// (C) 2018-2024 by Folkert van Heusden // Released under MIT license #include #include #include #include #include "bus.h" #include "gen.h" #include "cpu.h" #include "dc11.h" #include "kw11-l.h" #include "log.h" #include "memory.h" #include "mmu.h" #include "tm-11.h" #include "tty.h" #include "utils.h" #if defined(ESP32) #include #endif bus::bus() { mmu_ = new mmu(); kw11_l_ = new kw11_l(this); reset(); } bus::~bus() { delete kw11_l_; delete c; delete tm11; delete rk05_; delete rl02_; delete tty_; delete mmu_; delete m; delete dc11_; } JsonDocument bus::serialize() const { JsonDocument j_out; if (m) j_out["memory"] = m->serialize(); if (kw11_l_) j_out["kw11-l"] = kw11_l_->serialize(); if (tty_) j_out["tty"] = tty_->serialize(); if (mmu_) j_out["mmu"] = mmu_->serialize(); if (c) j_out["cpu"] = c->serialize(); if (rl02_) j_out["rl02"] = rl02_->serialize(); if (rk05_) j_out["rk05"] = rk05_->serialize(); // TODO: tm11, dc11 return j_out; } bus *bus::deserialize(const JsonDocument j, console *const cnsl, std::atomic_uint32_t *const event) { bus *b = new bus(); memory *m = nullptr; if (j.containsKey("memory")) { m = memory::deserialize(j["memory"].as()); b->add_ram(m); } if (j.containsKey("kw11-l")) b->add_KW11_L(kw11_l::deserialize(j["kw11-l"].as(), b, cnsl)); if (j.containsKey("tty")) b->add_tty(tty::deserialize(j["tty"].as(), b, cnsl)); if (j.containsKey("mmu")) b->add_mmu(mmu::deserialize(j["mmu"].as(), m)); if (j.containsKey("cpu")) b->add_cpu(cpu::deserialize(j["cpu"].as(), b, event)); if (j.containsKey("rl02")) b->add_rl02(rl02::deserialize(j["rl02"].as(), b)); if (j.containsKey("rk05")) b->add_rk05(rk05::deserialize(j["rk05"].as(), b)); // TODO: tm11, dc11 return b; } void bus::show_state(console *const cnsl) const { cnsl->put_string_lf(format("Microprogram break register: %06o", microprogram_break_register)); cnsl->put_string_lf(format("Console switches: %06o", console_switches)); cnsl->put_string_lf(format("Console LEDs: %06o", console_leds)); } void bus::set_memory_size(const int n_pages) { uint32_t n_bytes = n_pages * 8192l; delete m; m = new memory(n_bytes); mmu_->begin(m); TRACE("Memory is now %u kB in size", n_bytes / 1024); } void bus::reset() { if (m) m->reset(); if (mmu_) mmu_->reset(); if (c) c->reset(); if (tm11) tm11->reset(); if (rk05_) rk05_->reset(); if (rl02_) rl02_->reset(); if (tty_) tty_->reset(); if (kw11_l_) kw11_l_->reset(); if (dc11_) dc11_->reset(); } void bus::add_KW11_L(kw11_l *const kw11_l_) { delete this->kw11_l_; this->kw11_l_ = kw11_l_; } void bus::add_ram(memory *const m) { delete this->m; this->m = m; mmu_->begin(m); } void bus::add_mmu(mmu *const mmu_) { delete this->mmu_; this->mmu_ = mmu_; } void bus::add_cpu(cpu *const c) { delete this->c; this->c = c; } void bus::add_tm11(tm_11 *const tm11) { delete this->tm11; this->tm11= tm11; } void bus::add_rk05(rk05 *const rk05_) { delete this->rk05_; this->rk05_ = rk05_; } void bus::add_rl02(rl02 *const rl02_) { delete this->rl02_; this->rl02_ = rl02_; } void bus::add_tty(tty *const tty_) { delete this->tty_; this->tty_ = tty_; } void bus::add_DC11(dc11 *const dc11_) { delete this->dc11_; this->dc11_ = dc11_; } void bus::init() { mmu_->setMMR0(0); mmu_->setMMR3(0); } uint16_t bus::read(const uint16_t addr_in, const word_mode_t word_mode, const rm_selection_t mode_selection, const bool peek_only, const d_i_space_t space) { int run_mode = mode_selection == rm_cur ? c->getPSW_runmode() : c->getPSW_prev_runmode(); uint32_t m_offset = mmu_->calculate_physical_address(c, run_mode, addr_in, !peek_only, false, space); uint32_t io_base = mmu_->get_io_base(); bool is_io = m_offset >= io_base; if (is_io) { uint16_t a = m_offset - io_base + 0160000; // TODO //// REGISTERS //// if (a >= ADDR_KERNEL_R && a <= ADDR_KERNEL_R + 5) { // kernel R0-R5 uint16_t temp = c->getRegister(a - ADDR_KERNEL_R) & (word_mode == wm_byte ? 0xff : 0xffff); if (!peek_only) TRACE("READ-I/O kernel R%d: %06o", a - ADDR_KERNEL_R, temp); return temp; } if (a >= ADDR_USER_R && a <= ADDR_USER_R + 5) { // user R0-R5 uint16_t temp = c->getRegister(a - ADDR_USER_R) & (word_mode == wm_byte ? 0xff : 0xffff); if (!peek_only) TRACE("READ-I/O user R%d: %06o", a - ADDR_USER_R, temp); return temp; } if (a == ADDR_KERNEL_SP) { // kernel SP uint16_t temp = c->getStackPointer(0) & (word_mode == wm_byte ? 0xff : 0xffff); if (!peek_only) TRACE("READ-I/O kernel SP: %06o", temp); return temp; } if (a == ADDR_PC) { // PC uint16_t temp = c->getPC() & (word_mode == wm_byte ? 0xff : 0xffff); if (!peek_only) TRACE("READ-I/O PC: %06o", temp); return temp; } if (a == ADDR_SV_SP) { // supervisor SP uint16_t temp = c->getStackPointer(1) & (word_mode == wm_byte ? 0xff : 0xffff); if (!peek_only) TRACE("READ-I/O supervisor SP: %06o", temp); return temp; } if (a == ADDR_USER_SP) { // user SP uint16_t temp = c->getStackPointer(3) & (word_mode == wm_byte ? 0xff : 0xffff); if (!peek_only) TRACE("READ-I/O user SP: %06o", temp); return temp; } ///^ registers ^/// if (!peek_only) { if ((a & 1) && word_mode == wm_word) [[unlikely]] { TRACE("READ-I/O odd address %06o UNHANDLED", a); mmu_->trap_if_odd(addr_in, run_mode, space, false); throw 0; return 0; } } if (a == ADDR_CPU_ERR) { // cpu error register uint16_t temp = mmu_->getCPUERR() & 0xff; if (!peek_only) TRACE("READ-I/O CPU error: %03o", temp); return temp; } if (a == ADDR_MAINT) { // MAINT uint16_t temp = 1; // POWER OK if (!peek_only) TRACE("READ-I/O MAINT: %o", temp); return temp; } if (a == ADDR_CONSW) { // console switch & display register uint16_t temp = console_switches; if (!peek_only) TRACE("READ-I/O console switch: %o", temp); return temp; } if (a == ADDR_PIR || a == ADDR_PIR + 1) { // PIR uint16_t temp = 0; uint16_t PIR = mmu_->getPIR(); if (word_mode == wm_word) temp = PIR; else temp = a == ADDR_PIR ? PIR & 255 : PIR >> 8; if (!peek_only) TRACE("READ-I/O PIR: %o", temp); return temp; } if (a == ADDR_SYSTEM_ID) { uint16_t temp = 011064; if (!peek_only) TRACE("READ-I/O system id: %o", temp); return temp; } if (a == ADDR_LFC) // line frequency clock and status register return kw11_l_->read_word(a); if (a == ADDR_LP11CSR) { // printer, CSR register, LP11 uint16_t temp = 0x80; if (!peek_only) TRACE("READ-I/O LP11 CSR: %o", temp); return temp; } /// MMU /// if ((a >= ADDR_PDR_SV_START && a < ADDR_PDR_SV_END) || (a >= ADDR_PAR_SV_START && a < ADDR_PAR_SV_END) || (a >= ADDR_PDR_K_START && a < ADDR_PDR_K_END) || (a >= ADDR_PAR_K_START && a < ADDR_PAR_K_END) || (a >= ADDR_PDR_U_START && a < ADDR_PDR_U_END) || (a >= ADDR_PAR_U_START && a < ADDR_PAR_U_END)) { if (word_mode == wm_word) return mmu_->read_word(a); return mmu_->read_byte(a); } /////////// if (a >= 0177740 && a <= 0177753) { // cache control register and others if (!peek_only) TRACE("READ-I/O cache control register/others (%06o): %o", a, 0); // TODO return 0; } if (a >= 0170200 && a <= 0170377) { // unibus map if (!peek_only) TRACE("READ-I/O unibus map (%06o): %o", a, 0); // TODO return 0; } if (a >= 0172100 && a <= 0172137) { // MM11-LP parity if (!peek_only) TRACE("READ-I/O MM11-LP parity (%06o): %o", a, 1); return 1; } if (word_mode == wm_byte) { if (a == ADDR_PSW) { // PSW uint8_t temp = c->getPSW(); if (!peek_only) TRACE("READ-I/O PSW LSB: %03o", temp); return temp; } if (a == ADDR_PSW + 1) { uint8_t temp = c->getPSW() >> 8; if (!peek_only) TRACE("READ-I/O PSW MSB: %03o", temp); return temp; } if (a == ADDR_STACKLIM) { // stack limit register uint8_t temp = c->getStackLimitRegister(); if (!peek_only) TRACE("READ-I/O stack limit register (low): %03o", temp); return temp; } if (a == ADDR_STACKLIM + 1) { // stack limit register uint8_t temp = c->getStackLimitRegister() >> 8; if (!peek_only) TRACE("READ-I/O stack limit register (high): %03o", temp); return temp; } if (a == ADDR_MICROPROG_BREAK_REG) { // microprogram break register uint8_t temp = microprogram_break_register; if (!peek_only) TRACE("READ-I/O microprogram break register (low): %03o", temp); return temp; } if (a == ADDR_MICROPROG_BREAK_REG + 1) { // microprogram break register uint8_t temp = microprogram_break_register >> 8; if (!peek_only) TRACE("READ-I/O microprogram break register (high): %03o", temp); return temp; } if (a == ADDR_MMR0) { uint8_t temp = mmu_->getMMR0(); if (!peek_only) TRACE("READ-I/O MMR0 LO: %03o", temp); return temp; } if (a == ADDR_MMR0 + 1) { uint8_t temp = mmu_->getMMR0() >> 8; if (!peek_only) TRACE("READ-I/O MMR0 HI: %03o", temp); return temp; } } else { if (a == ADDR_MMR0) { uint16_t temp = mmu_->getMMR0(); if (!peek_only) TRACE("READ-I/O MMR0: %06o", temp); return temp; } if (a == ADDR_MMR1) { // MMR1 uint16_t temp = mmu_->getMMR1(); if (!peek_only) TRACE("READ-I/O MMR1: %06o", temp); return temp; } if (a == ADDR_MMR2) { // MMR2 uint16_t temp = mmu_->getMMR2(); if (!peek_only) TRACE("READ-I/O MMR2: %06o", temp); return temp; } if (a == ADDR_MMR3) { // MMR3 uint16_t temp = mmu_->getMMR3(); if (!peek_only) TRACE("READ-I/O MMR3: %06o", temp); return temp; } if (a == ADDR_PSW) { // PSW uint16_t temp = c->getPSW(); if (!peek_only) TRACE("READ-I/O PSW: %06o", temp); return temp; } if (a == ADDR_STACKLIM) { // stack limit register uint16_t temp = c->getStackLimitRegister(); if (!peek_only) TRACE("READ-I/O stack limit register: %06o", temp); return temp; } if (a == ADDR_CPU_ERR) { // cpu error register uint16_t temp = mmu_->getCPUERR(); if (!peek_only) TRACE("READ-I/O CPUERR: %06o", temp); return temp; } if (a == ADDR_MICROPROG_BREAK_REG) { // microprogram break register uint16_t temp = microprogram_break_register; if (!peek_only) TRACE("READ-I/O microprogram break register: %06o", temp); return temp; } } if (tm11 && a >= TM_11_BASE && a < TM_11_END && !peek_only) return word_mode == wm_byte ? tm11->read_byte(a) : tm11->read_word(a); if (rk05_ && a >= RK05_BASE && a < RK05_END && !peek_only) return word_mode == wm_byte ? rk05_->read_byte(a) : rk05_->read_word(a); if (rl02_ && a >= RL02_BASE && a < RL02_END && !peek_only) return word_mode == wm_byte ? rl02_->read_byte(a) : rl02_->read_word(a); if (tty_ && a >= PDP11TTY_BASE && a < PDP11TTY_END && !peek_only) return word_mode == wm_byte ? tty_->read_byte(a) : tty_->read_word(a); if (dc11_ && a >= DC11_BASE && a < DC11_END && !peek_only) return word_mode == wm_byte ? dc11_->read_byte(a) : dc11_->read_word(a); // LO size register field must be all 1s, so subtract 1 uint32_t system_size = m->get_memory_size() / 64 - 1; if (a == ADDR_SYSSIZE + 2) { // system size HI uint16_t temp = system_size >> 16; if (!peek_only) TRACE("READ-I/O accessing system size HI: %06o", temp); return temp; } if (a == ADDR_SYSSIZE) { // system size LO uint16_t temp = system_size; if (!peek_only) TRACE("READ-I/O accessing system size LO: %06o", temp); return temp; } if (!peek_only) { TRACE("READ-I/O UNHANDLED read %08o (%c), (base: %o)", m_offset, word_mode == wm_byte ? 'B' : ' ', mmu_->get_io_base()); c->trap(004); // no such i/o throw 1; } return -1; } if (peek_only == false && word_mode == wm_word && (addr_in & 1)) { TRACE("READ from %06o - odd address!", addr_in); mmu_->trap_if_odd(addr_in, run_mode, space, false); throw 2; return 0; } if (m_offset >= m->get_memory_size()) { if (peek_only) { TRACE("READ from %06o - out of range!", addr_in); return 0; } c->trap(004); // no such RAM throw 1; } uint16_t temp = 0; if (word_mode == wm_byte) temp = m->read_byte(m_offset); else temp = m->read_word(m_offset); if (!peek_only) TRACE("READ from %06o/%07o %c %c: %06o (%s)", addr_in, m_offset, space == d_space ? 'D' : 'I', word_mode == wm_byte ? 'B' : 'W', temp, mode_selection == rm_prev ? "prev" : "cur"); return temp; } bool bus::is_psw(const uint16_t addr, const int run_mode, const d_i_space_t space) const { auto meta = mmu_->calculate_physical_address(run_mode, addr); if (space == d_space && meta.physical_data_is_psw) return true; if (space == i_space && meta.physical_instruction_is_psw) return true; return false; } write_rc_t bus::write(const uint16_t addr_in, const word_mode_t word_mode, uint16_t value, const rm_selection_t mode_selection, const d_i_space_t space) { int run_mode = mode_selection == rm_cur ? c->getPSW_runmode() : c->getPSW_prev_runmode(); const uint8_t apf = addr_in >> 13; // active page field bool is_data = space == d_space; bool d = is_data && mmu_->get_use_data_space(run_mode); if (mmu_->is_enabled() && (addr_in & 1) == 0 /* TODO remove this? */ && addr_in != ADDR_MMR0) mmu_->set_page_written_to(run_mode, d, apf); uint32_t m_offset = mmu_->calculate_physical_address(c, run_mode, addr_in, true, true, space); uint32_t io_base = mmu_->get_io_base(); bool is_io = m_offset >= io_base; if (is_io) { uint16_t a = m_offset - io_base + 0160000; // TODO if (word_mode == wm_byte) { if (a == ADDR_PSW || a == ADDR_PSW + 1) { // PSW TRACE("WRITE-I/O PSW %s: %03o", a & 1 ? "MSB" : "LSB", value); uint16_t vtemp = c->getPSW(); update_word(&vtemp, a & 1, value); vtemp &= ~16; // cannot set T bit via this c->setPSW(vtemp, false); return { true }; } if (a == ADDR_STACKLIM || a == ADDR_STACKLIM + 1) { // stack limit register TRACE("WRITE-I/O stack limit register %s: %03o", a & 1 ? "MSB" : "LSB", value); uint16_t v = c->getStackLimitRegister(); update_word(&v, a & 1, value); v |= 0377; c->setStackLimitRegister(v); return { false }; } if (a == ADDR_MICROPROG_BREAK_REG || a == ADDR_MICROPROG_BREAK_REG + 1) { // microprogram break register TRACE("WRITE-I/O micropram break register %s: %03o", a & 1 ? "MSB" : "LSB", value); update_word(µprogram_break_register, a & 1, value); return { false }; } if (a == ADDR_MMR0 || a == ADDR_MMR0 + 1) { // MMR0 TRACE("WRITE-I/O MMR0 register %s: %03o", a & 1 ? "MSB" : "LSB", value); uint16_t temp = mmu_->getMMR0(); update_word(&temp, a & 1, value); mmu_->setMMR0(temp); return { false }; } } else { if (a == ADDR_PSW) { // PSW TRACE("WRITE-I/O PSW: %06o", value); c->setPSW(value & ~16, false); return { true }; } if (a == ADDR_STACKLIM) { // stack limit register TRACE("WRITE-I/O stack limit register: %06o", value); c->setStackLimitRegister(value & 0xff00); return { false }; } if (a >= ADDR_KERNEL_R && a <= ADDR_KERNEL_R + 5) { // kernel R0-R5 int reg = a - ADDR_KERNEL_R; TRACE("WRITE-I/O kernel R%d: %06o", reg, value); c->setRegister(reg, value); return { false }; } if (a >= ADDR_USER_R && a <= ADDR_USER_R + 5) { // user R0-R5 int reg = a - ADDR_USER_R; TRACE("WRITE-I/O user R%d: %06o", reg, value); c->setRegister(reg, value); return { false }; } if (a == ADDR_KERNEL_SP) { // kernel SP TRACE("WRITE-I/O kernel SP: %06o", value); c->setStackPointer(0, value); return { false }; } if (a == ADDR_PC) { // PC TRACE("WRITE-I/O PC: %06o", value); c->setPC(value); return { false }; } if (a == ADDR_SV_SP) { // supervisor SP TRACE("WRITE-I/O supervisor sp: %06o", value); c->setStackPointer(1, value); return { false }; } if (a == ADDR_USER_SP) { // user SP TRACE("WRITE-I/O user sp: %06o", value); c->setStackPointer(3, value); return { false }; } if (a == ADDR_MICROPROG_BREAK_REG) { // microprogram break register TRACE("WRITE-I/O microprogram break register: %06o", value); microprogram_break_register = value & 0xff; // only 8b on 11/70? return { false }; } } if (a == ADDR_CPU_ERR) { // cpu error register TRACE("WRITE-I/O CPUERR: %06o", value); mmu_->setCPUERR(0); return { false }; } if (a == ADDR_MMR3) { // MMR3 TRACE("WRITE-I/O set MMR3: %06o", value); mmu_->setMMR3(value); return { false }; } if (a == ADDR_MMR0) { // MMR0 TRACE("WRITE-I/O set MMR0: %06o", value); mmu_->setMMR0(value); return { false }; } if (a == ADDR_PIR) { // PIR TRACE("WRITE-I/O set PIR: %06o", value); value &= 0177000; int bits = value >> 9; while(bits) { value += 042; // bit 1...3 and 5...7 bits >>= 1; } mmu_->setPIR(value); return { false }; } if (a == ADDR_LFC) { // line frequency clock and status register kw11_l_->write_word(a, value); return { false }; } if (tm11 && a >= TM_11_BASE && a < TM_11_END) { TRACE("WRITE-I/O TM11 register %d: %06o", (a - TM_11_BASE) / 2, value); word_mode == wm_byte ? tm11->write_byte(a, value) : tm11->write_word(a, value); return { false }; } if (rk05_ && a >= RK05_BASE && a < RK05_END) { TRACE("WRITE-I/O RK05 register %d: %06o", (a - RK05_BASE) / 2, value); word_mode == wm_byte ? rk05_->write_byte(a, value) : rk05_->write_word(a, value); return { false }; } if (rl02_ && a >= RL02_BASE && a < RL02_END) { TRACE("WRITE-I/O RL02 register %d: %06o", (a - RL02_BASE) / 2, value); word_mode == wm_byte ? rl02_->write_byte(a, value) : rl02_->write_word(a, value); return { false }; } if (tty_ && a >= PDP11TTY_BASE && a < PDP11TTY_END) { TRACE("WRITE-I/O TTY register %d: %06o", (a - PDP11TTY_BASE) / 2, value); word_mode == wm_byte ? tty_->write_byte(a, value) : tty_->write_word(a, value); return { false }; } if (dc11_ && a >= DC11_BASE && a < DC11_END) { word_mode == wm_byte ? dc11_->write_byte(a, value) : dc11_->write_word(a, value); return { false }; } if (a >= 0172100 && a <= 0172137) { // MM11-LP parity TRACE("WRITE-I/O MM11-LP parity (%06o): %o", a, value); return { false }; } /// MMU /// // supervisor if ((a >= ADDR_PDR_SV_START && a < ADDR_PDR_SV_END) || (a >= ADDR_PAR_SV_START && a < ADDR_PAR_SV_END) || (a >= ADDR_PDR_K_START && a < ADDR_PDR_K_END) || (a >= ADDR_PAR_K_START && a < ADDR_PAR_K_END) || (a >= ADDR_PDR_U_START && a < ADDR_PDR_U_END) || (a >= ADDR_PAR_U_START && a < ADDR_PAR_U_END)) { if (word_mode == wm_word) mmu_->write_word(a, value); else mmu_->write_byte(a, value); return { false }; } if (a >= 0177740 && a <= 0177753) { // cache control register and others // TODO return { false }; } if (a >= 0170200 && a <= 0170377) { // unibus map TRACE("writing %06o to unibus map (%06o)", value, a); // TODO return { false }; } if (a == ADDR_CONSW) { // switch register console_leds = value; return { false }; } if (a == ADDR_SYSSIZE || a == ADDR_SYSSIZE + 2) // system size (is read-only) return { false }; if (a == ADDR_SYSTEM_ID) // is r/o return { false }; /////////// TRACE("WRITE-I/O UNHANDLED %08o(%c): %06o (base: %o)", m_offset, word_mode == wm_byte ? 'B' : 'W', value, mmu_->get_io_base()); if (word_mode == wm_word && (a & 1)) [[unlikely]] { TRACE("WRITE-I/O to %08o (value: %06o) - odd address!", m_offset, value); mmu_->trap_if_odd(a, run_mode, space, true); throw 8; } c->trap(004); // no such i/o throw 9; } if (word_mode == wm_word && (addr_in & 1)) [[unlikely]] { TRACE("WRITE to %06o (value: %06o) - odd address!", addr_in, value); mmu_->trap_if_odd(addr_in, run_mode, space, true); throw 10; } TRACE("WRITE to %06o/%07o %c %c: %06o", addr_in, m_offset, space == d_space ? 'D' : 'I', word_mode == wm_byte ? 'B' : 'W', value); if (m_offset >= m->get_memory_size()) { c->trap(004); // no such RAM throw 1; } if (word_mode == wm_byte) m->write_byte(m_offset, value); else m->write_word(m_offset, value); return { false }; } void bus::writePhysical(const uint32_t a, const uint16_t value) { TRACE("physicalWRITE %06o to %o", value, a); if (a >= m->get_memory_size()) { TRACE("physicalWRITE to %o: trap 004", a); c->trap(004); throw 12; } else { m->write_word(a, value); } } uint16_t bus::readPhysical(const uint32_t a) { if (a >= m->get_memory_size()) { TRACE("physicalREAD from %o: trap 004", a); c->trap(004); throw 13; } uint16_t value = m->read_word(a); TRACE("physicalREAD %06o from %o", value, a); return value; } uint16_t bus::read_word(const uint16_t a, const d_i_space_t s) { return read(a, wm_word, rm_cur, false, s); } uint16_t bus::peekWord(const uint16_t a) { return read(a, wm_word, rm_cur, true); } void bus::write_word(const uint16_t a, const uint16_t value, const d_i_space_t s) { write(a, wm_word, value, rm_cur, s); } uint8_t bus::readUnibusByte(const uint32_t a) { uint8_t v = m->read_byte(a); TRACE("readUnibusByte[%08o]=%03o", a, v); return v; } void bus::writeUnibusByte(const uint32_t a, const uint8_t v) { TRACE("writeUnibusByte[%08o]=%03o", a, v); m->write_byte(a, v); }