) & 7; bool is_d = a & 16; uint16_t t = pages[003][is_d][page].par; DOLOG(debug, !peek_only, "read userspace %c PAR for %d: %o (phys: %07o)", is_d ? 'D' : 'I', page, t, t * 64); return word_mode ? (a & 1 ? t >> 8 : t & 255) : t; } /////////// if (word_mode) { if (a == 0177776) { // PSW DOLOG(debug, !peek_only, "readb PSW LSB"); return c -> getPSW() & 255; } if (a == 0177777) { DOLOG(debug, !peek_only, "readb PSW MSB"); return c -> getPSW() >> 8; } if (a == 0177774) { // stack limit register DOLOG(debug, !peek_only, "readb stack limit register"); return c -> getStackLimitRegister() & 0xff; } if (a == 0177775) { // stack limit register DOLOG(debug, !peek_only, "readb stack limit register"); return c -> getStackLimitRegister() >> 8; } if (a >= 0177700 && a <= 0177705) { // kernel R0-R5 DOLOG(debug, !peek_only, "readb kernel R%d", a - 0177700); return c -> getRegister(a - 0177700, 0, false) & 0xff; } if (a >= 0177710 && a <= 0177715) { // user R0-R5 DOLOG(debug, !peek_only, "readb user R%d", a - 0177710); return c -> getRegister(a - 0177710, 3, false) & 0xff; } if (a == 0177706) { // kernel SP DOLOG(debug, !peek_only, "readb kernel sp"); return c -> getStackPointer(0) & 0xff; } if (a == 0177707) { // PC DOLOG(debug, !peek_only, "readb pc"); return c -> getPC() & 0xff; } if (a == 0177716) { // supervisor SP DOLOG(debug, !peek_only, "readb supervisor sp"); return c -> getStackPointer(1) & 0xff; } if (a == 0177717) { // user SP DOLOG(debug, !peek_only, "readb user sp"); return c -> getStackPointer(3) & 0xff; } if (a == 0177766) { // cpu error register DOLOG(debug, !peek_only, "readb cpuerr"); return CPUERR & 0xff; } } else { if (a == 0177572) { DOLOG(debug, !peek_only, "read MMR0"); return MMR0; } if (a == 0177574) { // MMR1 DOLOG(debug, !peek_only, "read MMR1"); return MMR1; } if (a == 0177576) { // MMR2 DOLOG(debug, !peek_only, "read MMR2"); return MMR2; } if (a == 0172516) { // MMR3 DOLOG(debug, !peek_only, "read MMR3"); return MMR3; } if (a == 0177776) { // PSW DOLOG(debug, !peek_only, "read PSW"); return c -> getPSW(); } if (a == 0177774) { // stack limit register return c -> getStackLimitRegister(); } if (a >= 0177700 && a <= 0177705) { // kernel R0-R5 DOLOG(debug, !peek_only, "read kernel R%d", a - 0177700); return c -> getRegister(a - 0177700, 0, false); } if (a >= 0177710 && a <= 0177715) { // user R0-R5 DOLOG(debug, !peek_only, "read user R%d", a - 0177710); return c -> getRegister(a - 0177710, 3, false); } if (a == 0177706) { // kernel SP DOLOG(debug, !peek_only, "read kernel sp"); return c -> getStackPointer(0); } if (a == 0177707) { // PC DOLOG(debug, !peek_only, "read pc"); return c -> getPC(); } if (a == 0177716) { // supervisor SP DOLOG(debug, !peek_only, "read supervisor sp"); return c -> getStackPointer(1); } if (a == 0177717) { // user SP DOLOG(debug, !peek_only, "read user sp"); return c -> getStackPointer(3); } if (a == 0177766) { // cpu error register DOLOG(debug, !peek_only, "read CPUERR"); return CPUERR; } } if (tm11 && a >= TM_11_BASE && a < TM_11_END) return word_mode ? tm11 -> readByte(a) : tm11 -> readWord(a); if (rk05_ && a >= RK05_BASE && a < RK05_END) return word_mode ? rk05_ -> readByte(a) : rk05_ -> readWord(a); if (rl02_ && a >= RL02_BASE && a < RL02_END) return word_mode ? rl02_ -> readByte(a) : rl02_ -> readWord(a); if (tty_ && a >= PDP11TTY_BASE && a < PDP11TTY_END) { if (peek_only) return 012345; return word_mode ? tty_ -> readByte(a) : tty_ -> readWord(a); } // LO size register field must be all 1s, so subtract 1 const uint32_t system_size = n_pages * 8192 / 64 - 1; if (a == 0177762) // system size HI return system_size >> 16; if (a == 0177760) // system size LO return system_size & 65535; if (a & 1) DOLOG(debug, !peek_only, "bus::readWord: odd address UNHANDLED %o", a); DOLOG(debug, !peek_only, "UNHANDLED read %o(%c)", a, word_mode ? 'B' : ' '); // c -> busError(); return -1; } int run_mode = (c->getPSW() >> (use_prev ? 12 : 14)) & 3; uint32_t m_offset = calculate_physical_address(run_mode, a, !peek_only, false, peek_only); if (word_mode) temp = m -> readByte(m_offset); else temp = m -> readWord(m_offset); DOLOG(debug, !peek_only, "READ from %06o/%07o: %o", a, m_offset, temp); return temp; } uint32_t bus::calculate_physical_address(const int run_mode, const uint16_t a, const bool trap_on_failure, const bool is_write, const bool peek_only) { uint32_t m_offset = 0; if (MMR0 & 1) { const uint8_t apf = a >> 13; // active page field // TODO: D/I m_offset = pages[run_mode][0][apf].par * 64; // memory offset TODO: handle 16b int-s uint16_t p_offset = a & 8191; // page offset m_offset += p_offset; if (trap_on_failure) { if (MMR0 & (1 << 9)) { int access_control = pages[run_mode][0][apf].pdr & 7; if (is_write && access_control != 6) { // write c->schedule_trap(04); // invalid address pages[run_mode][0][apf].pdr |= 1 << 7; // TODO: D/I MMR0 |= 1 << 13; // read-only MMR0 |= 1 << 12; // trap MMR0 &= ~(3 << 5); MMR0 |= run_mode << 5; // TODO: kernel-mode or user-mode when a trap occurs in user-mode? throw 1; } else if (!is_write) { // read if (access_control == 0 || access_control == 1 || access_control == 3 || access_control == 4 || access_control == 7) { c->schedule_trap(04); // invalid address pages[run_mode][0][apf].pdr |= 1 << 7; // TODO: D/I MMR0 |= 1 << 13; // read-only MMR0 |= 1 << 12; // trap MMR0 &= ~(3 << 5); MMR0 |= run_mode << 5; throw 1; } } } uint16_t pdr_len = (((pages[run_mode][0][apf].pdr >> 8) & 127) + 1) * 64; // TODO: D/I bool direction = pages[run_mode][0][apf].pdr & 8; // TODO: D/I if (m_offset >= n_pages * 8192) { DOLOG(debug, !peek_only, "bus::calculate_physical_address %o >= %o", m_offset, n_pages * 8192); c->schedule_trap(04); // invalid address MMR0 |= 1 << 15; // non-resident pages[run_mode][0][apf].pdr |= 1 << 7; // TODO: D/I throw 1; } if ((p_offset >= pdr_len && direction == false) || (p_offset < pdr_len && direction == true)) { DOLOG(debug, !peek_only, "bus::calculate_physical_address::p_offset %o >= %o", p_offset, pdr_len); c->schedule_trap(0250); // invalid access MMR0 |= 1 << 14; // length pages[run_mode][0][apf].pdr |= 1 << 7; // TODO: D/I throw 1; } } DOLOG(debug, !peek_only, "virtual address %06o maps to physical address %08o (run_mode: %d, apf: %d, par: %08o, poff)", a, m_offset, run_mode, apf, pages[run_mode][0][apf].par * 64, p_offset); // TODO: D/I } else { m_offset = a; } return m_offset; } void bus::clearMMR1() { MMR1 = 0; } void bus::addToMMR1(const int8_t delta, const uint8_t reg) { MMR1 <<= 8; MMR1 |= (delta & 31) << 3; MMR1 |= reg; } uint16_t bus::write(const uint16_t a, const bool word_mode, uint16_t value, const bool use_prev) { if (a >= 0160000) { if (word_mode) { assert(value < 256); DOLOG(debug, true, "WRITE I/O %06o in byte mode", a); } if (word_mode) { if (a == 0177776 || a == 0177777) { // PSW DOLOG(debug, true, "writeb PSW %s", a & 1 ? "MSB" : "LSB"); uint16_t vtemp = c -> getPSW(); value &= ~16; // cannot set T bit via this if (a & 1) vtemp = (vtemp & 0x00ff) | (value << 8); else vtemp = (vtemp & 0xff00) | value; c -> setPSW(vtemp, false); return value; } if (a == 0177774 || a == 0177775) { // stack limit register DOLOG(debug, true, "writeb Set stack limit register: %o", value); uint16_t v = c -> getStackLimitRegister(); if (a & 1) v = (v & 0x00ff) | (value << 8); else v = (v & 0xff00) | value; c -> setStackLimitRegister(v); return v; } } else { if (a == 0177776) { // PSW DOLOG(debug, true, "write PSW %o", value); c -> setPSW(value & ~16, false); return value; } if (a == 0177774) { // stack limit register DOLOG(debug, true, "write Set stack limit register: %o", value); c -> setStackLimitRegister(value); return value; } if (a >= 0177700 && a <= 0177705) { // kernel R0-R5 DOLOG(debug, true, "write kernel R%d: %o", a - 01777700, value); c -> setRegister(a - 0177700, false, false, value); return value; } if (a >= 0177710 && a <= 0177715) { // user R0-R5 DOLOG(debug, true, "write user R%d: %o", a - 01777710, value); c -> setRegister(a - 0177710, true, false, value); return value; } if (a == 0177706) { // kernel SP DOLOG(debug, true, "write kernel SP: %o", value); c -> setStackPointer(0, value); return value; } if (a == 0177707) { // PC DOLOG(debug, true, "write PC: %o", value); c -> setPC(value); return value; } if (a == 0177716) { // supervisor SP DOLOG(debug, true, "write supervisor sp: %o", value); c -> setStackPointer(1, value); return value; } if (a == 0177717) { // user SP DOLOG(debug, true, "write user sp: %o", value); c -> setStackPointer(3, value); return value; } if (a == 0177770) { // microprogram break register return value; } } if (a == 0177766) { // cpu error register DOLOG(debug, true, "write CPUERR: %o", value); CPUERR = 0; return CPUERR; } if (a == 0172516) { // MMR3 DOLOG(debug, true, "write set MMR3: %o", value); MMR3 = value & 067; return MMR3; } if (a == 0177572) { // MMR0 DOLOG(debug, true, "write set MMR0: %o", value); MMR0 = value & ~(3 << 10); // bit 10 & 11 always read as 0 if (value & 1) MMR0 = value & ~(7 << 13); // reset error bits return MMR0; } if (a == 0177772) { // PIR DOLOG(debug, true, "write set PIR: %o", value); PIR = value; // TODO return PIR; } if (a == 0177546) { // line frequency clock and status register DOLOG(debug, true, "write set LFC/SR: %o", value); lf_csr = value; return lf_csr; } if (tm11 && a >= TM_11_BASE && a < TM_11_END) { word_mode ? tm11 -> writeByte(a, value) : tm11 -> writeWord(a, value); return value; } if (rk05_ && a >= RK05_BASE && a < RK05_END) { word_mode ? rk05_ -> writeByte(a, value) : rk05_ -> writeWord(a, value); return value; } if (rl02_ && a >= RL02_BASE && a < RL02_END) { word_mode ? rl02_ -> writeByte(a, value) : rl02_ -> writeWord(a, value); return value; } if (tty_ && a >= PDP11TTY_BASE && a < PDP11TTY_END) { word_mode ? tty_ -> writeByte(a, value) : tty_ -> writeWord(a, value); return value; } /// MMU /// // supervisor if (a >= 0172200 && a < 0172240) { bool is_d = a & 16; int page = (a >> 1) & 7; if (word_mode) { a & 1 ? (pages[001][is_d][page].pdr &= 0xff, pages[001][is_d][page].pdr |= value << 8) : (pages[001][is_d][page].pdr &= 0xff00, pages[001][is_d][page].pdr |= value); } else { pages[001][is_d][page].pdr = value; } if (c->get_34()) // 11/34 has no cache bit pages[001][is_d][page].pdr &= 077516; pages[001][is_d][page].pdr &= ~(128 + 64 + 32 + 16); // set bit 4 & 5 to 0 as they are unused and A/W are set to 0 by writes DOLOG(debug, true, "write supervisor %c PDR for %d: %o [%d]", is_d ? 'D' : 'I', page, value, word_mode); return value; } if (a >= 0172240 && a < 0172300) { bool is_d = a & 16; int page = (a >> 1) & 7; if (word_mode) { a & 1 ? (pages[001][is_d][page].par &= 0xff, pages[001][is_d][page].par |= value << 8) : (pages[001][is_d][page].par &= 0xff00, pages[001][is_d][page].par |= value); } else { pages[001][is_d][page].par = value; } if (c->get_34()) // 11/34 has 12 bit PARs pages[001][is_d][page].par &= 4095; DOLOG(debug, true, "write supervisor %c PAR for %d: %o (%07o)", is_d ? 'D' : 'I', page, word_mode ? value & 0xff : value, pages[001][is_d][page].par * 64); return value; } // kernel if (a >= 0172300 && a < 0172340) { bool is_d = a & 16; int page = (a >> 1) & 7; if (word_mode) { a & 1 ? (pages[000][is_d][page].pdr &= 0xff, pages[000][is_d][page].pdr |= value << 8) : (pages[000][is_d][page].pdr &= 0xff00, pages[000][is_d][page].pdr |= value); } else { pages[000][is_d][page].pdr = value; } if (c->get_34()) // 11/34 has no cache bit pages[000][is_d][page].pdr &= 077516; pages[000][is_d][page].pdr &= ~(128 + 64 + 32 + 16); // set bit 4 & 5 to 0 as they are unused and A/W are set to 0 by writes DOLOG(debug, true, "write kernel %c PDR for %d: %o [%d]", is_d ? 'D' : 'I', page, value, word_mode); return value; } if (a >= 0172340 && a < 0172400) { bool is_d = a & 16; int page = (a >> 1) & 7; if (word_mode) { a & 1 ? (pages[000][is_d][page].par &= 0xff, pages[000][is_d][page].par |= value << 8) : (pages[000][is_d][page].par &= 0xff00, pages[000][is_d][page].par |= value); } else { pages[000][is_d][page].par = value; } if (c->get_34()) // 11/34 has 12 bit PARs pages[000][is_d][page].par &= 4095; DOLOG(debug, true, "write kernel %c PAR for %d: %o (%07o)", is_d ? 'D' : 'I', page, word_mode ? value & 0xff : value, pages[000][is_d][page].par * 64); return value; } // user if (a >= 0177600 && a < 0177640) { bool is_d = a & 16; int page = (a >> 1) & 7; if (word_mode) { a & 1 ? (pages[003][is_d][page].pdr &= 0xff, pages[003][is_d][page].pdr |= value << 8) : (pages[003][is_d][page].pdr &= 0xff00, pages[003][is_d][page].pdr |= value); } else { pages[003][is_d][page].pdr = value; } if (c->get_34()) // 11/34 has no cache bit pages[003][is_d][page].pdr &= 077516; pages[003][is_d][page].pdr &= ~(128 + 64 + 32 + 16); // set bit 4 & 5 to 0 as they are unused and A/W are set to 0 by writes DOLOG(debug, true, "write user %c PDR for %d: %o [%d]", is_d ? 'D' : 'I', page, value, word_mode); return value; } if (a >= 0177640 && a < 0177700) { bool is_d = a & 16; int page = (a >> 1) & 7; if (word_mode) { a & 1 ? (pages[003][is_d][page].par &= 0xff, pages[003][is_d][page].par |= value << 8) : (pages[003][is_d][page].par &= 0xff00, pages[003][is_d][page].par |= value); } else { pages[003][is_d][page].par = value; } if (c->get_34()) // 11/34 has 12 bit PARs pages[003][is_d][page].par &= 4095; DOLOG(debug, true, "write user %c PAR for %d: %o (%07o)", is_d ? 'D' : 'I', page, word_mode ? value & 0xff : value, pages[003][is_d][page].par * 64); return value; } //// if (a == 0177746) { // cache control register // TODO return value; } if (a == 0177570) { // switch register switch_register = value; return value; } /////////// if (a == 0177374) { // TODO DOLOG(debug, true, "char: %c", value & 127); return 128; } if (a & 1) DOLOG(info, true, "bus::writeWord: odd address UNHANDLED"); DOLOG(info, true, "UNHANDLED write %o(%c): %o", a, word_mode ? 'B' : ' ', value); // c -> busError(); return value; } int run_mode = (c->getPSW() >> (use_prev ? 12 : 14)) & 3; uint32_t m_offset = calculate_physical_address(run_mode, a, true, true, false); DOLOG(debug, true, "WRITE to %06o/%07o: %o", a, m_offset, value); if (word_mode) m->writeByte(m_offset, value); else m->writeWord(m_offset, value); return value; } uint16_t bus::readWord(const uint16_t a) { return read(a, false, false, false); } uint16_t bus::peekWord(const uint16_t a) { return read(a, false, false, true); } uint16_t bus::writeWord(const uint16_t a, const uint16_t value) { return write(a, false, value, false); } uint16_t bus::readUnibusByte(const uint16_t a) { return m->readByte(a); } void bus::writeUnibusByte(const uint16_t a, const uint8_t v) { m->writeByte(a, v); } void bus::set_lf_crs_b7() { lf_csr |= 128; } uint8_t bus::get_lf_crs() { return lf_csr; }