// (C) 2018 by Folkert van Heusden // Released under Apache License v2.0 #include #include #include "bus.h" #include "gen.h" #include "cpu.h" #include "memory.h" #include "tm-11.h" #include "tty.h" #if defined(ESP32) // ESP32 goes in a crash-loop when allocating 128kB // see also https://github.com/espressif/esp-idf/issues/1934 constexpr int n_pages = 12; #else constexpr int n_pages = 16; #endif bus::bus() { m = new memory(n_pages * 8192); for(int i=0; i reset(); } uint16_t bus::read(const uint16_t a, const bool word_mode, const bool use_prev) { // fprintf(stderr, "read [%d] from %06o [%d]\n", word_mode, a, use_prev); uint16_t temp = 0; if (a >= 0160000) { D(fprintf(stderr, "read%c I/O %o\n", word_mode ? 'b' : ' ', a);) if (a == 0177750) { // MAINT D(fprintf(stderr, "read MAINT\n");) return 1; // POWER OK } if (a == 0177570) { // console switch & display register D(fprintf(stderr, "read console switch\n");) return 128; // educated guess } if (a == 0172540) { // KW11P programmable clock D(fprintf(stderr, "read programmable clock\n");) return 128; } if (a == 0177772) { // PIR D(fprintf(stderr, "read PIT\n");) return PIR; } if (a == 0177546) { // line frequency clock and status register D(fprintf(stderr, "read line freq clock\n");) return CSR; } if (a == 0177514) { // printer, CSR register, LP11 D(fprintf(stderr, "read LP11 CSR\n");) return 0x80; } if (a == 0177564) { // console tty status register D(fprintf(stderr, "console tty status register\n");) return 0x80; } /// MMU /// if (a >= 0172300 && a < 0172320) { uint16_t t = pages[((a & 017) >> 1)].pdr; D(fprintf(stderr, "read PDR for %d: %o\n", (a & 017) >> 1, t);) return t; } if (a >= 0172340 && a < 0172360) { uint16_t t = pages[((a & 017) >> 1)].par; D(fprintf(stderr, "read PAR for %d: %o\n", (a & 017) >> 1, t);) return t; } if (a >= 0177600 && a < 0177620) { uint16_t t = pages[((a & 017) >> 1) + 8].pdr; D(fprintf(stderr, "read PDR for %d: %o\n", ((a & 017) >> 1) + 8, t);) return t; } if (a >= 0177640 && a < 0177660) { uint16_t t = pages[((a & 017) >> 1) + 8].par; D(fprintf(stderr, "read PAR for %d: %o\n", ((a & 017) >> 1) + 8, t);) return t; } if (a == 0177572) { uint16_t t = ((c -> getRunMode() ? 0b11 : 0b00) << 5) | // kernel == 00 ((c -> getRegister(7) >> 13) << 1) | // page nr 0 // MMU enabled ; D(fprintf(stderr, "read MMU SR0 %o\n", t);) return t; } /////////// if (word_mode) { if (a == 0177776) { // PSW D(fprintf(stderr, "readb PSW LSB\n");) return c -> getPSW() & 255; } if (a == 0177777) { D(fprintf(stderr, "readb PSW MSB\n");) return c -> getPSW() >> 8; } if (a == 0177774) { // stack limit register D(fprintf(stderr, "readb stack limit register\n");) return c -> getStackLimitRegister() & 0xff; } if (a == 0177775) { // stack limit register D(fprintf(stderr, "readb stack limit register\n");) return c -> getStackLimitRegister() >> 8; } if (a >= 0177700 && a <= 0177705) { // kernel R0-R5 D(fprintf(stderr, "readb kernel R%d\n", a - 0177700);) return c -> getRegister(false, a - 0177700) & 0xff; } if (a >= 0177710 && a <= 0177715) { // user R0-R5 D(fprintf(stderr, "readb user R%d\n", a - 0177710);) return c -> getRegister(true, a - 0177710) & 0xff; } if (a == 0177706) { // kernel SP D(fprintf(stderr, "readb kernel sp\n");) return c -> getStackPointer(0) & 0xff; } if (a == 0177707) { // PC D(fprintf(stderr, "readb pc\n");) return c -> getPC() & 0xff; } if (a == 0177716) { // supervisor SP D(fprintf(stderr, "readb supervisor sp\n");) return c -> getStackPointer(1) & 0xff; } if (a == 0177717) { // user SP D(fprintf(stderr, "readb user sp\n");) return c -> getStackPointer(3) & 0xff; } if (a == 0177766) { // cpu error register D(fprintf(stderr, "readb cpuerr\n");) return CPUERR & 0xff; } } else { if (a == 0177576) { // MMR2 D(fprintf(stderr, "read MMR2\n");) return MMR2; } if (a == 0172516) { // MMR3 D(fprintf(stderr, "read MMR3\n");) return MMR3; } if (a == 0177776) { // PSW D(fprintf(stderr, "read PSW\n");) return c -> getPSW(); } if (a == 0177774) { // stack limit register return c -> getStackLimitRegister(); } if (a >= 0177700 && a <= 0177705) { // kernel R0-R5 D(fprintf(stderr, "read kernel R%d\n", a - 0177700);) return c -> getRegister(false, a - 0177700); } if (a >= 0177710 && a <= 0177715) { // user R0-R5 D(fprintf(stderr, "read user R%d\n", a - 0177710);) return c -> getRegister(true, a - 0177710); } if (a == 0177706) { // kernel SP D(fprintf(stderr, "read kernel sp\n");) return c -> getStackPointer(0); } if (a == 0177707) { // PC D(fprintf(stderr, "read pc\n");) return c -> getPC(); } if (a == 0177716) { // supervisor SP D(fprintf(stderr, "read supervisor sp\n");) return c -> getStackPointer(1); } if (a == 0177717) { // user SP D(fprintf(stderr, "read user sp\n");) return c -> getStackPointer(3); } if (a == 0177766) { // cpu error register D(fprintf(stderr, "read CPUERR\n");) return CPUERR; } } if (tm11 && a >= TM_11_BASE && a < TM_11_END) return word_mode ? tm11 -> readByte(a) : tm11 -> readWord(a); if (rk05_ && a >= RK05_BASE && a < RK05_END) return word_mode ? rk05_ -> readByte(a) : rk05_ -> readWord(a); if (tty_ && a >= PDP11TTY_BASE && a < PDP11TTY_END) return word_mode ? tty_ -> readByte(a) : tty_ -> readWord(a); if (a & 1) D(fprintf(stderr, "bus::readWord: odd address UNHANDLED %o\n", a);) D(fprintf(stderr, "UNHANDLED read %o(%c)\n", a, word_mode ? 'B' : ' ');) if (a == 0177760) return std::min(n_pages * 8192, 65536) - 4096; // c -> busError(); return -1; } const uint8_t apf = a >> 13; // active page field bool is_user = use_prev ? (c -> getBitPSW(12) && c -> getBitPSW(13)) : (c -> getBitPSW(14) && c -> getBitPSW(15)); // always retrieve interrupt etc vectors from kernel space if (a < 256 * 4) is_user = false; uint32_t m_offset = pages[apf + is_user * 8].par * 64; if ((a & 1) && word_mode == 0) D(fprintf(stderr, "odd addressing\n");) if (!word_mode) temp = m -> readWord(m_offset + (a & 8191)); else temp = m -> readByte(m_offset + (a & 8191)); return temp; } uint32_t bus::calculate_full_address(const uint16_t a) { const uint8_t apf = a >> 13; // active page field bool is_user = c -> getBitPSW(14) && c -> getBitPSW(15); uint32_t m_offset = pages[apf + is_user * 8].par * 64; return m_offset + (a & 8191); } uint16_t bus::write(const uint16_t a, const bool word_mode, uint16_t value, const bool use_prev) { // fprintf(stderr, "write [%d] %06o to %06o\n", word_mode, value, a); //D(fprintf(stderr, "write bus %o(%d): %o\n", a, word_mode, value);) if (a >= 0160000) { D(fprintf(stderr, "write%c %o to I/O %o\n", word_mode ? 'b' : ' ', value, a);) if (word_mode) { if (a == 0177776 || a == 0177777) { // PSW D(fprintf(stderr, "writeb PSW %s\n", a & 1 ? "MSB" : "LSB");) uint16_t vtemp = c -> getPSW(); if (a & 1) vtemp = (vtemp & 0x00ff) | (value << 8); else vtemp = (vtemp & 0xff00) | value; c -> setPSW(vtemp); return value; } if (a == 0177774 || a == 0177775) { // stack limit register D(fprintf(stderr, "writeb Set stack limit register to %o\n", value);) uint16_t v = c -> getStackLimitRegister(); if (a & 1) v = (v & 0xff00) | value; else v = (v & 0x00ff) | (value << 8); c -> setStackLimitRegister(v); return v; } } else { if (a == 0177776) { // PSW D(fprintf(stderr, "write PSW %o\n", value);) c -> setPSW(value); return value; } if (a == 0177774) { // stack limit register D(fprintf(stderr, "write Set stack limit register to %o\n", value);) c -> setStackLimitRegister(value); return value; } if (a >= 0177700 && a <= 0177705) { // kernel R0-R5 D(fprintf(stderr, "write kernel R%d to %o\n", a - 01777700, value);) c -> setRegister(false, a - 0177700, value); return value; } if (a >= 0177710 && a <= 0177715) { // user R0-R5 D(fprintf(stderr, "write user R%d to %o\n", a - 01777710, value);) c -> setRegister(true, a - 0177710, value); return value; } if (a == 0177706) { // kernel SP D(fprintf(stderr, "write kernel SP to %o\n", value);) c -> setStackPointer(0, value); return value; } if (a == 0177707) { // PC D(fprintf(stderr, "write PC to %o\n", value);) c -> setPC(value); return value; } if (a == 0177716) { // supervisor SP D(fprintf(stderr, "write supervisor sp to %o\n", value);) c -> setStackPointer(1, value); return value; } if (a == 0177717) { // user SP D(fprintf(stderr, "write user sp to %o\n", value);) c -> setStackPointer(3, value); return value; } if (a == 0177770) { // microprogram break register return value; } } if (a == 0177766) { // cpu error register D(fprintf(stderr, "write CPUERR %o\n", value);) CPUERR = 0; return CPUERR; } if (a == 0172516) { // MMR3 D(fprintf(stderr, "write set MMR3 to %o\n", value);) MMR3 = value; return MMR3; } if (a == 0177772) { // PIR D(fprintf(stderr, "write set PIR to %o\n", value);) PIR = value; // FIXME return PIR; } if (a == 0177546) { // line frequency clock and status register D(fprintf(stderr, "write set LFC/SR to %o\n", value);) CSR = value; return CSR; } if (tm11 && a >= TM_11_BASE && a < TM_11_END) { word_mode ? tm11 -> writeByte(a, value) : tm11 -> writeWord(a, value); return value; } if (rk05_ && a >= RK05_BASE && a < RK05_END) { word_mode ? rk05_ -> writeByte(a, value) : rk05_ -> writeWord(a, value); return value; } if (tty_ && a >= PDP11TTY_BASE && a < PDP11TTY_END) { word_mode ? tty_ -> writeByte(a, value) : tty_ -> writeWord(a, value); return value; } /// MMU /// if (a >= 0172300 && a < 0172320) { D(fprintf(stderr, "write set PDR for %d to %o\n", (a & 017) >> 1, value);) pages[((a & 017) >> 1)].pdr = value; return value; } if (a >= 0172340 && a < 0172360) { D(fprintf(stderr, "write set PAR for %d to %o\n", (a & 017) >> 1, value);) pages[((a & 017) >> 1)].par = value; return value; } if (a >= 0117600 && a < 0117620) { D(fprintf(stderr, "write set PDR for %d to %o\n", ((a & 017) >> 1) + 8, value);) pages[((a & 017) >> 1) + 8].pdr = value; return value; } if (a >= 0117640 && a < 0177660) { D(fprintf(stderr, "write set PAR for %d to %o\n", ((a & 017) >> 1) + 8, value);) pages[((a & 017) >> 1) + 8].par = value; return value; } if (a == 0177746) { // cache control register // FIXME return value; } if (a == 0177570) { // switch register switch_register = value; return value; } /////////// if (a == 0177374) { // FIXME fprintf(stderr, "char: %c\n", value & 127); return 128; } if (a & 1) D(fprintf(stderr, "bus::writeWord: odd address UNHANDLED\n");) D(fprintf(stderr, "UNHANDLED write %o(%c): %o\n", a, word_mode ? 'B' : ' ', value);) // c -> busError(); return value; } const uint8_t apf = a >> 13; // active page field bool is_user = use_prev ? (c -> getBitPSW(12) && c -> getBitPSW(13)) : (c -> getBitPSW(14) && c -> getBitPSW(15)); uint32_t m_offset = pages[apf + is_user * 8].par * 64; // always write interrupt etc vectors from to kernel space // TODO: check rights if (a < 256 * 4) is_user = false; pages[apf].pdr |= 1 << 6; // page has been written to if ((a & 1) && word_mode == 0) D(fprintf(stderr, "odd addressing\n");) if (word_mode) m -> writeByte(m_offset + (a & 8191), value); else m -> writeWord(m_offset + (a & 8191), value); return value; } uint16_t bus::readWord(const uint16_t a) { return read(a, false); } uint16_t bus::writeWord(const uint16_t a, const uint16_t value) { write(a, false, value); return value; }