// (C) 2022 by Folkert van Heusden // Released under Apache License v2.0 #include #include #include "bus.h" #include "cpu.h" #include "error.h" #include "gen.h" #include "log.h" #include "rl02.h" #include "utils.h" constexpr int sectors_per_track = 40; constexpr int bytes_per_sector = 256; static const char * const regnames[] = { "control status", "bus address ", "disk address ", "multipurpose " }; rl02::rl02(const std::vector & files, bus *const b, std::atomic_bool *const disk_read_acitivity, std::atomic_bool *const disk_write_acitivity) : b(b), disk_read_acitivity(disk_read_acitivity), disk_write_acitivity(disk_write_acitivity) { memset(registers, 0x00, sizeof registers); memset(xfer_buffer, 0x00, sizeof xfer_buffer); fhs = files; } rl02::~rl02() { for(auto fh : fhs) delete fh; } uint8_t rl02::readByte(const uint16_t addr) { uint16_t v = readWord(addr & ~1); if (addr & 1) return v >> 8; return v; } uint16_t rl02::readWord(const uint16_t addr) { const int reg = (addr - RL02_BASE) / 2; if (addr == RL02_CSR) { // control status setBit(registers[reg], 0, true); // drive ready (DRDY) setBit(registers[reg], 7, true); // controller ready (CRDY) } uint16_t value = registers[reg]; // TODO DOLOG(debug, true, "RL02 read %s/%o: %06o", regnames[reg], addr, value); return value; } void rl02::writeByte(const uint16_t addr, const uint8_t v) { uint16_t vtemp = registers[(addr - RL02_BASE) / 2]; if (addr & 1) { vtemp &= ~0xff00; vtemp |= v << 8; } else { vtemp &= ~0x00ff; vtemp |= v; } writeWord(addr, vtemp); } uint32_t rl02::calcOffset(const uint16_t da) { int sector = da & 63; int track = (da >> 6) & 1023; uint32_t offset = (sectors_per_track * track + sector) * bytes_per_sector; return offset; } void rl02::writeWord(const uint16_t addr, uint16_t v) { #if defined(ESP32) digitalWrite(LED_BUILTIN, LOW); #endif DOLOG(debug, true, "RL02 write %06o: %06o", addr, v); const int reg = (addr - RL02_BASE) / 2; registers[reg] = v; if (addr == RL02_CSR) { // control status const uint8_t command = (v >> 1) & 7; const bool do_exec = !(v & 128); DOLOG(debug, true, "RL02 set command %d, exec: %d", command, do_exec); uint32_t disk_offset = calcOffset(registers[(RL02_DAR - RL02_BASE) / 2] & ~1); int device = 0; // TODO if (command == 2) { // get status registers[(RL02_MPR - RL02_BASE) / 2] = 0; } else if (command == 6 || command == 7) { // read data / read data without header check *disk_read_acitivity = true; bool proceed = true; uint32_t temp_disk_offset = disk_offset; uint32_t memory_address = registers[(RL02_BAR - RL02_BASE) / 2]; uint32_t count = (65536 - registers[(RL02_MPR - RL02_BASE) / 2]) * 2; DOLOG(debug, true, "RL02 read %d bytes (dec) from %d (dec) to %06o (oct)", count, disk_offset, memory_address); uint32_t p = memory_address; while(proceed && count > 0) { uint32_t cur = std::min(uint32_t(sizeof xfer_buffer), count); if (!fhs.at(device)->read(temp_disk_offset, cur, xfer_buffer)) { DOLOG(ll_error, true, "RL02 read error %s", strerror(errno)); break; } for(uint32_t i=0; iwriteByte(p, xfer_buffer[i]); temp_disk_offset += cur; count -= cur; } if (registers[(RL02_CSR - RL02_BASE) / 2] & 64) { // interrupt enable? DOLOG(debug, true, "RL02 triggering interrupt"); b->getCpu()->queue_interrupt(5, 0254); } *disk_read_acitivity = false; } } #if defined(ESP32) digitalWrite(LED_BUILTIN, HIGH); #endif }