KEK/debugger.cpp
folkert van heusden 1e34084b99
IS_POSIX define
2024-04-25 13:44:30 +02:00

1223 lines
33 KiB
C++

// (C) 2018-2024 by Folkert van Heusden
// Released under MIT license
#include <optional>
#include "gen.h"
#if IS_POSIX
#include <dirent.h>
#include <jansson.h>
#include <sys/stat.h>
#include <sys/types.h>
#else
#include <Arduino.h>
#include <ArduinoJson.h>
#include <LittleFS.h>
#endif
#include "breakpoint_parser.h"
#include "bus.h"
#include "console.h"
#include "cpu.h"
#include "disk_backend.h"
#if IS_POSIX
#include "disk_backend_file.h"
#else
#include "disk_backend_esp32.h"
#endif
#include "disk_backend_nbd.h"
#include "loaders.h"
#include "log.h"
#include "tty.h"
#include "utils.h"
#if defined(ESP32) || defined(BUILD_FOR_RP2040)
#if defined(ESP32)
#include "esp32.h"
#elif defined(BUILD_FOR_RP2040)
#include "rp2040.h"
#endif
void setBootLoader(bus *const b);
void configure_disk(console *const c);
void configure_network(console *const c);
void check_network(console *const c);
void start_network(console *const c);
void set_tty_serial_speed(console *const c, const uint32_t bps);
void recall_configuration(console *const c);
#endif
#define NET_DISK_CFG_FILE "net-disk.json"
#if !defined(BUILD_FOR_RP2040) && !defined(linux)
extern SdFs SD;
#endif
#ifndef linux
#define MAX_CFG_SIZE 1024
StaticJsonDocument<MAX_CFG_SIZE> json_doc;
#endif
typedef enum { BE_NETWORK, BE_SD } disk_backend_t;
#if !defined(BUILD_FOR_RP2040)
std::optional<std::tuple<std::vector<disk_backend *>, std::vector<disk_backend *>, std::string> > load_disk_configuration(console *const c)
{
#if IS_POSIX
json_error_t error;
json_t *json = json_load_file("." NET_DISK_CFG_FILE, JSON_REJECT_DUPLICATES, &error);
if (!json) {
c->put_string_lf(format("Cannot load ." NET_DISK_CFG_FILE ": %s", error.text));
return { };
}
std::string nbd_host = json_string_value (json_object_get(json, "NBD-host"));
int nbd_port = json_integer_value(json_object_get(json, "NBD-port"));
std::string disk_type_temp = json_string_value (json_object_get(json, "disk-type"));
std::string tape_file = json_string_value (json_object_get(json, "tape-file"));
json_decref(json);
#else
File dataFile = LittleFS.open("/" NET_DISK_CFG_FILE, "r");
if (!dataFile)
return { };
size_t size = dataFile.size();
char buffer[MAX_CFG_SIZE];
if (size > sizeof buffer) { // this should not happen
dataFile.close();
return { };
}
dataFile.read(reinterpret_cast<uint8_t *>(buffer), size);
buffer[(sizeof buffer) - 1] = 0x00;
dataFile.close();
auto error = deserializeJson(json_doc, buffer);
if (error) // this should not happen
return { };
String nbd_host = json_doc["NBD-host"];
int nbd_port = json_doc["NBD-port"];
String disk_type_temp = json_doc["disk-type"];
String tape_file = json_doc["tape-file"];
#endif
disk_type_t disk_type = DT_RK05;
if (disk_type_temp == "rl02")
disk_type = DT_RL02;
else if (disk_type_temp == "tape")
disk_type = DT_TAPE;
disk_backend *d = new disk_backend_nbd(nbd_host.c_str(), nbd_port);
if (d->begin() == false) {
c->put_string_lf("Cannot initialize NBD client from configuration file");
delete d;
return { };
}
c->put_string_lf(format("Connection to NBD server at %s:%d success", nbd_host.c_str(), nbd_port));
if (disk_type == DT_RK05)
return { { { d }, { }, "" } };
if (disk_type == DT_RL02)
return { { { }, { d }, "" } };
if (disk_type == DT_TAPE)
return { { { }, { }, tape_file.c_str() } };
return { };
}
bool save_disk_configuration(const std::string & nbd_host, const int nbd_port, const std::optional<std::string> & tape_file, const disk_type_t dt, console *const cnsl)
{
#if IS_POSIX
json_t *json = json_object();
json_object_set(json, "NBD-host", json_string(nbd_host.c_str()));
json_object_set(json, "NBD-port", json_integer(nbd_port));
if (dt == DT_RK05)
json_object_set(json, "disk-type", json_string("rk05"));
else if (dt == DT_RL02)
json_object_set(json, "disk-type", json_string("rl02"));
else
json_object_set(json, "disk-type", json_string("tape"));
json_object_set(json, "tape-file", json_string(tape_file.has_value() ? tape_file.value().c_str() : ""));
bool succeeded = json_dump_file(json, "." NET_DISK_CFG_FILE, 0) == 0;
json_decref(json);
if (succeeded == false) {
cnsl->put_string_lf(format("Cannot write ." NET_DISK_CFG_FILE));
return false;
}
#else
json_doc["NBD-host"] = nbd_host;
json_doc["NBD-port"] = nbd_port;
if (dt == DT_RK05)
json_doc["disk-type"] = "rk05";
else if (dt == DT_RL02)
json_doc["disk-type"] = "rl02";
else
json_doc["disk-type"] = "tape";
json_doc["tape-file"] = tape_file.has_value() ? tape_file.value() : "";
File dataFile = LittleFS.open("/" NET_DISK_CFG_FILE, "w");
if (!dataFile)
return false;
serializeJson(json_doc, dataFile);
dataFile.close();
#endif
return true;
}
#endif
std::optional<disk_backend_t> select_disk_backend(console *const c)
{
#if defined(BUILD_FOR_RP2040)
return BE_SD;
#elif linux
c->put_string("1. network (NBD), 2. local filesystem, 9. abort");
#else
c->put_string("1. network (NBD), 2. local SD card, 9. abort");
#endif
int ch = -1;
while(ch == -1 && ch != '1' && ch != '2' && ch != '9') {
auto temp = c->wait_char(500);
if (temp.has_value())
ch = temp.value();
}
c->put_string_lf(format("%c", ch));
if (ch == '1')
return BE_NETWORK;
if (ch == '2')
return BE_SD;
return { };
}
std::optional<disk_type_t> select_disk_type(console *const c)
{
c->put_string("1. RK05, 2. RL02, 3. tape/BIC, 9. abort");
int ch = -1;
while(ch == -1 && ch != '1' && ch != '2' && ch != '3' && ch != '9') {
auto temp = c->wait_char(500);
if (temp.has_value())
ch = temp.value();
}
c->put_string_lf(format("%c", ch));
if (ch == '1')
return DT_RK05;
if (ch == '2')
return DT_RL02;
if (ch == '3')
return DT_TAPE;
return { };
}
#if !defined(BUILD_FOR_RP2040)
std::optional<std::tuple<std::vector<disk_backend *>, std::vector<disk_backend *>, std::string> > select_nbd_server(console *const c)
{
c->flush_input();
std::string hostname = c->read_line("Enter hostname (or empty to abort): ");
if (hostname.empty())
return { };
std::string port_str = c->read_line("Enter port number (or empty to abort): ");
if (port_str.empty())
return { };
auto disk_type = select_disk_type(c);
if (disk_type.has_value() == false)
return { };
disk_backend *d = new disk_backend_nbd(hostname, atoi(port_str.c_str()));
if (d->begin() == false) {
c->put_string_lf("Cannot initialize NBD client");
delete d;
return { };
}
if (save_disk_configuration(hostname, atoi(port_str.c_str()), { }, disk_type.value(), c))
c->put_string_lf("NBD disk configuration saved");
else
c->put_string_lf("NBD disk configuration NOT saved");
if (disk_type.value() == DT_RK05)
return { { { d }, { }, "" } };
if (disk_type.value() == DT_RL02)
return { { { }, { d }, "" } };
return { };
}
#endif
// RK05, RL02 files
std::optional<std::tuple<std::vector<disk_backend *>, std::vector<disk_backend *>, std::string> > select_disk_files(console *const c)
{
#if IS_POSIX
c->put_string_lf("Files in current directory: ");
#else
c->debug("MISO: %d", int(MISO));
c->debug("MOSI: %d", int(MOSI));
c->debug("SCK : %d", int(SCK ));
c->debug("SS : %d", int(SS ));
c->put_string_lf("Files on SD-card:");
#if defined(SHA2017)
if (!SD.begin(21, SD_SCK_MHZ(10)))
SD.initErrorHalt();
#elif !defined(BUILD_FOR_RP2040)
if (!SD.begin(SS, SD_SCK_MHZ(15))) {
auto err = SD.sdErrorCode();
if (err)
c->debug("SDerror: 0x%x, data: 0x%x", err, SD.sdErrorData());
else
c->debug("Failed to initialize SD card");
return { };
}
#endif
#endif
for(;;) {
#if defined(linux)
DIR *dir = opendir(".");
if (!dir) {
c->put_string_lf("Cannot access directory");
return { };
}
dirent *dr = nullptr;
while((dr = readdir(dir))) {
struct stat st { };
if (stat(dr->d_name, &st) == 0)
c->put_string_lf(format("%s\t\t%ld", dr->d_name, st.st_size));
}
closedir(dir);
#elif defined(BUILD_FOR_RP2040)
File root = SD.open("/");
for(;;) {
auto entry = root.openNextFile();
if (!entry)
break;
if (!entry.isDirectory()) {
c->put_string(entry.name());
c->put_string("\t\t");
c->put_string_lf(format("%ld", entry.size()));
}
entry.close();
}
#else
SD.ls("/", LS_DATE | LS_SIZE | LS_R);
#endif
c->flush_input();
std::string selected_file = c->read_line("Enter filename (or empty to abort): ");
if (selected_file.empty())
return { };
auto disk_type = select_disk_type(c);
if (disk_type.has_value() == false)
return { };
c->put_string("Opening file: ");
c->put_string_lf(selected_file.c_str());
bool can_open_file = false;
#if IS_POSIX
struct stat st { };
can_open_file = stat(selected_file.c_str(), &st) == 0;
#else
File32 fh;
can_open_file = fh.open(selected_file.c_str(), O_RDWR);
if (can_open_file)
fh.close();
#endif
if (can_open_file) {
if (disk_type.value() == DT_TAPE)
return { { { }, { }, selected_file } };
#if IS_POSIX
disk_backend *temp = new disk_backend_file(selected_file);
#else
disk_backend *temp = new disk_backend_esp32(selected_file);
#endif
if (!temp->begin()) {
c->put_string("Cannot use: ");
c->put_string_lf(selected_file.c_str());
delete temp;
continue;
}
if (disk_type.value() == DT_RK05)
return { { { temp }, { }, "" } };
if (disk_type.value() == DT_RL02)
return { { { }, { temp }, "" } };
}
c->put_string_lf("open failed");
}
}
void set_disk_configuration(bus *const b, console *const cnsl, std::tuple<std::vector<disk_backend *>, std::vector<disk_backend *>, std::string> & disk_files)
{
if (std::get<0>(disk_files).empty() == false)
b->add_rk05(new rk05(std::get<0>(disk_files), b, cnsl->get_disk_read_activity_flag(), cnsl->get_disk_write_activity_flag()));
if (std::get<1>(disk_files).empty() == false)
b->add_rl02(new rl02(std::get<1>(disk_files), b, cnsl->get_disk_read_activity_flag(), cnsl->get_disk_write_activity_flag()));
if (std::get<2>(disk_files).empty() == false) {
auto addr = loadTape(b, std::get<2>(disk_files));
if (addr.has_value())
b->getCpu()->setPC(addr.value());
}
if (std::get<0>(disk_files).empty() == false)
setBootLoader(b, BL_RK05);
else if (std::get<1>(disk_files).empty() == false)
setBootLoader(b, BL_RL02);
}
void configure_disk(bus *const b, console *const cnsl)
{
for(;;) {
cnsl->put_string_lf("Load disk");
auto backend = select_disk_backend(cnsl);
if (backend.has_value() == false)
break;
std::optional<std::tuple<std::vector<disk_backend *>, std::vector<disk_backend *>, std::string> > files;
#if !defined(BUILD_FOR_RP2040)
if (backend == BE_NETWORK)
files = select_nbd_server(cnsl);
else // if (backend == BE_SD)
#endif
files = select_disk_files(cnsl);
if (files.has_value() == false)
break;
set_disk_configuration(b, cnsl, files.value());
break;
}
}
// returns size of instruction (in bytes)
int disassemble(cpu *const c, console *const cnsl, const uint16_t pc, const bool instruction_only)
{
auto data = c->disassemble(pc);
auto registers = data["registers"];
auto psw = data["psw"][0];
std::string instruction_values;
for(auto iv : data["instruction-values"])
instruction_values += (instruction_values.empty() ? "" : ",") + iv;
std::string work_values;
for(auto wv : data["work-values"])
work_values += (work_values.empty() ? "" : ",") + wv;
std::string instruction = data["instruction-text"].at(0);
std::string MMR0 = data["MMR0"].at(0);
std::string MMR1 = data["MMR1"].at(0);
std::string MMR2 = data["MMR2"].at(0);
std::string MMR3 = data["MMR3"].at(0);
std::string result;
if (instruction_only)
result = format("PC: %06o, instr: %s\t%s\t%s",
pc,
instruction_values.c_str(),
instruction.c_str(),
work_values.c_str()
);
else
result = format("R0: %s, R1: %s, R2: %s, R3: %s, R4: %s, R5: %s, SP: %s, PC: %06o, PSW: %s (%s), instr: %s: %s",
registers[0].c_str(), registers[1].c_str(), registers[2].c_str(), registers[3].c_str(), registers[4].c_str(), registers[5].c_str(),
registers[6].c_str(), pc,
psw.c_str(), data["psw-value"][0].c_str(),
instruction_values.c_str(),
instruction.c_str()
);
if (cnsl)
cnsl->debug(result);
else
DOLOG(debug, false, "%s", result.c_str());
std::string sp;
for(auto sp_val : data["sp"])
sp += (sp.empty() ? "" : ",") + sp_val;
DOLOG(debug, false, "SP: %s, MMR0/1/2/3: %s/%s/%s/%s", sp.c_str(), MMR0.c_str(), MMR1.c_str(), MMR2.c_str(), MMR3.c_str());
#if 0
if (c->getPSW_runmode() == 3) {
/*
FILE *fh = fopen("/home/folkert/temp/ramdisk/log-kek.dat", "a+");
fprintf(fh, "%06o", pc);
for(auto & v: data["instruction-values"])
fprintf(fh, " %s", v.c_str());
fprintf(fh, "\n");
fclose(fh);
*/
FILE *fh = fopen("/home/folkert/temp/ramdisk/da-kek.txt", "a+");
fprintf(fh, "R0 %s R1 %s R2 %s R3 %s R4 %s R5 %s R6 %s R7 %06o %s\n", registers[0].c_str(), registers[1].c_str(), registers[2].c_str(), registers[3].c_str(), registers[4].c_str(), registers[5].c_str(), registers[6].c_str(), pc, instruction.c_str());
fclose(fh);
}
#endif
return data["instruction-values"].size() * 2;
}
std::map<std::string, std::string> split(const std::vector<std::string> & kv_array, const std::string & splitter)
{
std::map<std::string, std::string> out;
for(auto pair : kv_array) {
auto kv = split(pair, splitter);
if (kv.size() == 1)
out.insert({ kv[0], "" });
else if (kv.size() == 2)
out.insert({ kv[0], kv[1] });
}
return out;
}
void dump_par_pdr(console *const cnsl, bus *const b, const uint16_t pdrs, const uint16_t pars, const std::string & name, const int state, const std::optional<int> & selection)
{
if (state == 0 || state == 2)
cnsl->put_string_lf(name);
else
cnsl->put_string_lf(format("%s DISABLED", name.c_str()));
cnsl->put_string_lf(" PAR PDR LEN");
for(int i=0; i<8; i++) {
if (selection.has_value() && i != selection.value())
continue;
uint16_t par_value = b->read(pars + i * 2, wm_word, rm_cur, true);
uint16_t pdr_value = b->read(pdrs + i * 2, wm_word, rm_cur, true);
uint16_t pdr_len = (((pdr_value >> 8) & 127) + 1) * 64;
cnsl->put_string_lf(format("%d] %06o %08o %06o %04o D%d A%d", i, par_value, par_value * 64, pdr_value, pdr_len, !!(pdr_value & 8), pdr_value & 7));
}
}
void dump_memory_contents(console *const cnsl, bus *const b, const uint16_t read_addr)
{
cnsl->put_string_lf(format("\tMOV #%06o,R0", read_addr));
cnsl->put_string_lf(format("\tMOV #%06o,(R0)", b->read(read_addr, wm_word, rm_cur, true)));
}
void dump_range_as_instructions(console *const cnsl, bus *const b, const uint16_t base)
{
for(int i=0; i<8; i++)
dump_memory_contents(cnsl, b, base + i * 2);
}
void mmu_dump(console *const cnsl, bus *const b, const bool verbose)
{
uint16_t mmr0 = b->getMMU()->getMMR0();
uint16_t mmr1 = b->getMMU()->getMMR1();
uint16_t mmr2 = b->getMMU()->getMMR2();
uint16_t mmr3 = b->getMMU()->getMMR3();
cnsl->put_string_lf(mmr0 & 1 ? "MMU enabled" : "MMU NOT enabled");
cnsl->put_string_lf(format("MMR0: %06o", mmr0));
cnsl->put_string_lf(format("MMR1: %06o", mmr1));
cnsl->put_string_lf(format("MMR2: %06o", mmr2));
cnsl->put_string_lf(format("MMR3: %06o", mmr3));
dump_par_pdr(cnsl, b, ADDR_PDR_SV_START, ADDR_PAR_SV_START, "supervisor i-space", 0, { });
dump_par_pdr(cnsl, b, ADDR_PDR_SV_START + 020, ADDR_PAR_SV_START + 020, "supervisor d-space", 1 + (!!(mmr3 & 2)), { });
dump_par_pdr(cnsl, b, ADDR_PDR_K_START, ADDR_PAR_K_START, "kernel i-space", 0, { });
dump_par_pdr(cnsl, b, ADDR_PDR_K_START + 020, ADDR_PAR_K_START + 020, "kernel d-space", 1 + (!!(mmr3 & 4)), { });
dump_par_pdr(cnsl, b, ADDR_PDR_U_START, ADDR_PAR_U_START, "user i-space", 0, { });
dump_par_pdr(cnsl, b, ADDR_PDR_U_START + 020, ADDR_PAR_U_START + 020, "user d-space", 1 + (!!(mmr3 & 1)), { });
if (verbose) {
dump_range_as_instructions(cnsl, b, ADDR_PDR_SV_START); // sv i
dump_range_as_instructions(cnsl, b, ADDR_PDR_SV_START + 020); // sv d
dump_range_as_instructions(cnsl, b, ADDR_PDR_K_START); // k i
dump_range_as_instructions(cnsl, b, ADDR_PDR_K_START + 020); // k d
dump_range_as_instructions(cnsl, b, ADDR_PDR_U_START); // u i
dump_range_as_instructions(cnsl, b, ADDR_PDR_U_START + 020); // u d
dump_memory_contents(cnsl, b, ADDR_MMR0);
dump_memory_contents(cnsl, b, ADDR_MMR1);
dump_memory_contents(cnsl, b, ADDR_MMR2);
dump_memory_contents(cnsl, b, ADDR_MMR3);
}
}
const char *trap_action_to_str(const trap_action_t ta)
{
if (ta == T_PROCEED)
return "proceed";
if (ta == T_ABORT_4)
return "abort (trap 4)";
if (ta == T_TRAP_250)
return "trap 250";
return "?";
}
void mmu_resolve(console *const cnsl, bus *const b, const uint16_t va)
{
int run_mode = b->getCpu()->getPSW_runmode();
cnsl->put_string_lf(format("Run mode: %d, use data space: %d", run_mode, b->getMMU()->get_use_data_space(run_mode)));
auto data = b->calculate_physical_address(run_mode, va);
uint16_t page_offset = va & 8191;
cnsl->put_string_lf(format("Active page field: %d, page offset: %o (%d)", data.apf, page_offset, page_offset));
cnsl->put_string_lf(format("Phys. addr. instruction: %08o (psw: %d)", data.physical_instruction, data.physical_instruction_is_psw));
cnsl->put_string_lf(format("Phys. addr. data: %08o (psw: %d)", data.physical_data, data.physical_data_is_psw));
uint16_t mmr3 = b->getMMU()->getMMR3();
if (run_mode == 0) {
dump_par_pdr(cnsl, b, ADDR_PDR_K_START, ADDR_PAR_K_START, "kernel i-space", 0, data.apf);
dump_par_pdr(cnsl, b, ADDR_PDR_K_START + 020, ADDR_PAR_K_START + 020, "kernel d-space", 1 + (!!(mmr3 & 4)), data.apf);
}
else if (run_mode == 1) {
dump_par_pdr(cnsl, b, ADDR_PDR_SV_START, ADDR_PAR_SV_START, "supervisor i-space", 0, data.apf);
dump_par_pdr(cnsl, b, ADDR_PDR_SV_START + 020, ADDR_PAR_SV_START + 020, "supervisor d-space", 1 + (!!(mmr3 & 4)), data.apf);
}
else if (run_mode == 3) {
dump_par_pdr(cnsl, b, ADDR_PDR_U_START, ADDR_PAR_U_START, "user i-space", 0, data.apf);
dump_par_pdr(cnsl, b, ADDR_PDR_U_START + 020, ADDR_PAR_U_START + 020, "user d-space", 1 + (!!(mmr3 & 4)), data.apf);
}
for(int i=0; i<2; i++) {
auto ta_i = b->get_trap_action(run_mode, false, data.apf, i);
auto ta_d = b->get_trap_action(run_mode, true, data.apf, i);
cnsl->put_string_lf(format("Instruction action: %s (%s)", trap_action_to_str(ta_i.first), i ? "write" : "read"));
cnsl->put_string_lf(format("Data action : %s (%s)", trap_action_to_str(ta_d.first), i ? "write" : "read"));
}
}
void reg_dump(console *const cnsl, cpu *const c)
{
for(uint8_t set=0; set<2; set++) {
cnsl->put_string_lf(format("Set %d, R0: %06o, R1: %06o, R2: %06o, R3: %06o, R4: %06o, R5: %06o",
set,
c->lowlevel_register_get(set, 0),
c->lowlevel_register_get(set, 1),
c->lowlevel_register_get(set, 2),
c->lowlevel_register_get(set, 3),
c->lowlevel_register_get(set, 4),
c->lowlevel_register_get(set, 5)));
}
cnsl->put_string_lf(format("PSW: %06o, PC: %06o, run mode: %d", c->getPSW(), c->lowlevel_register_get(0, 7), c->getPSW_runmode()));
cnsl->put_string_lf(format("STACK: k:%06o, sv:%06o, -:%06o, usr: %06o",
c->lowlevel_register_sp_get(0),
c->lowlevel_register_sp_get(1),
c->lowlevel_register_sp_get(2),
c->lowlevel_register_sp_get(3)));
}
void show_run_statistics(console *const cnsl, cpu *const c)
{
auto stats = c->get_mips_rel_speed({ }, { });
cnsl->put_string_lf(format("Executed %zu instructions in %.2f ms of which %.2f ms idle", size_t(std::get<2>(stats)), std::get<3>(stats) / 1000., std::get<4>(stats) / 1000.));
cnsl->put_string_lf(format("MIPS: %.2f, relative speed: %.2f%%", std::get<0>(stats), std::get<1>(stats)));
}
void show_queued_interrupts(console *const cnsl, cpu *const c)
{
cnsl->put_string_lf(format("Current level: %d", c->getPSW_spl()));
auto delay = c->get_interrupt_delay_left();
if (delay.has_value())
cnsl->put_string_lf(format("Current delay left: %d", delay.value()));
else
cnsl->put_string_lf("No delay");
cnsl->put_string_lf(format("Interrupt pending flag: %d", c->check_if_interrupts_pending()));
auto queued_interrupts = c->get_queued_interrupts();
for(auto & level: queued_interrupts) {
for(auto & qi: level.second)
cnsl->put_string_lf(format("Level: %d, interrupt: %03o", level.first, qi));
}
}
void debugger(console *const cnsl, bus *const b, std::atomic_uint32_t *const stop_event, const bool tracing_in)
{
int32_t trace_start_addr = -1;
bool tracing = tracing_in;
int n_single_step = 1;
bool turbo = false;
std::optional<int> t_rl; // trace runlevel
cpu *const c = b->getCpu();
b->set_debug_mode();
bool single_step = false;
while(*stop_event != EVENT_TERMINATE) {
try {
std::string cmd = cnsl->read_line(format("%d", stop_event->load()));
auto parts = split(cmd, " ");
auto kv = split(parts, "=");
if (parts.empty())
continue;
if (cmd == "go") {
single_step = false;
*stop_event = EVENT_NONE;
}
else if (parts[0] == "single" || parts[0] == "s") {
single_step = true;
if (parts.size() == 2)
n_single_step = atoi(parts[1].c_str());
else
n_single_step = 1;
*stop_event = EVENT_NONE;
}
else if ((parts[0] == "sbp" || parts[0] == "cbp") && parts.size() >= 2){
if (parts[0] == "sbp") {
std::size_t space = cmd.find(" ");
std::pair<breakpoint *, std::optional<std::string> > rc = parse_breakpoint(b, cmd.substr(space + 1));
if (rc.first == nullptr) {
if (rc.second.has_value())
cnsl->put_string_lf(rc.second.value());
else
cnsl->put_string_lf("not set");
}
else {
int id = c->set_breakpoint(rc.first);
cnsl->put_string_lf(format("Breakpoint has id: %d", id));
}
}
else {
if (c->remove_breakpoint(std::stoi(parts[1])))
cnsl->put_string_lf("Breakpoint cleared");
else
cnsl->put_string_lf("Breakpoint not found");
}
continue;
}
else if (cmd == "lbp") {
auto bps = c->list_breakpoints();
cnsl->put_string_lf("Breakpoints:");
for(auto a : bps)
cnsl->put_string_lf(format("%d: %s", a.first, a.second->emit().c_str()));
if (bps.empty())
cnsl->put_string_lf("(none)");
continue;
}
else if (parts[0] == "disassemble" || parts[0] == "d") {
uint16_t pc = kv.find("pc") != kv.end() ? std::stoi(kv.find("pc")->second, nullptr, 8) : c->getPC();
int n = kv.find("n") != kv.end() ? std::stoi(kv.find("n") ->second, nullptr, 10) : 1;
cnsl->put_string_lf(format("Disassemble %d instructions starting at %o", n, pc));
bool show_registers = kv.find("pc") == kv.end();
for(int i=0; i<n; i++) {
pc += disassemble(c, cnsl, pc, !show_registers);
show_registers = false;
}
continue;
}
else if (parts[0] == "setpc") {
if (parts.size() == 2) {
uint16_t new_pc = std::stoi(parts.at(1), nullptr, 8);
c->setPC(new_pc);
cnsl->put_string_lf(format("Set PC to %06o", new_pc));
}
else {
cnsl->put_string_lf("setpc requires an (octal address as) parameter");
}
continue;
}
else if (parts[0] == "toggle") {
auto s_it = kv.find("s");
auto t_it = kv.find("t");
if (s_it == kv.end() || t_it == kv.end())
cnsl->put_string_lf(format("toggle: parameter missing? current switches states: 0o%06o", c->getBus()->get_console_switches()));
else {
int s = std::stoi(s_it->second, nullptr, 8);
int t = std::stoi(t_it->second, nullptr, 8);
c->getBus()->set_console_switch(s, t);
cnsl->put_string_lf(format("Set switch %d to %d", s, t));
}
continue;
}
else if (parts[0] == "setmem") {
auto a_it = kv.find("a");
auto v_it = kv.find("v");
if (a_it == kv.end() || v_it == kv.end())
cnsl->put_string_lf("setmem: parameter missing?");
else {
uint16_t a = std::stoi(a_it->second, nullptr, 8);
uint8_t v = std::stoi(v_it->second, nullptr, 8);
c->getBus()->writeByte(a, v);
cnsl->put_string_lf(format("Set %06o to %03o", a, v));
}
continue;
}
else if (parts[0] == "trace" || parts[0] == "t") {
tracing = !tracing;
cnsl->put_string_lf(format("Tracing set to %s", tracing ? "ON" : "OFF"));
continue;
}
else if (parts[0] == "mmudump") {
mmu_dump(cnsl, b, parts.size() == 2 && parts[1] == "-v");
continue;
}
else if (parts[0] == "mmures") {
if (parts.size() == 2)
mmu_resolve(cnsl, b, std::stoi(parts[1], nullptr, 8));
else
cnsl->put_string_lf("Parameter missing");
continue;
}
else if (parts[0] == "regdump") {
reg_dump(cnsl, c);
continue;
}
else if (parts[0] == "strace") {
if (parts.size() != 2) {
trace_start_addr = -1;
cnsl->put_string_lf("Tracing start address reset");
}
else {
trace_start_addr = std::stoi(parts[1], nullptr, 8);
cnsl->put_string_lf(format("Tracing start address set to %06o", trace_start_addr));
}
continue;
}
else if (parts[0] == "examine" || parts[0] == "e") {
if (parts.size() < 3)
cnsl->put_string_lf("parameter missing");
else {
uint32_t addr = std::stoi(parts[1], nullptr, 8);
int n = parts.size() == 4 ? atoi(parts[3].c_str()) : 1;
if (parts[2] != "p" && parts[2] != "v") {
cnsl->put_string_lf("expected p (physical address) or v (virtual address)");
continue;
}
std::string out;
for(int i=0; i<n; i++) {
uint32_t cur_addr = addr + i * 2;
int val = parts[2] == "v" ? b->read(cur_addr, wm_word, rm_cur, true) : b->readPhysical(cur_addr);
if (val == -1) {
cnsl->put_string_lf(format("Can't read from %06o\n", cur_addr));
break;
}
if (n == 1)
cnsl->put_string_lf(format("value at %06o, octal: %o, hex: %x, dec: %d\n", cur_addr, val, val, val));
if (n > 1) {
if (i > 0)
out += " ";
out += format("%06o=%06o", cur_addr, val);
}
}
if (n > 1)
cnsl->put_string_lf(out);
}
continue;
}
else if (cmd == "reset" || cmd == "r") {
*stop_event = EVENT_NONE;
b->reset();
continue;
}
else if (cmd == "cfgdisk") {
configure_disk(b, cnsl);
continue;
}
#if defined(ESP32)
else if (cmd == "cfgnet") {
configure_network(cnsl);
continue;
}
else if (cmd == "chknet") {
check_network(cnsl);
continue;
}
else if (cmd == "startnet") {
start_network(cnsl);
continue;
}
else if (parts.at(0) == "serspd") {
if (parts.size() == 2) {
uint32_t speed = std::stoi(parts.at(1), nullptr, 10);
set_tty_serial_speed(cnsl, speed);
cnsl->put_string_lf(format("Set baudrate to %d", speed));
}
else {
cnsl->put_string_lf("serspd requires an (decimal) parameter");
}
continue;
}
else if (cmd == "init") {
recall_configuration(cnsl);
continue;
}
#endif
else if (cmd == "stats") {
show_run_statistics(cnsl, c);
continue;
}
else if (parts[0] == "ramsize") {
if (parts.size() == 2)
b->set_memory_size(std::stoi(parts.at(1)));
else {
int n_pages = b->get_memory_size();
cnsl->put_string_lf(format("Memory size: %u pages or %u kB (decimal)", n_pages, n_pages * 8192 / 1024));
}
continue;
}
else if (parts[0] == "bl" && parts.size() == 2) {
setBootLoader(b, parts.at(1) == "rk05" ? BL_RK05 : BL_RL02);
cnsl->put_string_lf("Bootloader set");
continue;
}
else if (parts[0] == "trl") {
if (parts.size() == 1)
t_rl.reset();
else
t_rl = std::stoi(parts.at(1));
continue;
}
else if (cmd == "cls") {
const char cls[] = { 27, '[', '2', 'J', 12, 0 };
cnsl->put_string_lf(cls);
continue;
}
else if (cmd == "turbo") {
turbo = !turbo;
if (turbo)
c->set_debug(false);
cnsl->put_string_lf(format("Turbo set to %s", turbo ? "ON" : "OFF"));
continue;
}
else if (cmd == "debug") {
bool new_mode = !c->get_debug();
c->set_debug(new_mode);
cnsl->put_string_lf(format("Debug mode set to %s", new_mode ? "ON" : "OFF"));
continue;
}
else if (parts[0] == "setll" && parts.size() == 2) {
auto ll_parts = split(parts[1], ",");
if (ll_parts.size() != 2)
cnsl->put_string_lf("Loglevel for either screen or file missing");
else {
log_level_t ll_screen = parse_ll(ll_parts[0]);
log_level_t ll_file = parse_ll(ll_parts[1]);
setll(ll_screen, ll_file);
}
}
else if (parts[0] == "setll" && parts.size() == 2) {
auto ll_parts = split(parts[1], ",");
if (ll_parts.size() != 2)
cnsl->put_string_lf("Loglevel for either screen or file missing");
else {
log_level_t ll_screen = parse_ll(ll_parts[0]);
log_level_t ll_file = parse_ll(ll_parts[1]);
setll(ll_screen, ll_file);
}
continue;
}
else if (parts[0] == "setsl" && parts.size() == 3) {
setloghost(parts.at(1).c_str(), parse_ll(parts[2]));
continue;
}
else if (cmd == "qi") {
show_queued_interrupts(cnsl, c);
continue;
}
else if (cmd == "bt") {
if (c->get_debug() == false)
cnsl->put_string_lf("Debug mode is disabled!");
auto backtrace = c->get_stack_trace();
for(auto & element: backtrace)
cnsl->put_string_lf(format("%06o %s", element.first, element.second.c_str()));
continue;
}
else if (cmd == "quit" || cmd == "q") {
#if defined(ESP32)
ESP.restart();
#endif
break;
}
else if (cmd == "help" || cmd == "h" || cmd == "?") {
constexpr const char *const help[] = {
"disassemble/d - show current instruction (pc=/n=)",
"go - run until trap or ^e",
#if !defined(ESP32)
"quit/q - stop emulator",
#endif
"examine/e - show memory address (<octal address> <p|v> [<n>])",
"reset/r - reset cpu/bus/etc",
"single/s - run 1 instruction (implicit 'disassemble' command)",
"sbp/cbp/lbp - set/clear/list breakpoint(s)",
" e.g.: (pc=0123 and memwv[04000]=0200,0300 and (r4=07,05 or r5=0456))",
" values seperated by ',', char after mem is w/b (word/byte), then",
" follows v/p (virtual/physical), all octal values, mmr0-3 and psw are",
" registers",
"trace/t - toggle tracing",
"setll - set loglevel: terminal,file",
"setsl - set syslog target: requires a hostname and a loglevel",
"turbo - toggle turbo mode (cannot be interrupted)",
"debug - enable CPU debug mode",
"bt - show backtrace - need to enable debug first",
"strace - start tracing from address - invoke without address to disable",
"trl - set trace run-level, empty for all",
"regdump - dump register contents",
"mmudump - dump MMU settings (PARs/PDRs)",
"mmures - resolve a virtual address",
"qi - show queued interrupts",
"setpc - set PC to value",
"setmem - set memory (a=) to value (v=), both in octal, one byte",
"toggle - set switch (s=, 0...15 (decimal)) of the front panel to state (t=, 0 or 1)",
"cls - clear screen",
"stats - show run statistics",
"ramsize - set ram size (page count (8 kB))",
"bl - set bootload (rl02 or rk05)",
#if defined(ESP32)
"cfgnet - configure network (e.g. WiFi)",
"startnet - start network",
"chknet - check network status",
"serspd - set serial speed in bps (8N1 are default)",
"init - reload (disk-)configuration from flash",
#endif
"cfgdisk - configure disk",
nullptr
};
size_t i=0;
while(help[i])
cnsl->put_string_lf(help[i++]);
continue;
}
else {
cnsl->put_string_lf("?");
continue;
}
c->emulation_start();
*cnsl->get_running_flag() = true;
bool reset_cpu = true;
if (turbo) {
while(*stop_event == EVENT_NONE)
c->step();
}
else {
reset_cpu = false;
while(*stop_event == EVENT_NONE) {
if (!single_step)
DOLOG(debug, false, "---");
if (trace_start_addr != -1 && c->getPC() == trace_start_addr)
tracing = true;
if ((tracing || single_step) && (t_rl.has_value() == false || t_rl.value() == c->getPSW_runmode()))
disassemble(c, single_step ? cnsl : nullptr, c->getPC(), false);
auto bp_result = c->check_breakpoint();
if (bp_result.has_value() && !single_step) {
cnsl->put_string_lf("Breakpoint: " + bp_result.value());
break;
}
c->step();
if (single_step && --n_single_step == 0)
break;
}
}
*cnsl->get_running_flag() = false;
if (reset_cpu)
c->reset();
}
catch(const std::exception & e) {
cnsl->put_string_lf(format("Exception caught: %s", e.what()));
}
catch(const int ei) {
cnsl->put_string_lf(format("Problem: %d", ei));
}
catch(...) {
cnsl->put_string_lf("Unspecified exception caught");
}
}
}
void run_bic(console *const cnsl, bus *const b, std::atomic_uint32_t *const stop_event, const bool tracing, const uint16_t start_addr)
{
cpu *const c = b->getCpu();
c->setRegister(7, start_addr);
*cnsl->get_running_flag() = true;
while(*stop_event == EVENT_NONE) {
if (tracing)
disassemble(c, nullptr, c->getPC(), false);
c->step();
}
*cnsl->get_running_flag() = false;
}