// (C) 2018-2022 by Folkert van Heusden // Released under Apache License v2.0 #include #include #include #include "bus.h" #include "gen.h" #include "cpu.h" #include "log.h" #include "memory.h" #include "tm-11.h" #include "tty.h" #if defined(ESP32) // ESP32 goes in a crash-loop when allocating 128kB // see also https://github.com/espressif/esp-idf/issues/1934 constexpr int n_pages = 12; #else constexpr int n_pages = 128; // 1MB #endif constexpr uint16_t di_ena_mask[4] = { 4, 2, 0, 1 }; bus::bus() { m = new memory(n_pages * 8192); memset(pages, 0x00, sizeof pages); CPUERR = MMR0 = MMR1 = MMR2 = MMR3 = PIR = CSR = 0; } bus::~bus() { delete c; delete tm11; delete rk05_; delete rl02_; delete tty_; delete m; } void bus::clearmem() { m -> reset(); } void bus::init() { MMR0 = 0; MMR3 = 0; } uint16_t bus::read_pdr(const uint32_t a, const int run_mode, const bool word_mode, const bool peek_only) { bool is_11_34 = c->get_34(); int page = (a >> 1) & 7; bool is_d = is_11_34 ? false : (a & 16); uint16_t t = pages[run_mode][is_d][page].pdr; DOLOG(debug, !peek_only, "read run-mode %d: %c PDR for %d: %o", run_mode, is_d ? 'D' : 'I', page, t); return word_mode ? (a & 1 ? t >> 8 : t & 255) : t; } uint16_t bus::read_par(const uint32_t a, const int run_mode, const bool word_mode, const bool peek_only) { bool is_11_34 = c->get_34(); int page = (a >> 1) & 7; bool is_d = is_11_34 ? false : (a & 16); uint16_t t = pages[run_mode][is_d][page].par; DOLOG(debug, !peek_only, "read run-mode %d: %c PAR for %d: %o (phys: %07o)", run_mode, is_d ? 'D' : 'I', page, t, t * 64); return word_mode ? (a & 1 ? t >> 8 : t & 255) : t; } uint16_t bus::read(const uint16_t a, const bool word_mode, const bool use_prev, const bool peek_only, const d_i_space_t space) { uint16_t temp = 0; if (a >= 0160000) { DOLOG(debug, !peek_only, "READ from %06o/IO %c %c", a, space == d_space ? 'D' : 'I', word_mode ? 'B' : 'W'); if (word_mode) DOLOG(debug, false, "READ I/O %06o in byte mode", a); //// REGISTERS //// if (a >= ADDR_KERNEL_R && a <= ADDR_KERNEL_R + 5) { // kernel R0-R5 DOLOG(debug, !peek_only, "readb kernel R%d", a - ADDR_KERNEL_R); return c -> getRegister(a - ADDR_KERNEL_R, 0, false) & (word_mode ? 0xff : 0xffff); } if (a >= ADDR_USER_R && a <= ADDR_USER_R + 5) { // user R0-R5 DOLOG(debug, !peek_only, "readb user R%d", a - ADDR_USER_R); return c -> getRegister(a - ADDR_USER_R, 3, false) & (word_mode ? 0xff : 0xffff); } if (a == ADDR_KERNEL_SP) { // kernel SP DOLOG(debug, !peek_only, "readb kernel sp"); return c -> getStackPointer(0) & (word_mode ? 0xff : 0xffff); } if (a == ADDR_PC) { // PC DOLOG(debug, !peek_only, "readb pc"); return c -> getPC() & (word_mode ? 0xff : 0xffff); } if (a == ADDR_SV_SP) { // supervisor SP DOLOG(debug, !peek_only, "readb supervisor sp"); return c -> getStackPointer(1) & (word_mode ? 0xff : 0xffff); } if (a == ADDR_USER_SP) { // user SP DOLOG(debug, !peek_only, "readb user sp"); return c -> getStackPointer(3) & (word_mode ? 0xff : 0xffff); } ///^ registers ^/// if (!peek_only) { if (a & 1) { DOLOG(debug, true, "bus::readWord: odd address UNHANDLED %06o in i/o area", a); c->schedule_trap(004); // invalid access return 0; } } if (a == ADDR_CPU_ERR) { // cpu error register DOLOG(debug, !peek_only, "readb cpuerr"); return CPUERR & 0xff; } if (a == ADDR_MAINT) { // MAINT DOLOG(debug, !peek_only, "read MAINT"); return 1; // POWER OK } if (a == ADDR_CONSW) { // console switch & display register DOLOG(debug, !peek_only, "read console switch (%06o)", console_switches); return console_switches; } if (a == ADDR_KW11P) { // KW11P programmable clock DOLOG(debug, !peek_only, "read programmable clock"); return 128; } if (a == ADDR_PIR) { // PIR DOLOG(debug, !peek_only, "read PIR"); return PIR; } if (a == ADDR_SYSTEM_ID) { DOLOG(debug, !peek_only, "read system id"); return 011064; } if (a == ADDR_LFC) { // line frequency clock and status register DOLOG(debug, !peek_only, "read line freq clock"); return lf_csr; } if (a == ADDR_LP11CSR) { // printer, CSR register, LP11 DOLOG(debug, !peek_only, "read LP11 CSR"); return 0x80; } /// MMU /// if (a >= ADDR_PDR_SV_START && a < ADDR_PDR_SV_END) return read_pdr(a, 1, word_mode, peek_only); else if (a >= ADDR_PAR_SV_START && a < ADDR_PAR_SV_END) return read_par(a, 1, word_mode, peek_only); else if (a >= ADDR_PDR_K_START && a < ADDR_PDR_K_END) return read_pdr(a, 0, word_mode, peek_only); else if (a >= ADDR_PAR_K_START && a < ADDR_PAR_K_END) return read_par(a, 0, word_mode, peek_only); else if (a >= ADDR_PDR_U_START && a < ADDR_PDR_U_END) return read_pdr(a, 3, word_mode, peek_only); else if (a >= ADDR_PAR_U_START && a < ADDR_PAR_U_END) return read_par(a, 3, word_mode, peek_only); /////////// if (word_mode) { if (a == ADDR_PSW) { // PSW DOLOG(debug, !peek_only, "readb PSW LSB"); return c -> getPSW() & 255; } if (a == ADDR_PSW + 1) { DOLOG(debug, !peek_only, "readb PSW MSB"); return c -> getPSW() >> 8; } if (a == ADDR_STACKLIM) { // stack limit register DOLOG(debug, !peek_only, "readb stack limit register"); return c -> getStackLimitRegister() & 0xff; } if (a == ADDR_STACKLIM + 1) { // stack limit register DOLOG(debug, !peek_only, "readb stack limit register"); return c -> getStackLimitRegister() >> 8; } } else { if (a == ADDR_MMR0) { DOLOG(debug, !peek_only, "read MMR0"); return MMR0; } if (a == ADDR_MMR1) { // MMR1 DOLOG(debug, !peek_only, "read MMR1"); return MMR1; } if (a == ADDR_MMR2) { // MMR2 DOLOG(debug, !peek_only, "read MMR2"); return MMR2; } if (a == ADDR_MMR3) { // MMR3 DOLOG(debug, !peek_only, "read MMR3"); return MMR3; } if (a == ADDR_PSW) { // PSW DOLOG(debug, !peek_only, "read PSW"); return c -> getPSW(); } if (a == ADDR_STACKLIM) { // stack limit register return c -> getStackLimitRegister(); } if (a == ADDR_CPU_ERR) { // cpu error register DOLOG(debug, !peek_only, "read CPUERR"); return CPUERR; } } if (tm11 && a >= TM_11_BASE && a < TM_11_END) return word_mode ? tm11 -> readByte(a) : tm11 -> readWord(a); if (rk05_ && a >= RK05_BASE && a < RK05_END) return word_mode ? rk05_ -> readByte(a) : rk05_ -> readWord(a); if (rl02_ && a >= RL02_BASE && a < RL02_END) return word_mode ? rl02_ -> readByte(a) : rl02_ -> readWord(a); if (tty_ && a >= PDP11TTY_BASE && a < PDP11TTY_END) { if (peek_only) return 012345; return word_mode ? tty_ -> readByte(a) : tty_ -> readWord(a); } // LO size register field must be all 1s, so subtract 1 constexpr uint32_t system_size = n_pages * 8192 / 64 - 1; if (a == ADDR_SYSSIZE + 2) { // system size HI // printf("accessing system size HI\r\n"); return system_size >> 16; } if (a == ADDR_SYSSIZE) { // system size LO // printf("accessing system size LO\r\n"); return system_size; } if (!peek_only) DOLOG(debug, true, "UNHANDLED read %o(%c)", a, word_mode ? 'B' : ' '); return -1; } if (peek_only == false && word_mode == false && (a & 1)) { DOLOG(debug, true, "READ from %06o - odd address!", a); c->schedule_trap(004); // invalid access return 0; } int run_mode = (c->getPSW() >> (use_prev ? 12 : 14)) & 3; uint32_t m_offset = calculate_physical_address(run_mode, a, !peek_only, false, peek_only, space == d_space); if (word_mode) temp = m -> readByte(m_offset); else temp = m -> readWord(m_offset); DOLOG(debug, !peek_only, "READ from %06o/%07o %c %c: %o", a, m_offset, space == d_space ? 'D' : 'I', word_mode ? 'B' : 'W', temp); return temp; } void bus::setMMR0(int value) { value &= ~(3 << 10); // bit 10 & 11 always read as 0 if (value & 1) value &= ~(7 << 13); // reset error bits if (MMR0 & 0160000) { if ((value & 1) == 0) value &= 254; // bits 7...1 are protected } // TODO if bit 15/14/13 are set (either of them), then do not modify bit 1...7 MMR0 = value; } void bus::setMMR0Bit(const int bit) { assert(bit != 10 && bit != 11); assert(bit < 16 && bit >= 0); MMR0 |= 1 << bit; } void bus::clearMMR0Bit(const int bit) { assert(bit != 10 && bit != 11); assert(bit < 16 && bit >= 0); MMR0 &= ~(1 << bit); } void bus::setMMR2(const uint16_t value) { MMR2 = value; } void bus::check_odd_addressing(const uint16_t a, const int run_mode, const d_i_space_t space, const bool is_write) { if (a & 1) { if (is_write) pages[run_mode][space == d_space][a >> 13].pdr |= 1 << 7; c->schedule_trap(004); // invalid access throw 5; } } memory_addresses_t bus::calculate_physical_address(const int run_mode, const uint16_t a) { const uint8_t apf = a >> 13; // active page field uint32_t physical_instruction = pages[run_mode][0][apf].par * 64; uint32_t physical_data = pages[run_mode][1][apf].par * 64; uint16_t p_offset = a & 8191; // page offset physical_instruction += p_offset; physical_data += p_offset; if (MMR0 & 1) { // MMU enabled? if ((MMR3 & 16) == 0) { // offset is 18bit physical_instruction &= 0x3ffff; physical_data &= 0x3ffff; } } return { a, apf, physical_instruction, physical_data }; } bool bus::get_use_data_space(const int run_mode) { return !!(MMR3 & di_ena_mask[run_mode]); } uint32_t bus::calculate_physical_address(const int run_mode, const uint16_t a, const bool trap_on_failure, const bool is_write, const bool peek_only, const bool is_data) { uint32_t m_offset = a; if (MMR0 & 1) { const uint8_t apf = a >> 13; // active page field bool d = is_data & (!!(MMR3 & di_ena_mask[run_mode])) ? is_data : false; uint16_t p_offset = a & 8191; // page offset m_offset = pages[run_mode][d][apf].par * 64; // memory offset TODO: handle 16b int-s m_offset += p_offset; if ((MMR3 & 16) == 0) // off is 18bit m_offset &= 0x3ffff; if (trap_on_failure) { if ((MMR0 & (1 << 9)) || c->get_34()) { const int access_control = pages[run_mode][d][apf].pdr & 7; if (is_write && access_control != 6) { // write DOLOG(debug, true, "TRAP(0250) (throw 1) for access_control %d on address %06o", access_control, a); c->schedule_trap(0250); // invalid address if (is_write) pages[run_mode][d][apf].pdr |= 1 << 7; if ((MMR0 & 0160000) == 0) { MMR0 &= 017777; MMR0 |= 1 << 13; // read-only MMR0 &= ~(3 << 5); MMR0 |= run_mode << 5; // TODO: kernel-mode or user-mode when a trap occurs in user-mode? MMR0 &= ~14; // add current page MMR0 |= apf << 1; } DOLOG(debug, true, "MMR0: %06o", MMR0); throw 1; } else if (!is_write) { // read if (access_control == 0 || access_control == 1 || access_control == 3 || access_control == 4 || access_control == 7) { DOLOG(debug, true, "TRAP(4) (throw 2) for access_control %d on address %06o", access_control, a); c->schedule_trap(0250); // invalid address if (is_write) pages[run_mode][d][apf].pdr |= 1 << 7; if ((MMR0 & 0160000) == 0) { MMR0 &= 017777; if (access_control == 0 || access_control == 4) MMR0 |= 1 << 15; // not resident else MMR0 |= 1 << 13; // read-only MMR0 &= ~(3 << 5); MMR0 |= run_mode << 5; MMR0 &= ~14; // add current page MMR0 |= apf << 1; } throw 2; } } } if (m_offset >= n_pages * 8192) { DOLOG(debug, !peek_only, "bus::calculate_physical_address %o >= %o", m_offset, n_pages * 8192); DOLOG(debug, true, "TRAP(04) (throw 3) on address %06o", a); if ((MMR0 & 0160000) == 0) { MMR0 &= 017777; MMR0 |= 1 << 15; // non-resident MMR0 &= ~14; // add current page MMR0 |= apf << 1; MMR0 &= ~(3 << 5); MMR0 |= run_mode << 5; } if (is_write) pages[run_mode][d][apf].pdr |= 1 << 7; // TODO: D/I c->schedule_trap(04); throw 3; } uint16_t pdr_len = (pages[run_mode][d][apf].pdr >> 8) & 127; uint16_t pdr_cmp = (a >> 6) & 127; bool direction = pages[run_mode][d][apf].pdr & 8; // TODO: D/I // DOLOG(debug, true, "p_offset %06o pdr_len %06o direction %d, run_mode %d, apf %d, pdr: %06o", p_offset, pdr_len, direction, run_mode, apf, pages[run_mode][d][apf].pdr); if ((pdr_cmp > pdr_len && direction == false) || (pdr_cmp < pdr_len && direction == true)) { DOLOG(debug, !peek_only, "bus::calculate_physical_address::p_offset %o versus %o direction %d", pdr_cmp, pdr_len, direction); DOLOG(debug, true, "TRAP(0250) (throw 4) on address %06o", a); c->schedule_trap(0250); // invalid access if ((MMR0 & 0160000) == 0) { MMR0 &= 017777; MMR0 |= 1 << 14; // length MMR0 &= ~14; // add current page MMR0 |= apf << 1; MMR0 &= ~(3 << 5); MMR0 |= run_mode << 5; } if (is_write) pages[run_mode][d][apf].pdr |= 1 << 7; // TODO: D/I throw 4; } } DOLOG(debug, !peek_only, "virtual address %06o maps to physical address %08o (run_mode: %d, apf: %d, par: %08o, poff: %o, AC: %d)", a, m_offset, run_mode, apf, pages[run_mode][d][apf].par * 64, p_offset, pages[run_mode][d][apf].pdr & 7); // TODO: D/I } return m_offset; } void bus::clearMMR1() { MMR1 = 0; } void bus::addToMMR1(const int8_t delta, const uint8_t reg) { MMR1 <<= 8; MMR1 |= (delta & 31) << 3; MMR1 |= reg; } void bus::write_pdr(const uint32_t a, const int run_mode, const uint16_t value, const bool word_mode) { bool is_11_34 = c->get_34(); bool is_d = is_11_34 ? false : (a & 16); int page = (a >> 1) & 7; if (word_mode) { assert(a != 0 || value < 256); a & 1 ? (pages[run_mode][is_d][page].pdr &= 0xff, pages[run_mode][is_d][page].pdr |= value << 8) : (pages[run_mode][is_d][page].pdr &= 0xff00, pages[run_mode][is_d][page].pdr |= value); } else { pages[run_mode][is_d][page].pdr = value; } if (is_11_34) // 11/34 has no cache bit pages[run_mode][is_d][page].pdr &= 077416; else pages[run_mode][is_d][page].pdr &= ~(128 + 64 + 32 + 16); // set bit 4 & 5 to 0 as they are unused and A/W are set to 0 by writes DOLOG(debug, true, "write run-mode %d: %c PDR for %d: %o [%d]", run_mode, is_d ? 'D' : 'I', page, value, word_mode); } void bus::write_par(const uint32_t a, const int run_mode, const uint16_t value, const bool word_mode) { bool is_11_34 = c->get_34(); bool is_d = is_11_34 ? false : (a & 16); int page = (a >> 1) & 7; if (word_mode) { a & 1 ? (pages[run_mode][is_d][page].par &= 0xff, pages[run_mode][is_d][page].par |= value << 8) : (pages[run_mode][is_d][page].par &= 0xff00, pages[run_mode][is_d][page].par |= value); } else { pages[run_mode][is_d][page].par = value; } if (is_11_34) // 11/34 has 12 bit PARs pages[run_mode][is_d][page].par &= 4095; DOLOG(debug, true, "write run-mode %d: %c PAR for %d: %o (%07o)", run_mode, is_d ? 'D' : 'I', page, word_mode ? value & 0xff : value, pages[run_mode][is_d][page].par * 64); } void bus::write(const uint16_t a, const bool word_mode, uint16_t value, const bool use_prev, const d_i_space_t space) { int run_mode = (c->getPSW() >> (use_prev ? 12 : 14)) & 3; if ((MMR0 & 1) == 1 && (a & 1) == 0 && a != ADDR_MMR0) { const uint8_t apf = a >> 13; // active page field bool is_data = space == d_space; bool d = is_data & (!!(MMR3 & di_ena_mask[run_mode])) ? is_data : false; pages[run_mode][d][apf].pdr |= 64; // set 'W' (written to) bit } if (a >= 0160000) { DOLOG(debug, true, "WRITE to %06o/IO %c %c: %o", a, space == d_space ? 'D' : 'I', word_mode ? 'B' : 'W', value); if (word_mode) { assert(value < 256); DOLOG(debug, true, "WRITE I/O %06o in byte mode", a); } if (word_mode) { if (a == ADDR_PSW || a == ADDR_PSW + 1) { // PSW DOLOG(debug, true, "writeb PSW %s", a & 1 ? "MSB" : "LSB"); uint16_t vtemp = c -> getPSW(); if (a & 1) vtemp = (vtemp & 0x00ff) | (value << 8); else vtemp = (vtemp & 0xff00) | value; vtemp &= ~16; // cannot set T bit via this c -> setPSW(vtemp, false); return; } if (a == ADDR_STACKLIM || a == ADDR_STACKLIM + 1) { // stack limit register DOLOG(debug, true, "writeb Set stack limit register: %o", value); uint16_t v = c -> getStackLimitRegister(); if (a & 1) v = (v & 0x00ff) | (value << 8); else v = (v & 0xff00) | value; c -> setStackLimitRegister(v); return; } if (a == ADDR_MICROPROG_BREAK_REG) { // microprogram break register microprogram_break_register = (microprogram_break_register & 0xff00) | value; return; } if (a == ADDR_MICROPROG_BREAK_REG + 1) { // microprogram break register microprogram_break_register = (microprogram_break_register & 0x00ff) | (value << 8); return; } } else { if (a == ADDR_PSW) { // PSW DOLOG(debug, true, "write PSW %o", value); c -> setPSW(value & ~16, false); return; } if (a == ADDR_STACKLIM) { // stack limit register DOLOG(debug, true, "write Set stack limit register: %o", value); c -> setStackLimitRegister(value); return; } if (a >= ADDR_KERNEL_R && a <= ADDR_KERNEL_R + 5) { // kernel R0-R5 DOLOG(debug, true, "write kernel R%d: %o", a - ADDR_KERNEL_R, value); c -> setRegister(a - ADDR_KERNEL_R, false, false, value); return; } if (a >= ADDR_USER_R && a <= ADDR_USER_R + 5) { // user R0-R5 DOLOG(debug, true, "write user R%d: %o", a - ADDR_USER_R, value); c -> setRegister(a - ADDR_USER_R, true, false, value); return; } if (a == ADDR_KERNEL_SP) { // kernel SP DOLOG(debug, true, "write kernel SP: %o", value); c -> setStackPointer(0, value); return; } if (a == ADDR_PC) { // PC DOLOG(debug, true, "write PC: %o", value); c -> setPC(value); return; } if (a == ADDR_SV_SP) { // supervisor SP DOLOG(debug, true, "write supervisor sp: %o", value); c -> setStackPointer(1, value); return; } if (a == ADDR_USER_SP) { // user SP DOLOG(debug, true, "write user sp: %o", value); c -> setStackPointer(3, value); return; } if (a == ADDR_MICROPROG_BREAK_REG) { // microprogram break register microprogram_break_register = value; return; } } if (a == ADDR_CPU_ERR) { // cpu error register DOLOG(debug, true, "write CPUERR: %o", value); CPUERR = 0; return; } if (a == ADDR_MMR3) { // MMR3 DOLOG(debug, true, "write set MMR3: %o", value); MMR3 = value & 067; return; } if (a == ADDR_MMR0) { // MMR0 DOLOG(debug, true, "write set MMR0: %o", value); setMMR0(value); return; } if (a == ADDR_PIR) { // PIR DOLOG(debug, true, "write set PIR: %o", value); PIR = value; // TODO return; } if (a == ADDR_LFC) { // line frequency clock and status register DOLOG(debug, true, "write set LFC/SR: %o", value); lf_csr = value; return; } if (tm11 && a >= TM_11_BASE && a < TM_11_END) { word_mode ? tm11 -> writeByte(a, value) : tm11 -> writeWord(a, value); return; } if (rk05_ && a >= RK05_BASE && a < RK05_END) { word_mode ? rk05_ -> writeByte(a, value) : rk05_ -> writeWord(a, value); return; } if (rl02_ && a >= RL02_BASE && a < RL02_END) { word_mode ? rl02_ -> writeByte(a, value) : rl02_ -> writeWord(a, value); return; } if (tty_ && a >= PDP11TTY_BASE && a < PDP11TTY_END) { word_mode ? tty_ -> writeByte(a, value) : tty_ -> writeWord(a, value); return; } /// MMU /// // supervisor if (a >= ADDR_PDR_SV_START && a < ADDR_PDR_SV_END) { write_pdr(a, 1, value, word_mode); return; } if (a >= ADDR_PAR_SV_START && a < ADDR_PAR_SV_END) { write_par(a, 1, value, word_mode); return; } // kernel if (a >= ADDR_PDR_K_START && a < ADDR_PDR_K_END) { write_pdr(a, 0, value, word_mode); return; } if (a >= ADDR_PAR_K_START && a < ADDR_PAR_K_END) { write_par(a, 0, value, word_mode); return; } // user if (a >= ADDR_PDR_U_START && a < ADDR_PDR_U_END) { write_pdr(a, 3, value, word_mode); return; } if (a >= ADDR_PAR_U_START && a < ADDR_PAR_U_END) { write_par(a, 3, value, word_mode); return; } //// if (a == ADDR_CCR) { // cache control register // TODO return; } if (a == ADDR_CONSW) { // switch register console_leds = value; return; } /////////// DOLOG(debug, true, "UNHANDLED write %o(%c): %o", a, word_mode ? 'B' : 'W', value); if (word_mode == false && (a & 1)) { DOLOG(debug, true, "WRITE to %06o (value: %06o) - odd address!", a, value); c->schedule_trap(004); // invalid access return; } // c -> busError(); return; } if (word_mode == false && (a & 1)) { DOLOG(debug, true, "WRITE to %06o (value: %06o) - odd address!", a, value); c->schedule_trap(004); // invalid access return; } uint32_t m_offset = calculate_physical_address(run_mode, a, true, true, false, space == d_space); DOLOG(debug, true, "WRITE to %06o/%07o %c %c: %o", a, m_offset, space == d_space ? 'D' : 'I', word_mode ? 'B' : 'W', value); if (word_mode) m->writeByte(m_offset, value); else m->writeWord(m_offset, value); } void bus::writePhysical(const uint32_t a, const uint16_t value) { DOLOG(debug, true, "physicalWRITE %06o to %o", value, a); if (a >= n_pages * 8192) { DOLOG(debug, true, "physicalWRITE to %o: trap 004", a); c->schedule_trap(004); } else { m->writeWord(a, value); } } uint16_t bus::readPhysical(const uint32_t a) { if (a >= n_pages * 8192) { DOLOG(debug, true, "physicalREAD from %o: trap 004", a); c->schedule_trap(004); return 0; } else { uint16_t value = m->readWord(a); DOLOG(debug, true, "physicalREAD %06o from %o", value, a); return value; } } uint16_t bus::readWord(const uint16_t a, const d_i_space_t s) { return read(a, false, false, false, s); } uint16_t bus::peekWord(const uint16_t a) { return read(a, false, false, true); } void bus::writeWord(const uint16_t a, const uint16_t value) { write(a, false, value, false); } uint16_t bus::readUnibusByte(const uint16_t a) { return m->readByte(a); } void bus::writeUnibusByte(const uint16_t a, const uint8_t v) { m->writeByte(a, v); } void bus::set_lf_crs_b7() { lf_csr |= 128; } uint8_t bus::get_lf_crs() { return lf_csr; }