// (C) 2018-2023 by Folkert van Heusden // Released under MIT license #include #include #include #include "bus.h" #include "gen.h" #include "cpu.h" #include "log.h" #include "memory.h" #include "tm-11.h" #include "tty.h" #if defined(ESP32) || defined(BUILD_FOR_RP2040) #if defined(ESP32) #include #endif // ESP32 goes in a crash-loop when allocating 128kB // see also https://github.com/espressif/esp-idf/issues/1934 constexpr int n_pages = 12; #else constexpr int n_pages = 31; // 30=240kB (for EKBEEx.BIC) #endif constexpr const int di_ena_mask[4] = { 4, 2, 0, 1 }; bus::bus() { m = new memory(n_pages * 8192l); memset(pages, 0x00, sizeof pages); CPUERR = MMR0 = MMR1 = MMR2 = MMR3 = PIR = CSR = 0; #if defined(BUILD_FOR_RP2040) xSemaphoreGive(lf_csr_lock); // initialize #endif } bus::~bus() { delete c; delete tm11; delete rk05_; delete rl02_; delete tty_; delete m; } void bus::add_cpu(cpu *const c) { delete this->c; this->c = c; } void bus::add_tm11(tm_11 *const tm11) { delete this->tm11; this->tm11 = tm11; } void bus::add_rk05(rk05 *const rk05_) { delete this->rk05_; this->rk05_ = rk05_; } void bus::add_rl02(rl02 *const rl02_) { delete this->rl02_; this->rl02_ = rl02_; } void bus::add_tty(tty *const tty_) { delete this->tty_; this->tty_ = tty_; } void bus::clearmem() { m->reset(); } void bus::init() { MMR0 = 0; MMR3 = 0; } uint16_t bus::read_pdr(const uint32_t a, const int run_mode, const word_mode_t word_mode, const bool peek_only) { int page = (a >> 1) & 7; bool is_d = a & 16; uint16_t t = pages[run_mode][is_d][page].pdr; if (!peek_only) DOLOG(debug, false, "READ-I/O PDR run-mode %d: %c for %d: %o", run_mode, is_d ? 'D' : 'I', page, t); return word_mode ? (a & 1 ? t >> 8 : t & 255) : t; } uint16_t bus::read_par(const uint32_t a, const int run_mode, const word_mode_t word_mode, const bool peek_only) { int page = (a >> 1) & 7; bool is_d = a & 16; uint16_t t = pages[run_mode][is_d][page].par; if (!peek_only) DOLOG(debug, false, "READ-I/O PAR run-mode %d: %c for %d: %o (phys: %07o)", run_mode, is_d ? 'D' : 'I', page, t, t * 64); return word_mode ? (a & 1 ? t >> 8 : t & 255) : t; } void bus::trap_odd(const uint16_t a) { MMR0 &= ~(7 << 1); MMR0 |= (a >> 13) << 1; c->trap(004); // invalid access } uint16_t bus::read(const uint16_t addr_in, const word_mode_t word_mode, const rm_selection_t mode_selection, const bool peek_only, const d_i_space_t space) { int run_mode = mode_selection == rm_cur ? c->getPSW_runmode() : c->getPSW_prev_runmode(); uint32_t m_offset = calculate_physical_address(run_mode, addr_in, !peek_only, false, peek_only, space); uint32_t io_base = get_io_base(); bool is_io = m_offset >= io_base; if (is_io) { uint16_t a = m_offset - io_base + 0160000; // TODO //// REGISTERS //// if (a >= ADDR_KERNEL_R && a <= ADDR_KERNEL_R + 5) { // kernel R0-R5 uint16_t temp = c->getRegister(a - ADDR_KERNEL_R) & (word_mode ? 0xff : 0xffff); if (!peek_only) DOLOG(debug, false, "READ-I/O kernel R%d: %06o", a - ADDR_KERNEL_R, temp); return temp; } if (a >= ADDR_USER_R && a <= ADDR_USER_R + 5) { // user R0-R5 uint16_t temp = c->getRegister(a - ADDR_USER_R) & (word_mode ? 0xff : 0xffff); if (!peek_only) DOLOG(debug, false, "READ-I/O user R%d: %06o", a - ADDR_USER_R, temp); return temp; } if (a == ADDR_KERNEL_SP) { // kernel SP uint16_t temp = c->getStackPointer(0) & (word_mode ? 0xff : 0xffff); if (!peek_only) DOLOG(debug, false, "READ-I/O kernel SP: %06o", temp); return temp; } if (a == ADDR_PC) { // PC uint16_t temp = c->getPC() & (word_mode ? 0xff : 0xffff); if (!peek_only) DOLOG(debug, false, "READ-I/O PC: %06o", temp); return temp; } if (a == ADDR_SV_SP) { // supervisor SP uint16_t temp = c->getStackPointer(1) & (word_mode ? 0xff : 0xffff); if (!peek_only) DOLOG(debug, false, "READ-I/O supervisor SP: %06o", temp); return temp; } if (a == ADDR_USER_SP) { // user SP uint16_t temp = c->getStackPointer(3) & (word_mode ? 0xff : 0xffff); if (!peek_only) DOLOG(debug, false, "READ-I/O user SP: %06o", temp); return temp; } ///^ registers ^/// if (!peek_only) { if ((a & 1) && word_mode == wm_word) { DOLOG(debug, true, "READ-I/O odd address %06o UNHANDLED", a); trap_odd(a); throw 0; return 0; } } if (a == ADDR_CPU_ERR) { // cpu error register uint16_t temp = CPUERR & 0xff; if (!peek_only) DOLOG(debug, false, "READ-I/O CPU error: %03o", temp); return temp; } if (a == ADDR_MAINT) { // MAINT uint16_t temp = 1; // POWER OK if (!peek_only) DOLOG(debug, false, "READ-I/O MAINT: %o", temp); return temp; } if (a == ADDR_CONSW) { // console switch & display register uint16_t temp = console_switches; if (!peek_only) DOLOG(debug, false, "READ-I/O console switch: %o", temp); return temp; } if (a == ADDR_KW11P) { // KW11P programmable clock uint16_t temp = 128; if (!peek_only) DOLOG(debug, false, "READ-I/O programmable clock: %o", temp); return temp; } if (a == ADDR_PIR || a == ADDR_PIR + 1) { // PIR uint16_t temp = 0; if (word_mode == wm_word) temp = PIR; else temp = a == ADDR_PIR ? PIR & 255 : PIR >> 8; if (!peek_only) DOLOG(debug, false, "READ-I/O PIR: %o", temp); return temp; } if (a == ADDR_SYSTEM_ID) { uint16_t temp = 011064; if (!peek_only) DOLOG(debug, false, "READ-I/O system id: %o", temp); return temp; } if (a == ADDR_LFC) { // line frequency clock and status register #if defined(BUILD_FOR_RP2040) xSemaphoreTake(lf_csr_lock, portMAX_DELAY); #else std::unique_lock lck(lf_csr_lock); #endif uint16_t temp = lf_csr; if (!peek_only) DOLOG(debug, false, "READ-I/O line frequency clock: %o", temp); #if defined(BUILD_FOR_RP2040) xSemaphoreGive(lf_csr_lock); #endif return temp; } if (a == ADDR_LP11CSR) { // printer, CSR register, LP11 uint16_t temp = 0x80; if (!peek_only) DOLOG(debug, false, "READ-I/O LP11 CSR: %o", temp); return temp; } /// MMU /// if (a >= ADDR_PDR_SV_START && a < ADDR_PDR_SV_END) return read_pdr(a, 1, word_mode, peek_only); else if (a >= ADDR_PAR_SV_START && a < ADDR_PAR_SV_END) return read_par(a, 1, word_mode, peek_only); else if (a >= ADDR_PDR_K_START && a < ADDR_PDR_K_END) return read_pdr(a, 0, word_mode, peek_only); else if (a >= ADDR_PAR_K_START && a < ADDR_PAR_K_END) return read_par(a, 0, word_mode, peek_only); else if (a >= ADDR_PDR_U_START && a < ADDR_PDR_U_END) return read_pdr(a, 3, word_mode, peek_only); else if (a >= ADDR_PAR_U_START && a < ADDR_PAR_U_END) return read_par(a, 3, word_mode, peek_only); /////////// if (a >= 0177740 && a <= 0177753) { // cache control register and others if (!peek_only) DOLOG(debug, false, "READ-I/O cache control register/others (%06o): %o", a, 0); // TODO return 0; } if (a >= 0170200 && a <= 0170377) { // unibus map if (!peek_only) DOLOG(debug, false, "READ-I/O unibus map (%06o): %o", a, 0); // TODO return 0; } if (word_mode) { if (a == ADDR_PSW) { // PSW uint8_t temp = c->getPSW(); if (!peek_only) DOLOG(debug, false, "READ-I/O PSW LSB: %03o", temp); return temp; } if (a == ADDR_PSW + 1) { uint8_t temp = c->getPSW() >> 8; if (!peek_only) DOLOG(debug, false, "READ-I/O PSW MSB: %03o", temp); return temp; } if (a == ADDR_STACKLIM) { // stack limit register uint8_t temp = c->getStackLimitRegister(); if (!peek_only) DOLOG(debug, false, "READ-I/O stack limit register (low): %03o", temp); return temp; } if (a == ADDR_STACKLIM + 1) { // stack limit register uint8_t temp = c->getStackLimitRegister() >> 8; if (!peek_only) DOLOG(debug, false, "READ-I/O stack limit register (high): %03o", temp); return temp; } if (a == ADDR_MICROPROG_BREAK_REG) { // microprogram break register uint8_t temp = microprogram_break_register; if (!peek_only) DOLOG(debug, false, "READ-I/O microprogram break register (low): %03o", temp); return temp; } if (a == ADDR_MICROPROG_BREAK_REG + 1) { // microprogram break register uint8_t temp = microprogram_break_register >> 8; if (!peek_only) DOLOG(debug, false, "READ-I/O microprogram break register (high): %03o", temp); return temp; } if (a == ADDR_MMR0) { uint8_t temp = MMR0; if (!peek_only) DOLOG(debug, false, "READ-I/O MMR0 LO: %03o", temp); return temp; } if (a == ADDR_MMR0 + 1) { uint8_t temp = MMR0 >> 8; if (!peek_only) DOLOG(debug, false, "READ-I/O MMR0 HI: %03o", temp); return temp; } } else { if (a == ADDR_MMR0) { uint16_t temp = MMR0; if (!peek_only) DOLOG(debug, false, "READ-I/O MMR0: %06o", temp); return temp; } if (a == ADDR_MMR1) { // MMR1 uint16_t temp = MMR1; if (!peek_only) DOLOG(debug, false, "READ-I/O MMR1: %06o", temp); return temp; } if (a == ADDR_MMR2) { // MMR2 uint16_t temp = MMR2; if (!peek_only) DOLOG(debug, false, "READ-I/O MMR2: %06o", temp); return temp; } if (a == ADDR_MMR3) { // MMR3 uint16_t temp = MMR3; if (!peek_only) DOLOG(debug, false, "READ-I/O MMR3: %06o", temp); return temp; } if (a == ADDR_PSW) { // PSW uint16_t temp = c->getPSW(); if (!peek_only) DOLOG(debug, false, "READ-I/O PSW: %06o", temp); return temp; } if (a == ADDR_STACKLIM) { // stack limit register uint16_t temp = c->getStackLimitRegister(); if (!peek_only) DOLOG(debug, false, "READ-I/O stack limit register: %06o", temp); return temp; } if (a == ADDR_CPU_ERR) { // cpu error register uint16_t temp = CPUERR; if (!peek_only) DOLOG(debug, false, "READ-I/O CPUERR: %06o", temp); return temp; } if (a == ADDR_MICROPROG_BREAK_REG) { // microprogram break register uint16_t temp = microprogram_break_register; if (!peek_only) DOLOG(debug, false, "READ-I/O microprogram break register: %06o", temp); return temp; } } if (tm11 && a >= TM_11_BASE && a < TM_11_END && !peek_only) { DOLOG(debug, false, "READ-I/O TM11 register %d", (a - TM_11_BASE) / 2); return word_mode ? tm11->readByte(a) : tm11->readWord(a); } if (rk05_ && a >= RK05_BASE && a < RK05_END && !peek_only) { DOLOG(debug, false, "READ-I/O RK05 register %d", (a - RK05_BASE) / 2); return word_mode ? rk05_->readByte(a) : rk05_->readWord(a); } if (rl02_ && a >= RL02_BASE && a < RL02_END && !peek_only) { DOLOG(debug, false, "READ-I/O RL02 register %d", (a - RL02_BASE) / 2); return word_mode ? rl02_->readByte(a) : rl02_->readWord(a); } if (tty_ && a >= PDP11TTY_BASE && a < PDP11TTY_END && !peek_only) { DOLOG(debug, false, "READ-I/O TTY register %d", (a - PDP11TTY_BASE) / 2); return word_mode ? tty_->readByte(a) : tty_->readWord(a); } // LO size register field must be all 1s, so subtract 1 constexpr uint32_t system_size = n_pages * 8192l / 64 - 1; if (a == ADDR_SYSSIZE + 2) { // system size HI uint16_t temp = system_size >> 16; if (!peek_only) DOLOG(debug, false, "READ-I/O accessing system size HI: %06o", temp); return temp; } if (a == ADDR_SYSSIZE) { // system size LO uint16_t temp = system_size; if (!peek_only) DOLOG(debug, false, "READ-I/O accessing system size LO: %06o", temp); return temp; } if (!peek_only) { DOLOG(debug, true, "READ-I/O UNHANDLED read %08o (%c), (base: %o)", m_offset, word_mode ? 'B' : ' ', get_io_base()); c->trap(004); // no such i/o throw 1; } return -1; } if (peek_only == false && word_mode == wm_word && (addr_in & 1)) { if (!peek_only) DOLOG(debug, true, "READ from %06o - odd address!", addr_in); trap_odd(addr_in); throw 2; return 0; } if (m_offset >= n_pages * 8192) { if (peek_only) { DOLOG(debug, true, "READ from %06o - out of range!", addr_in); return 0; } c->trap(004); // no such RAM throw 1; } uint16_t temp = 0; if (word_mode == wm_byte) temp = m->readByte(m_offset); else temp = m->readWord(m_offset); if (!peek_only) DOLOG(debug, false, "READ from %06o/%07o %c %c: %o (%s)", addr_in, m_offset, space == d_space ? 'D' : 'I', word_mode ? 'B' : 'W', temp, mode_selection == rm_prev ? "prev" : "cur"); return temp; } void bus::setMMR0(uint16_t value) { value &= ~(3 << 10); // bit 10 & 11 always read as 0 if (value & 1) value &= ~(7l << 13); // reset error bits if (MMR0 & 0160000) { if ((value & 1) == 0) value &= 254; // bits 7...1 are protected } // TODO if bit 15/14/13 are set (either of them), then do not modify bit 1...7 MMR0 = value; } void bus::setMMR0Bit(const int bit) { assert(bit != 10 && bit != 11); assert(bit < 16 && bit >= 0); MMR0 |= 1 << bit; } void bus::clearMMR0Bit(const int bit) { assert(bit != 10 && bit != 11); assert(bit < 16 && bit >= 0); MMR0 &= ~(1 << bit); } void bus::setMMR2(const uint16_t value) { MMR2 = value; } void bus::check_odd_addressing(const uint16_t a, const int run_mode, const d_i_space_t space, const bool is_write) { if (a & 1) { if (is_write) pages[run_mode][space == d_space][a >> 13].pdr |= 1 << 7; trap_odd(a); throw 4; } } memory_addresses_t bus::calculate_physical_address(const int run_mode, const uint16_t a) { const uint8_t apf = a >> 13; // active page field if ((MMR0 & 1) == 0) { bool is_psw = a == ADDR_PSW; return { a, apf, a, is_psw, a, is_psw }; } uint32_t physical_instruction = pages[run_mode][0][apf].par * 64; uint32_t physical_data = pages[run_mode][1][apf].par * 64; uint16_t p_offset = a & 8191; // page offset physical_instruction += p_offset; physical_data += p_offset; if ((MMR3 & 16) == 0) { // offset is 18bit physical_instruction &= 0x3ffff; physical_data &= 0x3ffff; } if (get_use_data_space(run_mode) == false) physical_data = physical_instruction; uint32_t io_base = get_io_base(); bool physical_instruction_is_psw = (physical_instruction - io_base + 0160000) == ADDR_PSW; bool physical_data_is_psw = (physical_data - io_base + 0160000) == ADDR_PSW; return { a, apf, physical_instruction, physical_instruction_is_psw, physical_data, physical_data_is_psw }; } bool bus::get_use_data_space(const int run_mode) { return !!(MMR3 & di_ena_mask[run_mode]); } uint32_t bus::calculate_physical_address(const int run_mode, const uint16_t a, const bool trap_on_failure, const bool is_write, const bool peek_only, const d_i_space_t space) { uint32_t m_offset = a; if ((MMR0 & 1) || (is_write && (MMR0 & (1 << 8)))) { const uint8_t apf = a >> 13; // active page field bool d = space == d_space && get_use_data_space(run_mode) ? space == d_space : false; uint16_t p_offset = a & 8191; // page offset m_offset = pages[run_mode][d][apf].par * 64; // memory offset TODO: handle 16b int-s m_offset += p_offset; if ((MMR3 & 16) == 0) // off is 18bit m_offset &= 0x3ffff; uint32_t io_base = get_io_base(); bool is_io = m_offset >= io_base; if (trap_on_failure) { { const int access_control = pages[run_mode][d][apf].pdr & 7; bool do_trap = false; if (is_write && access_control != 6) // write do_trap = true; else if (!is_write && (access_control == 0 || access_control == 1 || access_control == 3 || access_control == 4 || access_control == 7)) { // read do_trap = true; } if (do_trap) { bool do_trap_250 = false; if ((MMR0 & 0xf000) == 0) { DOLOG(debug, true, "TRAP(0250) (throw 5) for access_control %d on address %06o, run mode %d", access_control, a, run_mode); do_trap_250 = true; } else { DOLOG(debug, true, "A.C.F. triggger for %d on address %06o, run mode %d", access_control, a, run_mode); } if (is_write) pages[run_mode][d][apf].pdr |= 1 << 7; if ((MMR0 & 0160000) == 0) { MMR0 &= ~((1l << 15) | (1 << 14) | (1 << 13) | (1 << 12) | (3 << 5) | (7 << 1)); if (is_write && access_control != 6) MMR0 |= 1 << 13; // read-only // if (access_control == 0 || access_control == 4) MMR0 |= 1l << 15; // not resident else MMR0 |= 1 << 13; // read-only MMR0 |= run_mode << 5; // TODO: kernel-mode or user-mode when a trap occurs in user-mode? MMR0 |= apf << 1; // add current page MMR0 |= d << 4; } DOLOG(debug, true, "MMR0: %06o", MMR0); if (do_trap_250) { c->trap(0250); // invalid address throw 5; } } } if (m_offset >= n_pages * 8192l && !is_io) { DOLOG(debug, !peek_only, "bus::calculate_physical_address %o >= %o", m_offset, n_pages * 8192l); DOLOG(debug, true, "TRAP(04) (throw 6) on address %06o", a); if ((MMR0 & 0160000) == 0) { MMR0 &= 017777; MMR0 |= 1l << 15; // non-resident MMR0 &= ~14; // add current page MMR0 |= apf << 1; MMR0 &= ~(3 << 5); MMR0 |= run_mode << 5; } if (is_write) pages[run_mode][d][apf].pdr |= 1 << 7; c->trap(04); throw 6; } uint16_t pdr_len = (pages[run_mode][d][apf].pdr >> 8) & 127; uint16_t pdr_cmp = (a >> 6) & 127; bool direction = pages[run_mode][d][apf].pdr & 8; // DOLOG(debug, true, "p_offset %06o pdr_len %06o direction %d, run_mode %d, apf %d, pdr: %06o", p_offset, pdr_len, direction, run_mode, apf, pages[run_mode][d][apf].pdr); if ((pdr_cmp > pdr_len && direction == false) || (pdr_cmp < pdr_len && direction == true)) { DOLOG(debug, !peek_only, "bus::calculate_physical_address::p_offset %o versus %o direction %d", pdr_cmp, pdr_len, direction); DOLOG(debug, true, "TRAP(0250) (throw 7) on address %06o", a); c->trap(0250); // invalid access if ((MMR0 & 0160000) == 0) { MMR0 &= 017777; MMR0 |= 1 << 14; // length MMR0 &= ~14; // add current page MMR0 |= apf << 1; MMR0 &= ~(3 << 5); MMR0 |= run_mode << 5; MMR0 |= d << 4; } if (is_write) pages[run_mode][d][apf].pdr |= 1 << 7; throw 7; } } DOLOG(debug, !peek_only, "virtual address %06o maps to physical address %08o (run_mode: %d, apf: %d, par: %08o, poff: %o, AC: %d, %s)", a, m_offset, run_mode, apf, pages[run_mode][d][apf].par * 64, p_offset, pages[run_mode][d][apf].pdr & 7, d ? "D" : "I"); } else { // DOLOG(debug, false, "no MMU (read physical address %08o)", m_offset); } return m_offset; } void bus::clearMMR1() { MMR1 = 0; } void bus::addToMMR1(const int8_t delta, const uint8_t reg) { assert(reg >= 0 && reg <= 7); assert(delta >= -2 && delta <= 2); if (getMMR0() & 0160000) // MMR1 etc are locked return; #if defined(ESP32) // if (MMR1 > 255) // esp_backtrace_print(32); #else if (MMR1 > 255) { extern FILE *lfh; fflush(lfh); } assert(MMR1 < 256); #endif MMR1 <<= 8; MMR1 |= (delta & 31) << 3; MMR1 |= reg; } void bus::write_pdr(const uint32_t a, const int run_mode, const uint16_t value, const word_mode_t word_mode) { bool is_d = a & 16; int page = (a >> 1) & 7; if (word_mode == wm_byte) { assert(a != 0 || value < 256); a & 1 ? (pages[run_mode][is_d][page].pdr &= 0x00ff, pages[run_mode][is_d][page].pdr |= value << 8) : (pages[run_mode][is_d][page].pdr &= 0xff00, pages[run_mode][is_d][page].pdr |= value ); } else { pages[run_mode][is_d][page].pdr = value; } pages[run_mode][is_d][page].pdr &= ~(32768 + 128 /*A*/ + 64 /*W*/ + 32 + 16); // set bit 4, 5 & 15 to 0 as they are unused and A/W are set to 0 by writes DOLOG(debug, true, "WRITE-I/O PDR run-mode %d: %c for %d: %o [%d]", run_mode, is_d ? 'D' : 'I', page, value, word_mode); } void bus::write_par(const uint32_t a, const int run_mode, const uint16_t value, const word_mode_t word_mode) { bool is_d = a & 16; int page = (a >> 1) & 7; if (word_mode == wm_byte) { a & 1 ? (pages[run_mode][is_d][page].par &= 0x00ff, pages[run_mode][is_d][page].par |= value << 8) : (pages[run_mode][is_d][page].par &= 0xff00, pages[run_mode][is_d][page].par |= value ); } else { pages[run_mode][is_d][page].par = value; } pages[run_mode][is_d][page].pdr &= ~(128 /*A*/ + 64 /*W*/); // reset PDR A/W when PAR is written to DOLOG(debug, true, "WRITE-I/O PAR run-mode %d: %c for %d: %o (%07o)", run_mode, is_d ? 'D' : 'I', page, word_mode ? value & 0xff : value, pages[run_mode][is_d][page].par * 64); } void bus::write(const uint16_t addr_in, const word_mode_t word_mode, uint16_t value, const rm_selection_t mode_selection, const d_i_space_t space) { int run_mode = mode_selection == rm_cur ? c->getPSW_runmode() : c->getPSW_prev_runmode(); const uint8_t apf = addr_in >> 13; // active page field bool is_data = space == d_space; bool d = is_data && get_use_data_space(run_mode) ? is_data : false; if ((MMR0 & 1) == 1 && (addr_in & 1) == 0 && addr_in != ADDR_MMR0) pages[run_mode][d][apf].pdr |= 64; // set 'W' (written to) bit uint32_t m_offset = calculate_physical_address(run_mode, addr_in, true, true, false, space); uint32_t io_base = get_io_base(); bool is_io = m_offset >= io_base; if (is_io) { uint16_t a = m_offset - io_base + 0160000; // TODO if (word_mode) { if (a == ADDR_PSW || a == ADDR_PSW + 1) { // PSW DOLOG(debug, true, "WRITE-I/O PSW %s: %03o", a & 1 ? "MSB" : "LSB", value); uint16_t vtemp = c->getPSW(); if (a == ADDR_PSW) vtemp = (vtemp & 0xff00) | value; else vtemp = (vtemp & 0x00ff) | (value << 8); vtemp &= ~16; // cannot set T bit via this c->setPSW(vtemp, false); return; } if (a == ADDR_STACKLIM || a == ADDR_STACKLIM + 1) { // stack limit register DOLOG(debug, true, "WRITE-I/O stack limit register %s: %03o", a & 1 ? "MSB" : "LSB", value); uint16_t v = c->getStackLimitRegister(); if (a == ADDR_STACKLIM) v = (v & 0xff00) | value; else v = (v & 0x00ff) | (value << 8); v |= 0377; c->setStackLimitRegister(v); return; } if (a == ADDR_MICROPROG_BREAK_REG || a == ADDR_MICROPROG_BREAK_REG + 1) { // microprogram break register DOLOG(debug, false, "WRITE-I/O micropram break register %s: %03o", a & 1 ? "MSB" : "LSB", value); if (a == ADDR_MICROPROG_BREAK_REG) microprogram_break_register = (microprogram_break_register & 0xff00) | value; else microprogram_break_register = (microprogram_break_register & 0x00ff) | (value << 8); return; } if (a == ADDR_MMR0 || a == ADDR_MMR0 + 1) { // MMR0 DOLOG(debug, true, "WRITE-I/O MMR0 register %s: %03o", a & 1 ? "MSB" : "LSB", value); if (a == ADDR_MMR0) MMR0 = (MMR0 & 0xff00) | value; else MMR0 = (MMR0 & 0x00ff) | (value << 8); return; } } else { if (a == ADDR_PSW) { // PSW DOLOG(debug, true, "WRITE-I/O PSW: %06o", value); c->setPSW(value & ~16, false); return; } if (a == ADDR_STACKLIM) { // stack limit register DOLOG(debug, true, "WRITE-I/O stack limit register: %06o", value); c->setStackLimitRegister(value & 0xff00); return; } if (a >= ADDR_KERNEL_R && a <= ADDR_KERNEL_R + 5) { // kernel R0-R5 int reg = a - ADDR_KERNEL_R; DOLOG(debug, true, "WRITE-I/O kernel R%d: %06o", reg, value); c->setRegister(reg, value); return; } if (a >= ADDR_USER_R && a <= ADDR_USER_R + 5) { // user R0-R5 int reg = a - ADDR_USER_R; DOLOG(debug, true, "WRITE-I/O user R%d: %06o", reg, value); c->setRegister(reg, value); return; } if (a == ADDR_KERNEL_SP) { // kernel SP DOLOG(debug, true, "WRITE-I/O kernel SP: %06o", value); c->setStackPointer(0, value); return; } if (a == ADDR_PC) { // PC DOLOG(debug, true, "WRITE-I/O PC: %06o", value); c->setPC(value); return; } if (a == ADDR_SV_SP) { // supervisor SP DOLOG(debug, true, "WRITE-I/O supervisor sp: %06o", value); c->setStackPointer(1, value); return; } if (a == ADDR_USER_SP) { // user SP DOLOG(debug, true, "WRITE-I/O user sp: %06o", value); c->setStackPointer(3, value); return; } if (a == ADDR_MICROPROG_BREAK_REG) { // microprogram break register DOLOG(debug, false, "WRITE-I/O microprogram break register: %06o", value); microprogram_break_register = value & 0xff; // only 8b on 11/70? return; } } if (a == ADDR_CPU_ERR) { // cpu error register DOLOG(debug, true, "WRITE-I/O CPUERR: %06o", value); CPUERR = 0; return; } if (a == ADDR_MMR3) { // MMR3 DOLOG(debug, true, "WRITE-I/O set MMR3: %06o", value); MMR3 = value; return; } if (a == ADDR_MMR0) { // MMR0 DOLOG(debug, true, "WRITE-I/O set MMR0: %06o", value); setMMR0(value); return; } if (a == ADDR_PIR) { // PIR DOLOG(debug, true, "WRITE-I/O set PIR: %06o", value); value &= 0177000; int bits = value >> 9; while(bits) { value += 042; // bit 1...3 and 5...7 bits >>= 1; } PIR = value; return; } if (a == ADDR_LFC) { // line frequency clock and status register #if defined(BUILD_FOR_RP2040) xSemaphoreTake(lf_csr_lock, portMAX_DELAY); #else std::unique_lock lck(lf_csr_lock); #endif DOLOG(debug, true, "WRITE-I/O set line frequency clock/status register: %06o", value); lf_csr = value; #if defined(BUILD_FOR_RP2040) xSemaphoreGive(lf_csr_lock); #endif return; } if (tm11 && a >= TM_11_BASE && a < TM_11_END) { DOLOG(debug, false, "WRITE-I/O TM11 register %d: %06o", (a - TM_11_BASE) / 2, value); word_mode ? tm11->writeByte(a, value) : tm11->writeWord(a, value); return; } if (rk05_ && a >= RK05_BASE && a < RK05_END) { DOLOG(debug, false, "WRITE-I/O RK05 register %d: %06o", (a - RK05_BASE) / 2, value); word_mode ? rk05_->writeByte(a, value) : rk05_->writeWord(a, value); return; } if (rl02_ && a >= RL02_BASE && a < RL02_END) { DOLOG(debug, false, "WRITE-I/O RL02 register %d: %06o", (a - RL02_BASE) / 2, value); word_mode ? rl02_->writeByte(a, value) : rl02_->writeWord(a, value); return; } if (tty_ && a >= PDP11TTY_BASE && a < PDP11TTY_END) { DOLOG(debug, false, "WRITE-I/O TTY register %d: %06o", (a - PDP11TTY_BASE) / 2, value); word_mode ? tty_->writeByte(a, value) : tty_->writeWord(a, value); return; } /// MMU /// // supervisor if (a >= ADDR_PDR_SV_START && a < ADDR_PDR_SV_END) { write_pdr(a, 1, value, word_mode); return; } if (a >= ADDR_PAR_SV_START && a < ADDR_PAR_SV_END) { write_par(a, 1, value, word_mode); return; } // kernel if (a >= ADDR_PDR_K_START && a < ADDR_PDR_K_END) { write_pdr(a, 0, value, word_mode); return; } if (a >= ADDR_PAR_K_START && a < ADDR_PAR_K_END) { write_par(a, 0, value, word_mode); return; } // user if (a >= ADDR_PDR_U_START && a < ADDR_PDR_U_END) { write_pdr(a, 3, value, word_mode); return; } if (a >= ADDR_PAR_U_START && a < ADDR_PAR_U_END) { write_par(a, 3, value, word_mode); return; } //// if (a >= 0177740 && a <= 0177753) { // cache control register and others // TODO return; } if (a >= 0170200 && a <= 0170377) { // unibus map DOLOG(debug, false, "writing %06o to unibus map (%06o)", value, a); // TODO return; } if (a == ADDR_CONSW) { // switch register console_leds = value; return; } if (a == ADDR_SYSSIZE || a == ADDR_SYSSIZE + 2) // system size (is read-only) return; if (a == ADDR_SYSTEM_ID) // is r/o return; /////////// DOLOG(debug, true, "WRITE-I/O UNHANDLED %08o(%c): %06o (base: %o)", m_offset, word_mode ? 'B' : 'W', value, get_io_base()); if (word_mode == wm_word && (a & 1)) { DOLOG(debug, true, "WRITE-I/O to %08o (value: %06o) - odd address!", m_offset, value); trap_odd(a); throw 8; } c->trap(004); // no such i/o throw 9; } if (word_mode == wm_word && (addr_in & 1)) { DOLOG(debug, true, "WRITE to %06o (value: %06o) - odd address!", addr_in, value); trap_odd(addr_in); throw 10; } DOLOG(debug, true, "WRITE to %06o/%07o %c %c: %06o", addr_in, m_offset, space == d_space ? 'D' : 'I', word_mode ? 'B' : 'W', value); if (m_offset >= n_pages * 8192) { c->trap(004); // no such RAM throw 1; } if (word_mode == wm_byte) m->writeByte(m_offset, value); else m->writeWord(m_offset, value); } void bus::writePhysical(const uint32_t a, const uint16_t value) { DOLOG(debug, true, "physicalWRITE %06o to %o", value, a); if (a >= n_pages * 8192l) { DOLOG(debug, true, "physicalWRITE to %o: trap 004", a); c->trap(004); throw 12; } else { m->writeWord(a, value); } } uint16_t bus::readPhysical(const uint32_t a) { if (a >= n_pages * 8192l) { DOLOG(debug, true, "physicalREAD from %o: trap 004", a); c->trap(004); throw 13; } uint16_t value = m->readWord(a); DOLOG(debug, true, "physicalREAD %06o from %o", value, a); return value; } uint16_t bus::readWord(const uint16_t a, const d_i_space_t s) { return read(a, wm_word, rm_cur, false, s); } uint16_t bus::peekWord(const uint16_t a) { return read(a, wm_word, rm_cur, true); } void bus::writeWord(const uint16_t a, const uint16_t value, const d_i_space_t s) { write(a, wm_word, value, rm_cur, s); } uint16_t bus::readUnibusByte(const uint16_t a) { return m->readByte(a); } void bus::writeUnibusByte(const uint16_t a, const uint8_t v) { m->writeByte(a, v); } void bus::set_lf_crs_b7() { #if defined(BUILD_FOR_RP2040) xSemaphoreTake(lf_csr_lock, portMAX_DELAY); #else std::unique_lock lck(lf_csr_lock); #endif lf_csr |= 128; #if defined(BUILD_FOR_RP2040) xSemaphoreGive(lf_csr_lock); #endif } uint8_t bus::get_lf_crs() { #if defined(BUILD_FOR_RP2040) xSemaphoreTake(lf_csr_lock, portMAX_DELAY); #else std::unique_lock lck(lf_csr_lock); #endif uint8_t rc = lf_csr; #if defined(BUILD_FOR_RP2040) xSemaphoreGive(lf_csr_lock); #endif return rc; }