KEK/bus.cpp
2023-03-24 09:32:30 +01:00

977 lines
25 KiB
C++

// (C) 2018-2022 by Folkert van Heusden
// Released under Apache License v2.0
#include <assert.h>
#include <stdio.h>
#include <string.h>
#include "bus.h"
#include "gen.h"
#include "cpu.h"
#include "log.h"
#include "memory.h"
#include "tm-11.h"
#include "tty.h"
#if defined(ESP32)
// ESP32 goes in a crash-loop when allocating 128kB
// see also https://github.com/espressif/esp-idf/issues/1934
constexpr int n_pages = 12;
#else
constexpr int n_pages = 30; // 30=240kB (for EKBEEx.BIC)
#endif
constexpr uint16_t di_ena_mask[4] = { 4, 2, 0, 1 };
bus::bus()
{
m = new memory(n_pages * 8192);
memset(pages, 0x00, sizeof pages);
CPUERR = MMR0 = MMR1 = MMR2 = MMR3 = PIR = CSR = 0;
}
bus::~bus()
{
delete c;
delete tm11;
delete rk05_;
delete rl02_;
delete tty_;
delete m;
}
void bus::add_cpu(cpu *const c)
{
delete this->c;
this->c = c;
}
void bus::add_tm11(tm_11 *tm11)
{
delete this->tm11;
this->tm11 = tm11;
}
void bus::add_rk05(rk05 *rk05_)
{
delete this->rk05_;
this->rk05_ = rk05_;
}
void bus::add_rl02(rl02 *rl02_)
{
delete this->rl02_;
this->rl02_ = rl02_;
}
void bus::add_tty(tty *tty_)
{
delete this->tty_;
this->tty_ = tty_;
}
void bus::clearmem()
{
m->reset();
}
void bus::init()
{
MMR0 = 0;
MMR3 = 0;
}
uint16_t bus::read_pdr(const uint32_t a, const int run_mode, const bool word_mode, const bool peek_only)
{
int page = (a >> 1) & 7;
bool is_d = a & 16;
uint16_t t = pages[run_mode][is_d][page].pdr;
if (!peek_only)
DOLOG(debug, false, "read run-mode %d: %c PDR for %d: %o", run_mode, is_d ? 'D' : 'I', page, t);
return word_mode ? (a & 1 ? t >> 8 : t & 255) : t;
}
uint16_t bus::read_par(const uint32_t a, const int run_mode, const bool word_mode, const bool peek_only)
{
int page = (a >> 1) & 7;
bool is_d = a & 16;
uint16_t t = pages[run_mode][is_d][page].par;
if (!peek_only)
DOLOG(debug, false, "read run-mode %d: %c PAR for %d: %o (phys: %07o)", run_mode, is_d ? 'D' : 'I', page, t, t * 64);
return word_mode ? (a & 1 ? t >> 8 : t & 255) : t;
}
void bus::trap_odd(const uint16_t a)
{
MMR0 &= ~(7 << 1);
MMR0 |= (a >> 13) << 1;
c->trap(004); // invalid access
}
uint16_t bus::read(const uint16_t a, const bool word_mode, const bool use_prev, const bool peek_only, const d_i_space_t space)
{
uint16_t temp = 0;
if (a >= 0160000) {
if (!peek_only) {
DOLOG(debug, false, "READ from %06o/IO %c %c", a, space == d_space ? 'D' : 'I', word_mode ? 'B' : 'W');
if (word_mode)
DOLOG(debug, false, "READ I/O %06o in byte mode", a);
}
//// REGISTERS ////
if (a >= ADDR_KERNEL_R && a <= ADDR_KERNEL_R + 5) { // kernel R0-R5
if (!peek_only) DOLOG(debug, false, "readb kernel R%d", a - ADDR_KERNEL_R);
return c->getRegister(a - ADDR_KERNEL_R, 0, false) & (word_mode ? 0xff : 0xffff);
}
if (a >= ADDR_USER_R && a <= ADDR_USER_R + 5) { // user R0-R5
if (!peek_only) DOLOG(debug, false, "readb user R%d", a - ADDR_USER_R);
return c->getRegister(a - ADDR_USER_R, 3, false) & (word_mode ? 0xff : 0xffff);
}
if (a == ADDR_KERNEL_SP) { // kernel SP
if (!peek_only) DOLOG(debug, false, "readb kernel sp");
return c->getStackPointer(0) & (word_mode ? 0xff : 0xffff);
}
if (a == ADDR_PC) { // PC
if (!peek_only) DOLOG(debug, false, "readb pc");
return c->getPC() & (word_mode ? 0xff : 0xffff);
}
if (a == ADDR_SV_SP) { // supervisor SP
if (!peek_only) DOLOG(debug, false, "readb supervisor sp");
return c->getStackPointer(1) & (word_mode ? 0xff : 0xffff);
}
if (a == ADDR_USER_SP) { // user SP
if (!peek_only) DOLOG(debug, false, "readb user sp");
return c->getStackPointer(3) & (word_mode ? 0xff : 0xffff);
}
///^ registers ^///
if (!peek_only) {
if ((a & 1) && word_mode == false) {
DOLOG(debug, true, "bus::readWord: odd address UNHANDLED %06o in i/o area", a);
trap_odd(a);
throw 0;
return 0;
}
}
if (a == ADDR_CPU_ERR) { // cpu error register
if (!peek_only) DOLOG(debug, false, "readb cpuerr");
return CPUERR & 0xff;
}
if (a == ADDR_MAINT) { // MAINT
if (!peek_only) DOLOG(debug, false, "read MAINT");
return 1; // POWER OK
}
if (a == ADDR_CONSW) { // console switch & display register
if (!peek_only) DOLOG(debug, false, "read console switch (%06o)", console_switches);
return console_switches;
}
if (a == ADDR_KW11P) { // KW11P programmable clock
if (!peek_only) DOLOG(debug, false, "read programmable clock");
return 128;
}
if (a == ADDR_PIR) { // PIR
if (!peek_only) DOLOG(debug, false, "read PIR");
return PIR;
}
if (a == ADDR_SYSTEM_ID) {
if (!peek_only) DOLOG(debug, false, "read system id");
return 011064;
}
if (a == ADDR_LFC) { // line frequency clock and status register
if (!peek_only) DOLOG(debug, false, "read line freq clock");
return lf_csr;
}
if (a == ADDR_LP11CSR) { // printer, CSR register, LP11
if (!peek_only) DOLOG(debug, false, "read LP11 CSR");
return 0x80;
}
/// MMU ///
if (a >= ADDR_PDR_SV_START && a < ADDR_PDR_SV_END)
return read_pdr(a, 1, word_mode, peek_only);
else if (a >= ADDR_PAR_SV_START && a < ADDR_PAR_SV_END)
return read_par(a, 1, word_mode, peek_only);
else if (a >= ADDR_PDR_K_START && a < ADDR_PDR_K_END)
return read_pdr(a, 0, word_mode, peek_only);
else if (a >= ADDR_PAR_K_START && a < ADDR_PAR_K_END)
return read_par(a, 0, word_mode, peek_only);
else if (a >= ADDR_PDR_U_START && a < ADDR_PDR_U_END)
return read_pdr(a, 3, word_mode, peek_only);
else if (a >= ADDR_PAR_U_START && a < ADDR_PAR_U_END)
return read_par(a, 3, word_mode, peek_only);
///////////
if (a >= 0177740 && a <= 0177753) { // cache control register and others
// TODO
return 0;
}
if (a >= 0170200 && a <= 0170377) { // unibus map
if (!peek_only) DOLOG(debug, false, "reading unibus map (%06o)", a);
// TODO
return 0;
}
if (word_mode) {
if (a == ADDR_PSW) { // PSW
if (!peek_only) DOLOG(debug, false, "readb PSW LSB");
return c->getPSW() & 255;
}
if (a == ADDR_PSW + 1) {
if (!peek_only) DOLOG(debug, false, "readb PSW MSB");
return c->getPSW() >> 8;
}
if (a == ADDR_STACKLIM) { // stack limit register
if (!peek_only) DOLOG(debug, false, "readb stack limit register (low)");
return c->getStackLimitRegister() & 0xff;
}
if (a == ADDR_STACKLIM + 1) { // stack limit register
if (!peek_only) DOLOG(debug, false, "readb stack limit register (high)");
return c->getStackLimitRegister() >> 8;
}
if (a == ADDR_MICROPROG_BREAK_REG) { // microprogram break register
if (!peek_only) DOLOG(debug, false, "readb micropgrogram break register (low: %03o)", microprogram_break_register & 255);
return microprogram_break_register & 255;
}
if (a == ADDR_MICROPROG_BREAK_REG + 1) { // microprogram break register
if (!peek_only) DOLOG(debug, false, "readb micropgrogram break register (high: %03o)", microprogram_break_register >> 8);
return microprogram_break_register >> 8;
}
if (a == ADDR_MMR0) {
if (!peek_only) DOLOG(debug, false, "read MMR0 LO");
return MMR0 & 255;
}
if (a == ADDR_MMR0 + 1) {
if (!peek_only) DOLOG(debug, false, "read MMR0 HI");
return MMR0 >> 8;
}
}
else {
if (a == ADDR_MMR0) {
if (!peek_only) DOLOG(debug, false, "read MMR0");
return MMR0;
}
if (a == ADDR_MMR1) { // MMR1
if (!peek_only) DOLOG(debug, false, "read MMR1");
return MMR1;
}
if (a == ADDR_MMR2) { // MMR2
if (!peek_only) DOLOG(debug, false, "read MMR2");
return MMR2;
}
if (a == ADDR_MMR3) { // MMR3
if (!peek_only) DOLOG(debug, false, "read MMR3");
return MMR3;
}
if (a == ADDR_PSW) { // PSW
if (!peek_only) DOLOG(debug, false, "read PSW");
return c->getPSW();
}
if (a == ADDR_STACKLIM) { // stack limit register
if (!peek_only) DOLOG(debug, false, "read stack limit register");
return c->getStackLimitRegister();
}
if (a == ADDR_CPU_ERR) { // cpu error register
if (!peek_only) DOLOG(debug, false, "read CPUERR");
return CPUERR;
}
if (a == ADDR_MICROPROG_BREAK_REG) { // microprogram break register
if (!peek_only) DOLOG(debug, false, "read micropgrogram break register (%06o)", microprogram_break_register);
return microprogram_break_register;
}
}
if (tm11 && a >= TM_11_BASE && a < TM_11_END)
return word_mode ? tm11->readByte(a) : tm11->readWord(a);
if (rk05_ && a >= RK05_BASE && a < RK05_END)
return word_mode ? rk05_->readByte(a) : rk05_->readWord(a);
if (rl02_ && a >= RL02_BASE && a < RL02_END)
return word_mode ? rl02_->readByte(a) : rl02_->readWord(a);
if (tty_ && a >= PDP11TTY_BASE && a < PDP11TTY_END) {
if (peek_only)
return 012345;
return word_mode ? tty_->readByte(a) : tty_->readWord(a);
}
// LO size register field must be all 1s, so subtract 1
constexpr uint32_t system_size = n_pages * 8192 / 64 - 1;
if (a == ADDR_SYSSIZE + 2) { // system size HI
if (!peek_only) DOLOG(debug, false, "accessing system size HI");
return system_size >> 16;
}
if (a == ADDR_SYSSIZE) { // system size LO
if (!peek_only) DOLOG(debug, false, "accessing system size LO");
return system_size;
}
if (!peek_only) {
DOLOG(debug, true, "UNHANDLED read %o(%c)", a, word_mode ? 'B' : ' ');
DOLOG(debug, false, "Read non existing I/O (%06o)", a);
c->trap(004); // no such i/o
throw 1;
}
return -1;
}
if (peek_only == false && word_mode == false && (a & 1)) {
if (!peek_only) DOLOG(debug, true, "READ from %06o - odd address!", a);
trap_odd(a);
throw 2;
return 0;
}
int run_mode = (c->getPSW() >> (use_prev ? 12 : 14)) & 3;
uint32_t m_offset = calculate_physical_address(run_mode, a, !peek_only, false, peek_only, space == d_space);
if (peek_only == false && m_offset >= n_pages * 8192) {
if (!peek_only) DOLOG(debug, true, "Read non existing mapped memory (%o >= %o)", m_offset, n_pages * 8192);
c->trap(004); // no such memory
throw 3;
}
if (word_mode)
temp = m->readByte(m_offset);
else
temp = m->readWord(m_offset);
if (!peek_only) DOLOG(debug, false, "READ from %06o/%07o %c %c: %o", a, m_offset, space == d_space ? 'D' : 'I', word_mode ? 'B' : 'W', temp);
return temp;
}
void bus::setMMR0(int value)
{
value &= ~(3 << 10); // bit 10 & 11 always read as 0
if (value & 1)
value &= ~(7 << 13); // reset error bits
if (MMR0 & 0160000) {
if ((value & 1) == 0)
value &= 254; // bits 7...1 are protected
}
// TODO if bit 15/14/13 are set (either of them), then do not modify bit 1...7
MMR0 = value;
}
void bus::setMMR0Bit(const int bit)
{
assert(bit != 10 && bit != 11);
assert(bit < 16 && bit >= 0);
MMR0 |= 1 << bit;
}
void bus::clearMMR0Bit(const int bit)
{
assert(bit != 10 && bit != 11);
assert(bit < 16 && bit >= 0);
MMR0 &= ~(1 << bit);
}
void bus::setMMR2(const uint16_t value)
{
MMR2 = value;
}
void bus::check_odd_addressing(const uint16_t a, const int run_mode, const d_i_space_t space, const bool is_write)
{
if (a & 1) {
if (is_write)
pages[run_mode][space == d_space][a >> 13].pdr |= 1 << 7;
trap_odd(a);
throw 4;
}
}
memory_addresses_t bus::calculate_physical_address(const int run_mode, const uint16_t a)
{
const uint8_t apf = a >> 13; // active page field
if ((MMR0 & 1) == 0)
return { a, apf, a, a };
uint32_t physical_instruction = pages[run_mode][0][apf].par * 64;
uint32_t physical_data = pages[run_mode][1][apf].par * 64;
uint16_t p_offset = a & 8191; // page offset
physical_instruction += p_offset;
physical_data += p_offset;
if ((MMR3 & 16) == 0) { // offset is 18bit
physical_instruction &= 0x3ffff;
physical_data &= 0x3ffff;
}
return { a, apf, physical_instruction, physical_data };
}
bool bus::get_use_data_space(const int run_mode)
{
return !!(MMR3 & di_ena_mask[run_mode]);
}
uint32_t bus::calculate_physical_address(const int run_mode, const uint16_t a, const bool trap_on_failure, const bool is_write, const bool peek_only, const bool is_data)
{
uint32_t m_offset = a;
if ((MMR0 & 1) || (is_write && (MMR0 & (1 << 8)))) {
const uint8_t apf = a >> 13; // active page field
bool d = is_data & (!!(MMR3 & di_ena_mask[run_mode])) ? is_data : false;
uint16_t p_offset = a & 8191; // page offset
m_offset = pages[run_mode][d][apf].par * 64; // memory offset TODO: handle 16b int-s
m_offset += p_offset;
if ((MMR3 & 16) == 0) // off is 18bit
m_offset &= 0x3ffff;
if (trap_on_failure) {
{
const int access_control = pages[run_mode][d][apf].pdr & 7;
bool do_trap = false;
if (is_write && access_control != 6) // write
do_trap = true;
else if (!is_write && (access_control == 0 || access_control == 1 || access_control == 3 || access_control == 4 || access_control == 7)) { // read
do_trap = true;
}
if (do_trap) {
bool do_trap_250 = false;
if ((MMR0 & 0xf000) == 0) {
DOLOG(debug, true, "TRAP(0250) (throw 5) for access_control %d on address %06o, run mode %d", access_control, a, run_mode);
do_trap_250 = true;
}
else {
DOLOG(debug, true, "A.C.F. triggger for %d on address %06o, run mode %d", access_control, a, run_mode);
}
if (is_write)
pages[run_mode][d][apf].pdr |= 1 << 7;
if ((MMR0 & 0160000) == 0) {
MMR0 &= ~((1 << 15) | (1 << 14) | (1 << 13) | (1 << 12) | (3 << 5) | (7 << 1));
if (is_write && access_control != 6)
MMR0 |= 1 << 13; // read-only
//
if (access_control == 0 || access_control == 4)
MMR0 |= 1 << 15; // not resident
else
MMR0 |= 1 << 13; // read-only
MMR0 |= run_mode << 5; // TODO: kernel-mode or user-mode when a trap occurs in user-mode?
MMR0 |= apf << 1; // add current page
}
DOLOG(debug, true, "MMR0: %06o", MMR0);
if (do_trap_250) {
c->trap(0250); // invalid address
throw 5;
}
}
}
if (m_offset >= n_pages * 8192) {
DOLOG(debug, !peek_only, "bus::calculate_physical_address %o >= %o", m_offset, n_pages * 8192);
DOLOG(debug, true, "TRAP(04) (throw 6) on address %06o", a);
if ((MMR0 & 0160000) == 0) {
MMR0 &= 017777;
MMR0 |= 1 << 15; // non-resident
MMR0 &= ~14; // add current page
MMR0 |= apf << 1;
MMR0 &= ~(3 << 5);
MMR0 |= run_mode << 5;
}
if (is_write)
pages[run_mode][d][apf].pdr |= 1 << 7;
c->trap(04);
throw 6;
}
uint16_t pdr_len = (pages[run_mode][d][apf].pdr >> 8) & 127;
uint16_t pdr_cmp = (a >> 6) & 127;
bool direction = pages[run_mode][d][apf].pdr & 8;
// DOLOG(debug, true, "p_offset %06o pdr_len %06o direction %d, run_mode %d, apf %d, pdr: %06o", p_offset, pdr_len, direction, run_mode, apf, pages[run_mode][d][apf].pdr);
if ((pdr_cmp > pdr_len && direction == false) || (pdr_cmp < pdr_len && direction == true)) {
DOLOG(debug, !peek_only, "bus::calculate_physical_address::p_offset %o versus %o direction %d", pdr_cmp, pdr_len, direction);
DOLOG(debug, true, "TRAP(0250) (throw 7) on address %06o", a);
c->trap(0250); // invalid access
if ((MMR0 & 0160000) == 0) {
MMR0 &= 017777;
MMR0 |= 1 << 14; // length
MMR0 &= ~14; // add current page
MMR0 |= apf << 1;
MMR0 &= ~(3 << 5);
MMR0 |= run_mode << 5;
}
if (is_write)
pages[run_mode][d][apf].pdr |= 1 << 7;
throw 7;
}
}
DOLOG(debug, !peek_only, "virtual address %06o maps to physical address %08o (run_mode: %d, apf: %d, par: %08o, poff: %o, AC: %d, %s)", a, m_offset, run_mode, apf, pages[run_mode][d][apf].par * 64, p_offset, pages[run_mode][d][apf].pdr & 7, d ? "D" : "I");
}
return m_offset;
}
void bus::clearMMR1()
{
MMR1 = 0;
}
void bus::addToMMR1(const int8_t delta, const uint8_t reg)
{
MMR1 <<= 8;
MMR1 |= (delta & 31) << 3;
MMR1 |= reg;
}
void bus::write_pdr(const uint32_t a, const int run_mode, const uint16_t value, const bool word_mode)
{
bool is_d = a & 16;
int page = (a >> 1) & 7;
if (word_mode) {
assert(a != 0 || value < 256);
a & 1 ? (pages[run_mode][is_d][page].pdr &= 0x00ff, pages[run_mode][is_d][page].pdr |= value << 8) :
#ifdef SYSTEM_11_44
(pages[run_mode][is_d][page].pdr &= 0xff00, pages[run_mode][is_d][page].pdr |= value & ~0361);
#else
(pages[run_mode][is_d][page].pdr &= 0xff00, pages[run_mode][is_d][page].pdr |= value );
#endif
}
else {
#ifdef SYSTEM_11_44
pages[run_mode][is_d][page].pdr = value & ~0361;
#else
pages[run_mode][is_d][page].pdr = value;
#endif
}
pages[run_mode][is_d][page].pdr &= ~(32768 + 128 /*A*/ + 64 /*W*/ + 32 + 16); // set bit 4, 5 & 15 to 0 as they are unused and A/W are set to 0 by writes
DOLOG(debug, true, "write run-mode %d: %c PDR for %d: %o [%d]", run_mode, is_d ? 'D' : 'I', page, value, word_mode);
}
void bus::write_par(const uint32_t a, const int run_mode, const uint16_t value, const bool word_mode)
{
bool is_d = a & 16;
int page = (a >> 1) & 7;
if (word_mode) {
a & 1 ? (pages[run_mode][is_d][page].par &= 0x00ff, pages[run_mode][is_d][page].par |= value << 8) :
(pages[run_mode][is_d][page].par &= 0xff00, pages[run_mode][is_d][page].par |= value );
}
else {
pages[run_mode][is_d][page].par = value;
}
pages[run_mode][is_d][page].pdr &= ~(128 /*A*/ + 64 /*W*/); // reset PDR A/W when PAR is written to
DOLOG(debug, true, "write run-mode %d: %c PAR for %d: %o (%07o)", run_mode, is_d ? 'D' : 'I', page, word_mode ? value & 0xff : value, pages[run_mode][is_d][page].par * 64);
}
void bus::write(const uint16_t a, const bool word_mode, uint16_t value, const bool use_prev, const d_i_space_t space)
{
int run_mode = (c->getPSW() >> (use_prev ? 12 : 14)) & 3;
if ((MMR0 & 1) == 1 && (a & 1) == 0 && a != ADDR_MMR0) {
const uint8_t apf = a >> 13; // active page field
bool is_data = space == d_space;
bool d = is_data & (!!(MMR3 & di_ena_mask[run_mode])) ? is_data : false;
pages[run_mode][d][apf].pdr |= 64; // set 'W' (written to) bit
}
if (a >= 0160000) {
DOLOG(debug, true, "WRITE to %06o/IO %c %c: %o", a, space == d_space ? 'D' : 'I', word_mode ? 'B' : 'W', value);
if (word_mode) {
assert(value < 256);
DOLOG(debug, true, "WRITE I/O %06o in byte mode", a);
}
if (word_mode) {
if (a == ADDR_PSW || a == ADDR_PSW + 1) { // PSW
DOLOG(debug, true, "writeb PSW %s", a & 1 ? "MSB" : "LSB");
uint16_t vtemp = c->getPSW();
if (a & 1)
vtemp = (vtemp & 0x00ff) | (value << 8);
else
vtemp = (vtemp & 0xff00) | value;
vtemp &= ~16; // cannot set T bit via this
c->setPSW(vtemp, false);
return;
}
if (a == ADDR_STACKLIM || a == ADDR_STACKLIM + 1) { // stack limit register
DOLOG(debug, true, "writeb Set stack limit register: %o", value);
uint16_t v = c->getStackLimitRegister();
if (a == ADDR_STACKLIM)
v = (v & 0xff00) | value;
else
v = (v & 0x00ff) | (value << 8);
c->setStackLimitRegister(v);
return;
}
if (a == ADDR_MICROPROG_BREAK_REG) { // microprogram break register
DOLOG(debug, false, "writeb micropgrogram break register (low: %03o)", value);
microprogram_break_register = (microprogram_break_register & 0xff00) | value;
return;
}
if (a == ADDR_MICROPROG_BREAK_REG + 1) { // microprogram break register
DOLOG(debug, false, "writeb micropgrogram break register (high: %03o)", value);
microprogram_break_register = (microprogram_break_register & 0x00ff) | (value << 8);
return;
}
if (a == ADDR_MMR0) { // MMR0
DOLOG(debug, true, "write set MMR0: %o", value);
MMR0 = (MMR0 & 0xff00) | value;
return;
}
if (a == ADDR_MMR0 + 1) { // MMR0
DOLOG(debug, true, "write set MMR0: %o", value);
MMR0 = (MMR0 & 0x00ff) | (value << 8);
return;
}
}
else {
if (a == ADDR_PSW) { // PSW
DOLOG(debug, true, "write PSW %o", value);
c->setPSW(value & ~16, false);
return;
}
if (a == ADDR_STACKLIM) { // stack limit register
DOLOG(debug, true, "write Set stack limit register: %o", value);
c->setStackLimitRegister(value);
return;
}
if (a >= ADDR_KERNEL_R && a <= ADDR_KERNEL_R + 5) { // kernel R0-R5
DOLOG(debug, true, "write kernel R%d: %o", a - ADDR_KERNEL_R, value);
c->setRegister(a - ADDR_KERNEL_R, false, false, value);
return;
}
if (a >= ADDR_USER_R && a <= ADDR_USER_R + 5) { // user R0-R5
DOLOG(debug, true, "write user R%d: %o", a - ADDR_USER_R, value);
c->setRegister(a - ADDR_USER_R, true, false, value);
return;
}
if (a == ADDR_KERNEL_SP) { // kernel SP
DOLOG(debug, true, "write kernel SP: %o", value);
c->setStackPointer(0, value);
return;
}
if (a == ADDR_PC) { // PC
DOLOG(debug, true, "write PC: %o", value);
c->setPC(value);
return;
}
if (a == ADDR_SV_SP) { // supervisor SP
DOLOG(debug, true, "write supervisor sp: %o", value);
c->setStackPointer(1, value);
return;
}
if (a == ADDR_USER_SP) { // user SP
DOLOG(debug, true, "write user sp: %o", value);
c->setStackPointer(3, value);
return;
}
if (a == ADDR_MICROPROG_BREAK_REG) { // microprogram break register
DOLOG(debug, false, "write micropgrogram break register (%06o)", value);
microprogram_break_register = value & 0xff; // only 8b on 11/70?
return;
}
}
if (a == ADDR_CPU_ERR) { // cpu error register
DOLOG(debug, true, "write CPUERR: %o", value);
CPUERR = 0;
return;
}
if (a == ADDR_MMR3) { // MMR3
DOLOG(debug, true, "write set MMR3: %o", value);
MMR3 = value & 067;
return;
}
if (a == ADDR_MMR0) { // MMR0
DOLOG(debug, true, "write set MMR0: %o", value);
setMMR0(value);
return;
}
if (a == ADDR_PIR) { // PIR
DOLOG(debug, true, "write set PIR: %o", value);
PIR = value; // TODO
return;
}
if (a == ADDR_LFC) { // line frequency clock and status register
DOLOG(debug, true, "write set LFC/SR: %o", value);
lf_csr = value;
return;
}
if (tm11 && a >= TM_11_BASE && a < TM_11_END) {
word_mode ? tm11->writeByte(a, value) : tm11->writeWord(a, value);
return;
}
if (rk05_ && a >= RK05_BASE && a < RK05_END) {
word_mode ? rk05_->writeByte(a, value) : rk05_->writeWord(a, value);
return;
}
if (rl02_ && a >= RL02_BASE && a < RL02_END) {
word_mode ? rl02_->writeByte(a, value) : rl02_->writeWord(a, value);
return;
}
if (tty_ && a >= PDP11TTY_BASE && a < PDP11TTY_END) {
word_mode ? tty_->writeByte(a, value) : tty_->writeWord(a, value);
return;
}
/// MMU ///
// supervisor
if (a >= ADDR_PDR_SV_START && a < ADDR_PDR_SV_END) {
write_pdr(a, 1, value, word_mode);
return;
}
if (a >= ADDR_PAR_SV_START && a < ADDR_PAR_SV_END) {
write_par(a, 1, value, word_mode);
return;
}
// kernel
if (a >= ADDR_PDR_K_START && a < ADDR_PDR_K_END) {
write_pdr(a, 0, value, word_mode);
return;
}
if (a >= ADDR_PAR_K_START && a < ADDR_PAR_K_END) {
write_par(a, 0, value, word_mode);
return;
}
// user
if (a >= ADDR_PDR_U_START && a < ADDR_PDR_U_END) {
write_pdr(a, 3, value, word_mode);
return;
}
if (a >= ADDR_PAR_U_START && a < ADDR_PAR_U_END) {
write_par(a, 3, value, word_mode);
return;
}
////
if (a >= 0177740 && a <= 0177753) { // cache control register and others
// TODO
return;
}
if (a >= 0170200 && a <= 0170377) { // unibus map
DOLOG(debug, false, "writing %06o to unibus map (%06o)", value, a);
// TODO
return;
}
if (a == ADDR_CONSW) { // switch register
console_leds = value;
return;
}
if (a == ADDR_SYSSIZE || a == ADDR_SYSSIZE + 2) // system size (is read-only)
return;
if (a == ADDR_SYSTEM_ID) // is r/o
return;
///////////
DOLOG(debug, true, "UNHANDLED write %o(%c): %o", a, word_mode ? 'B' : 'W', value);
if (word_mode == false && (a & 1)) {
DOLOG(debug, true, "WRITE to %06o (value: %06o) - odd address!", a, value);
trap_odd(a);
throw 8;
}
DOLOG(debug, false, "Write non existing I/O (%06o, value: %06o)", a, value);
c->trap(004); // no such i/o
throw 9;
}
if (word_mode == false && (a & 1)) {
DOLOG(debug, true, "WRITE to %06o (value: %06o) - odd address!", a, value);
trap_odd(a);
throw 10;
}
uint32_t m_offset = calculate_physical_address(run_mode, a, true, true, false, space == d_space);
if (m_offset >= n_pages * 8192) {
DOLOG(debug, false, "Write non existing mapped memory (%06o, value: %06o)", m_offset, value);
c->trap(004); // no such memory
throw 11;
}
DOLOG(debug, true, "WRITE to %06o/%07o %c %c: %o", a, m_offset, space == d_space ? 'D' : 'I', word_mode ? 'B' : 'W', value);
if (word_mode)
m->writeByte(m_offset, value);
else
m->writeWord(m_offset, value);
}
void bus::writePhysical(const uint32_t a, const uint16_t value)
{
DOLOG(debug, true, "physicalWRITE %06o to %o", value, a);
if (a >= n_pages * 8192) {
DOLOG(debug, true, "physicalWRITE to %o: trap 004", a);
c->trap(004);
throw 12;
}
else {
m->writeWord(a, value);
}
}
uint16_t bus::readPhysical(const uint32_t a)
{
if (a >= n_pages * 8192) {
DOLOG(debug, true, "physicalREAD from %o: trap 004", a);
c->trap(004);
throw 13;
}
uint16_t value = m->readWord(a);
DOLOG(debug, true, "physicalREAD %06o from %o", value, a);
return value;
}
uint16_t bus::readWord(const uint16_t a, const d_i_space_t s)
{
return read(a, false, false, false, s);
}
uint16_t bus::peekWord(const uint16_t a)
{
return read(a, false, false, true);
}
void bus::writeWord(const uint16_t a, const uint16_t value, const d_i_space_t s)
{
write(a, false, value, false, s);
}
uint16_t bus::readUnibusByte(const uint16_t a)
{
return m->readByte(a);
}
void bus::writeUnibusByte(const uint16_t a, const uint8_t v)
{
m->writeByte(a, v);
}
void bus::set_lf_crs_b7()
{
lf_csr |= 128;
}
uint8_t bus::get_lf_crs()
{
return lf_csr;
}