// (C) 2024 by Folkert van Heusden // Released under MIT license #if defined(ESP32) #include #endif #if defined(ESP32) #include #include #include #elif defined(_WIN32) #include #include #else #include #include #include #endif #include #include #include "bus.h" #include "cpu.h" #include "dc11.h" #include "log.h" #include "utils.h" const char *const dc11_register_names[] { "RCSR", "RBUF", "TSCR", "TBUF" }; bool setup_telnet_session(const int fd) { uint8_t dont_auth[] = { 0xff, 0xf4, 0x25 }; uint8_t suppress_goahead[] = { 0xff, 0xfb, 0x03 }; uint8_t dont_linemode[] = { 0xff, 0xfe, 0x22 }; uint8_t dont_new_env[] = { 0xff, 0xfe, 0x27 }; uint8_t will_echo[] = { 0xff, 0xfb, 0x01 }; uint8_t dont_echo[] = { 0xff, 0xfe, 0x01 }; uint8_t noecho[] = { 0xff, 0xfd, 0x2d }; uint8_t charset[] = { 0xff, 0xfb, 0x01 }; if (write(fd, dont_auth, sizeof dont_auth) != sizeof dont_auth) return false; if (write(fd, suppress_goahead, sizeof suppress_goahead) != sizeof suppress_goahead) return false; if (write(fd, dont_linemode, sizeof dont_linemode) != sizeof dont_linemode) return false; if (write(fd, dont_new_env, sizeof dont_new_env) != sizeof dont_new_env) return false; if (write(fd, will_echo, sizeof will_echo) != sizeof will_echo) return false; if (write(fd, dont_echo, sizeof dont_echo) != sizeof dont_echo) return false; if (write(fd, noecho, sizeof noecho) != sizeof noecho) return false; return true; } dc11::dc11(const int base_port, bus *const b): base_port(base_port), b(b) { #if defined(_WIN32) pfds = new WSAPOLLFD[dc11_n_lines * 2](); #else pfds = new pollfd[dc11_n_lines * 2](); #endif // TODO move to begin() th = new std::thread(std::ref(*this)); } dc11::~dc11() { stop_flag = true; if (th) { th->join(); delete th; } delete [] pfds; #if defined(ESP32) if (serial_th) { serial_th->join(); delete serial_th; } #endif } void dc11::trigger_interrupt(const int line_nr, const bool is_tx) { b->getCpu()->queue_interrupt(5, 0300 + line_nr * 010 + 4 * is_tx); } void dc11::operator()() { set_thread_name("kek:DC11"); DOLOG(info, true, "DC11 thread started"); for(int i=0; i(&listen_addr), sizeof(listen_addr)) == -1) { close(pfds[i].fd); pfds[i].fd = INVALID_SOCKET; DOLOG(warning, true, "Cannot bind to port %d (DC11)", port); continue; } if (listen(pfds[i].fd, SOMAXCONN) == -1) { close(pfds[i].fd); pfds[i].fd = INVALID_SOCKET; DOLOG(warning, true, "Cannot listen on port %d (DC11)", port); continue; } pfds[i].events = POLLIN; } while(!stop_flag) { #if defined(_WIN32) int rc = WSAPoll(pfds, dc11_n_lines * 2, 100); #else int rc = poll(pfds, dc11_n_lines * 2, 100); #endif if (rc == 0) continue; // accept any new session for(int i=0; i lck(input_lock[i]); registers[i * 4 + 0] |= 0160000; // "ERROR", RING INDICATOR, CARRIER TRANSITION if (is_rx_interrupt_enabled(i)) trigger_interrupt(i, false); } } // receive data for(int i=dc11_n_lines; i lck(input_lock[line_nr]); if (rc_read <= 0) { // closed or error? DOLOG(info, false, "Failed reading from port %d", i - dc11_n_lines + 1); registers[line_nr * 4 + 0] |= 0140000; // "ERROR", CARRIER TRANSITION close(pfds[i].fd); pfds[i].fd = INVALID_SOCKET; } else { for(int k=0; ks = s; s->write("Press enter to connect"); serial_th = new std::thread(&dc11::serial_handler, this); } void dc11::serial_handler() { while(!stop_flag) { yield(); if (s->available() == 0) continue; // 3 is reserved for a serial port constexpr const int serial_line = 3; std::unique_lock lck(input_lock[serial_line]); if (serial_enabled == false) { serial_enabled = true; // first key press enables the port registers[serial_line * 4 + 0] |= 0160000; // "ERROR", RING INDICATOR, CARRIER TRANSITION } recv_buffers[serial_line].push_back(s->read()); registers[serial_line * 4 + 0] |= 128; // DONE: bit 7 if (is_rx_interrupt_enabled(serial_line)) trigger_interrupt(serial_line, false); } } #endif void dc11::reset() { } bool dc11::is_rx_interrupt_enabled(const int line_nr) { return !!(registers[line_nr * 4 + 0] & 64); } bool dc11::is_tx_interrupt_enabled(const int line_nr) { return !!(registers[line_nr * 4 + 2] & 64); } uint8_t dc11::read_byte(const uint16_t addr) { uint16_t v = read_word(addr & ~1); if (addr & 1) return v >> 8; return v; } uint16_t dc11::read_word(const uint16_t addr) { int reg = (addr - DC11_BASE) / 2; int line_nr = reg / 4; int sub_reg = reg & 3; std::unique_lock lck(input_lock[line_nr]); uint16_t vtemp = registers[reg]; if (sub_reg == 0) { // receive status // emulate DTR, CTS & READY registers[line_nr * 4 + 0] &= ~1; // DTR: bit 0 [RCSR] registers[line_nr * 4 + 0] &= ~4; // CD : bit 2 if (pfds[line_nr + dc11_n_lines].fd != INVALID_SOCKET) { registers[line_nr * 4 + 0] |= 1; registers[line_nr * 4 + 0] |= 4; } vtemp = registers[line_nr * 4 + 0]; // clear error(s) registers[line_nr * 4 + 0] &= ~0160000; } else if (sub_reg == 1) { // read data register TRACE("DC11: %zu characters in buffer for line %d", recv_buffers[line_nr].size(), line_nr); // get oldest byte in buffer if (recv_buffers[line_nr].empty() == false) { vtemp = *recv_buffers[line_nr].begin(); // parity check registers[line_nr * 4 + 0] &= ~(1 << 5); registers[line_nr * 4 + 0] |= parity(vtemp) << 5; recv_buffers[line_nr].erase(recv_buffers[line_nr].begin()); // still data in buffer? generate interrupt if (recv_buffers[line_nr].empty() == false) { registers[line_nr * 4 + 0] |= 128; // DONE: bit 7 if (is_rx_interrupt_enabled(line_nr)) trigger_interrupt(line_nr, false); } } } else if (sub_reg == 2) { // transmit status registers[line_nr * 4 + 2] &= ~2; // CTS: bit 1 [TSCR] registers[line_nr * 4 + 2] &= ~128; // READY: bit 7 if (pfds[line_nr + dc11_n_lines].fd != INVALID_SOCKET) { registers[line_nr * 4 + 2] |= 2; registers[line_nr * 4 + 2] |= 128; } vtemp = registers[line_nr * 4 + 2]; } TRACE("DC11: read register %06o (\"%s\", %d line %d): %06o", addr, dc11_register_names[sub_reg], sub_reg, line_nr, vtemp); return vtemp; } void dc11::write_byte(const uint16_t addr, const uint8_t v) { uint16_t vtemp = registers[(addr - DC11_BASE) / 2]; if (addr & 1) { vtemp &= ~0xff00; vtemp |= v << 8; } else { vtemp &= ~0x00ff; vtemp |= v; } write_word(addr, vtemp); } void dc11::write_word(const uint16_t addr, const uint16_t v) { int reg = (addr - DC11_BASE) / 2; int line_nr = reg / 4; int sub_reg = reg & 3; std::unique_lock lck(input_lock[line_nr]); TRACE("DC11: write register %06o (\"%s\", %d line_nr %d) to %06o", addr, dc11_register_names[sub_reg], sub_reg, line_nr, v); if (sub_reg == 3) { // transmit buffer char c = v & 127; // strip parity if (c <= 32 || c >= 127) TRACE("DC11: transmit [%d] on line %d", c, line_nr); else TRACE("DC11: transmit %c on line %d", c, line_nr); #if defined(ESP32) if (line_nr == 3) { if (s != nullptr) s->write(c); return; } #endif SOCKET fd = pfds[dc11_n_lines + line_nr].fd; if (fd != INVALID_SOCKET && write(fd, &c, 1) != 1) { DOLOG(info, false, "DC11 line %d disconnected\n", line_nr + 1); registers[line_nr * 4 + 0] |= 0140000; // "ERROR", CARRIER TRANSITION close(fd); pfds[dc11_n_lines + line_nr].fd = INVALID_SOCKET; } if (is_tx_interrupt_enabled(line_nr)) trigger_interrupt(line_nr, true); } registers[reg] = v; }