KEK/bus.cpp
2024-06-12 22:59:56 +02:00

885 lines
22 KiB
C++

// (C) 2018-2024 by Folkert van Heusden
// Released under MIT license
#include "gen.h"
#include <ArduinoJson.h>
#include <assert.h>
#include <stdio.h>
#include <string.h>
#include "bus.h"
#include "cpu.h"
#include "dc11.h"
#include "kw11-l.h"
#include "log.h"
#include "memory.h"
#include "mmu.h"
#include "tm-11.h"
#include "tty.h"
#include "utils.h"
#if defined(ESP32)
#include <esp_debug_helpers.h>
#endif
bus::bus()
{
mmu_ = new mmu();
kw11_l_ = new kw11_l(this);
reset();
}
bus::~bus()
{
delete kw11_l_;
delete c;
delete tm11;
delete rk05_;
delete rl02_;
delete tty_;
delete mmu_;
delete m;
delete dc11_;
delete rp06_;
}
JsonDocument bus::serialize() const
{
JsonDocument j_out;
if (m)
j_out["memory"] = m->serialize();
if (kw11_l_)
j_out["kw11-l"] = kw11_l_->serialize();
if (tty_)
j_out["tty"] = tty_->serialize();
if (mmu_)
j_out["mmu"] = mmu_->serialize();
if (c)
j_out["cpu"] = c->serialize();
if (rl02_)
j_out["rl02"] = rl02_->serialize();
if (rk05_)
j_out["rk05"] = rk05_->serialize();
if (dc11_)
j_out["dc11"] = dc11_->serialize();
if (rp06_)
j_out["rp06"] = rp06_->serialize();
// TODO: tm11
return j_out;
}
bus *bus::deserialize(const JsonDocument j, console *const cnsl, std::atomic_uint32_t *const event)
{
bus *b = new bus();
memory *m = nullptr;
if (j.containsKey("memory")) {
m = memory::deserialize(j["memory"]);
b->add_ram(m);
}
if (j.containsKey("tty"))
b->add_tty(tty::deserialize(j["tty"], b, cnsl));
if (j.containsKey("mmu"))
b->add_mmu(mmu::deserialize(j["mmu"], m));
if (j.containsKey("cpu"))
b->add_cpu(cpu::deserialize(j["cpu"], b, event));
if (j.containsKey("rl02"))
b->add_rl02(rl02::deserialize(j["rl02"], b));
if (j.containsKey("rk05"))
b->add_rk05(rk05::deserialize(j["rk05"], b));
if (j.containsKey("kw11-l"))
b->add_KW11_L(kw11_l::deserialize(j["kw11-l"], b, cnsl));
if (j.containsKey("dc11"))
b->add_DC11(dc11::deserialize(j["dc11"], b));
if (j.containsKey("rp06"))
b->add_RP06(rp06::deserialize(j["rp06"], b));
// TODO: tm11
return b;
}
void bus::show_state(console *const cnsl) const
{
cnsl->put_string_lf(format("Microprogram break register: %06o", microprogram_break_register));
cnsl->put_string_lf(format("Console switches: %06o", console_switches));
cnsl->put_string_lf(format("Console LEDs: %06o", console_leds));
}
void bus::set_memory_size(const int n_pages)
{
uint32_t n_bytes = n_pages * 8192l;
delete m;
m = new memory(n_bytes);
mmu_->begin(m);
TRACE("Memory is now %u kB in size", n_bytes / 1024);
}
void bus::reset()
{
if (m)
m->reset();
if (mmu_)
mmu_->reset();
if (c)
c->reset();
if (tm11)
tm11->reset();
if (rk05_)
rk05_->reset();
if (rl02_)
rl02_->reset();
if (tty_)
tty_->reset();
if (kw11_l_)
kw11_l_->reset();
if (dc11_)
dc11_->reset();
if (rp06_)
rp06_->reset();
}
void bus::add_RP06(rp06 *const rp06_)
{
delete this->rp06_;
this->rp06_ = rp06_;
}
void bus::add_KW11_L(kw11_l *const kw11_l_)
{
delete this->kw11_l_;
this->kw11_l_ = kw11_l_;
}
void bus::add_ram(memory *const m)
{
delete this->m;
this->m = m;
mmu_->begin(m);
}
void bus::add_mmu(mmu *const mmu_)
{
delete this->mmu_;
this->mmu_ = mmu_;
}
void bus::add_cpu(cpu *const c)
{
delete this->c;
this->c = c;
}
void bus::add_tm11(tm_11 *const tm11)
{
delete this->tm11;
this->tm11= tm11;
}
void bus::add_rk05(rk05 *const rk05_)
{
delete this->rk05_;
this->rk05_ = rk05_;
}
void bus::add_rl02(rl02 *const rl02_)
{
delete this->rl02_;
this->rl02_ = rl02_;
}
void bus::add_tty(tty *const tty_)
{
delete this->tty_;
this->tty_ = tty_;
}
void bus::add_DC11(dc11 *const dc11_)
{
delete this->dc11_;
this->dc11_ = dc11_;
}
void bus::del_DC11()
{
delete dc11_;
dc11_ = nullptr;
}
void bus::init()
{
mmu_->setMMR0(0);
mmu_->setMMR3(0);
}
uint16_t bus::read(const uint16_t addr_in, const word_mode_t word_mode, const rm_selection_t mode_selection, const bool peek_only, const d_i_space_t space)
{
int run_mode = mode_selection == rm_cur ? c->getPSW_runmode() : c->getPSW_prev_runmode();
uint32_t m_offset = mmu_->calculate_physical_address(c, run_mode, addr_in, !peek_only, false, space);
uint32_t io_base = mmu_->get_io_base();
bool is_io = m_offset >= io_base;
if (is_io) {
uint16_t a = m_offset - io_base + 0160000; // TODO
//// REGISTERS ////
if (a >= ADDR_KERNEL_R && a <= ADDR_KERNEL_R + 5) { // kernel R0-R5
uint16_t temp = c->getRegister(a - ADDR_KERNEL_R) & (word_mode == wm_byte ? 0xff : 0xffff);
if (!peek_only) TRACE("READ-I/O kernel R%d: %06o", a - ADDR_KERNEL_R, temp);
return temp;
}
if (a >= ADDR_USER_R && a <= ADDR_USER_R + 5) { // user R0-R5
uint16_t temp = c->getRegister(a - ADDR_USER_R) & (word_mode == wm_byte ? 0xff : 0xffff);
if (!peek_only) TRACE("READ-I/O user R%d: %06o", a - ADDR_USER_R, temp);
return temp;
}
if (a == ADDR_KERNEL_SP) { // kernel SP
uint16_t temp = c->getStackPointer(0) & (word_mode == wm_byte ? 0xff : 0xffff);
if (!peek_only) TRACE("READ-I/O kernel SP: %06o", temp);
return temp;
}
if (a == ADDR_PC) { // PC
uint16_t temp = c->getPC() & (word_mode == wm_byte ? 0xff : 0xffff);
if (!peek_only) TRACE("READ-I/O PC: %06o", temp);
return temp;
}
if (a == ADDR_SV_SP) { // supervisor SP
uint16_t temp = c->getStackPointer(1) & (word_mode == wm_byte ? 0xff : 0xffff);
if (!peek_only) TRACE("READ-I/O supervisor SP: %06o", temp);
return temp;
}
if (a == ADDR_USER_SP) { // user SP
uint16_t temp = c->getStackPointer(3) & (word_mode == wm_byte ? 0xff : 0xffff);
if (!peek_only) TRACE("READ-I/O user SP: %06o", temp);
return temp;
}
///^ registers ^///
if (!peek_only) {
if ((a & 1) && word_mode == wm_word) [[unlikely]] {
TRACE("READ-I/O odd address %06o UNHANDLED", a);
mmu_->trap_if_odd(addr_in, run_mode, space, false);
throw 0;
return 0;
}
}
if (a == ADDR_CPU_ERR) { // cpu error register
uint16_t temp = mmu_->getCPUERR() & 0xff;
if (!peek_only) TRACE("READ-I/O CPU error: %03o", temp);
return temp;
}
if (a == ADDR_MAINT) { // MAINT
uint16_t temp = 1; // POWER OK
if (!peek_only) TRACE("READ-I/O MAINT: %o", temp);
return temp;
}
if (a == ADDR_CONSW) { // console switch & display register
uint16_t temp = console_switches;
if (!peek_only) TRACE("READ-I/O console switch: %o", temp);
return temp;
}
if (a == ADDR_PIR || a == ADDR_PIR + 1) { // PIR
uint16_t temp = 0;
uint16_t PIR = mmu_->getPIR();
if (word_mode == wm_word)
temp = PIR;
else
temp = a == ADDR_PIR ? PIR & 255 : PIR >> 8;
if (!peek_only) TRACE("READ-I/O PIR: %o", temp);
return temp;
}
if (a == ADDR_SYSTEM_ID) {
uint16_t temp = 011064;
if (!peek_only) TRACE("READ-I/O system id: %o", temp);
return temp;
}
if (a == ADDR_LFC) // line frequency clock and status register
return kw11_l_->read_word(a);
if (a == ADDR_LP11CSR) { // printer, CSR register, LP11
uint16_t temp = 0x80;
if (!peek_only) TRACE("READ-I/O LP11 CSR: %o", temp);
return temp;
}
/// MMU ///
if ((a >= ADDR_PDR_SV_START && a < ADDR_PDR_SV_END) ||
(a >= ADDR_PAR_SV_START && a < ADDR_PAR_SV_END) ||
(a >= ADDR_PDR_K_START && a < ADDR_PDR_K_END) ||
(a >= ADDR_PAR_K_START && a < ADDR_PAR_K_END) ||
(a >= ADDR_PDR_U_START && a < ADDR_PDR_U_END) ||
(a >= ADDR_PAR_U_START && a < ADDR_PAR_U_END)) {
if (word_mode == wm_word)
return mmu_->read_word(a);
return mmu_->read_byte(a);
}
///////////
if (a >= 0177740 && a <= 0177753) { // cache control register and others
if (!peek_only) TRACE("READ-I/O cache control register/others (%06o): %o", a, 0);
// TODO
return 0;
}
if (a >= 0170200 && a <= 0170377) { // unibus map
if (!peek_only) TRACE("READ-I/O unibus map (%06o): %o", a, 0);
// TODO
return 0;
}
if (a >= 0172100 && a <= 0172137) { // MM11-LP parity
if (!peek_only) TRACE("READ-I/O MM11-LP parity (%06o): %o", a, 1);
return 1;
}
if (word_mode == wm_byte) {
if (a == ADDR_PSW) { // PSW
uint8_t temp = c->getPSW();
if (!peek_only) TRACE("READ-I/O PSW LSB: %03o", temp);
return temp;
}
if (a == ADDR_PSW + 1) {
uint8_t temp = c->getPSW() >> 8;
if (!peek_only) TRACE("READ-I/O PSW MSB: %03o", temp);
return temp;
}
if (a == ADDR_STACKLIM) { // stack limit register
uint8_t temp = c->getStackLimitRegister();
if (!peek_only) TRACE("READ-I/O stack limit register (low): %03o", temp);
return temp;
}
if (a == ADDR_STACKLIM + 1) { // stack limit register
uint8_t temp = c->getStackLimitRegister() >> 8;
if (!peek_only) TRACE("READ-I/O stack limit register (high): %03o", temp);
return temp;
}
if (a == ADDR_MICROPROG_BREAK_REG) { // microprogram break register
uint8_t temp = microprogram_break_register;
if (!peek_only) TRACE("READ-I/O microprogram break register (low): %03o", temp);
return temp;
}
if (a == ADDR_MICROPROG_BREAK_REG + 1) { // microprogram break register
uint8_t temp = microprogram_break_register >> 8;
if (!peek_only) TRACE("READ-I/O microprogram break register (high): %03o", temp);
return temp;
}
if (a == ADDR_MMR0) {
uint8_t temp = mmu_->getMMR0();
if (!peek_only) TRACE("READ-I/O MMR0 LO: %03o", temp);
return temp;
}
if (a == ADDR_MMR0 + 1) {
uint8_t temp = mmu_->getMMR0() >> 8;
if (!peek_only) TRACE("READ-I/O MMR0 HI: %03o", temp);
return temp;
}
}
else {
if (a == ADDR_MMR0) {
uint16_t temp = mmu_->getMMR0();
if (!peek_only) TRACE("READ-I/O MMR0: %06o", temp);
return temp;
}
if (a == ADDR_MMR1) { // MMR1
uint16_t temp = mmu_->getMMR1();
if (!peek_only) TRACE("READ-I/O MMR1: %06o", temp);
return temp;
}
if (a == ADDR_MMR2) { // MMR2
uint16_t temp = mmu_->getMMR2();
if (!peek_only) TRACE("READ-I/O MMR2: %06o", temp);
return temp;
}
if (a == ADDR_MMR3) { // MMR3
uint16_t temp = mmu_->getMMR3();
if (!peek_only) TRACE("READ-I/O MMR3: %06o", temp);
return temp;
}
if (a == ADDR_PSW) { // PSW
uint16_t temp = c->getPSW();
if (!peek_only) TRACE("READ-I/O PSW: %06o", temp);
return temp;
}
if (a == ADDR_STACKLIM) { // stack limit register
uint16_t temp = c->getStackLimitRegister();
if (!peek_only) TRACE("READ-I/O stack limit register: %06o", temp);
return temp;
}
if (a == ADDR_CPU_ERR) { // cpu error register
uint16_t temp = mmu_->getCPUERR();
if (!peek_only) TRACE("READ-I/O CPUERR: %06o", temp);
return temp;
}
if (a == ADDR_MICROPROG_BREAK_REG) { // microprogram break register
uint16_t temp = microprogram_break_register;
if (!peek_only) TRACE("READ-I/O microprogram break register: %06o", temp);
return temp;
}
}
if (tm11 && a >= TM_11_BASE && a < TM_11_END && !peek_only)
return word_mode == wm_byte ? tm11->read_byte(a) : tm11->read_word(a);
if (rk05_ && a >= RK05_BASE && a < RK05_END && !peek_only)
return word_mode == wm_byte ? rk05_->read_byte(a) : rk05_->read_word(a);
if (rl02_ && a >= RL02_BASE && a < RL02_END && !peek_only)
return word_mode == wm_byte ? rl02_->read_byte(a) : rl02_->read_word(a);
if (tty_ && a >= PDP11TTY_BASE && a < PDP11TTY_END && !peek_only)
return word_mode == wm_byte ? tty_->read_byte(a) : tty_->read_word(a);
if (dc11_ && a >= DC11_BASE && a < DC11_END && !peek_only)
return word_mode == wm_byte ? dc11_->read_byte(a) : dc11_->read_word(a);
if (rp06_ && a >= RP06_BASE && a < RP06_END && !peek_only)
return word_mode == wm_byte ? rp06_->read_byte(a) : rp06_->read_word(a);
// LO size register field must be all 1s, so subtract 1
uint32_t system_size = m->get_memory_size() / 64 - 1;
if (a == ADDR_SYSSIZE + 2) { // system size HI
uint16_t temp = system_size >> 16;
if (!peek_only) TRACE("READ-I/O accessing system size HI: %06o", temp);
return temp;
}
if (a == ADDR_SYSSIZE) { // system size LO
uint16_t temp = system_size;
if (!peek_only) TRACE("READ-I/O accessing system size LO: %06o", temp);
return temp;
}
if (!peek_only) {
TRACE("READ-I/O UNHANDLED read %08o (%c), (base: %o)", m_offset, word_mode == wm_byte ? 'B' : ' ', mmu_->get_io_base());
c->trap(004); // no such i/o
throw 1;
}
return -1;
}
if (peek_only == false && word_mode == wm_word && (addr_in & 1)) {
TRACE("READ from %06o - odd address!", addr_in);
mmu_->trap_if_odd(addr_in, run_mode, space, false);
throw 2;
return 0;
}
if (m_offset >= m->get_memory_size()) {
if (peek_only) {
TRACE("READ from %06o - out of range!", addr_in);
return 0;
}
c->trap(004); // no such RAM
throw 1;
}
uint16_t temp = 0;
if (word_mode == wm_byte)
temp = m->read_byte(m_offset);
else
temp = m->read_word(m_offset);
if (!peek_only) TRACE("READ from %06o/%07o %c %c: %06o (%s)", addr_in, m_offset, space == d_space ? 'D' : 'I', word_mode == wm_byte ? 'B' : 'W', temp, mode_selection == rm_prev ? "prev" : "cur");
return temp;
}
bool bus::is_psw(const uint16_t addr, const int run_mode, const d_i_space_t space) const
{
auto meta = mmu_->calculate_physical_address(run_mode, addr);
if (space == d_space && meta.physical_data_is_psw)
return true;
if (space == i_space && meta.physical_instruction_is_psw)
return true;
return false;
}
write_rc_t bus::write(const uint16_t addr_in, const word_mode_t word_mode, uint16_t value, const rm_selection_t mode_selection, const d_i_space_t space)
{
int run_mode = mode_selection == rm_cur ? c->getPSW_runmode() : c->getPSW_prev_runmode();
const uint8_t apf = addr_in >> 13; // active page field
bool is_data = space == d_space;
bool d = is_data && mmu_->get_use_data_space(run_mode);
if (mmu_->is_enabled() && (addr_in & 1) == 0 /* TODO remove this? */ && addr_in != ADDR_MMR0)
mmu_->set_page_written_to(run_mode, d, apf);
uint32_t m_offset = mmu_->calculate_physical_address(c, run_mode, addr_in, true, true, space);
uint32_t io_base = mmu_->get_io_base();
bool is_io = m_offset >= io_base;
if (is_io) {
uint16_t a = m_offset - io_base + 0160000; // TODO
if (word_mode == wm_byte) {
if (a == ADDR_PSW || a == ADDR_PSW + 1) { // PSW
TRACE("WRITE-I/O PSW %s: %03o", a & 1 ? "MSB" : "LSB", value);
uint16_t vtemp = c->getPSW();
update_word(&vtemp, a & 1, value);
vtemp &= ~16; // cannot set T bit via this
c->setPSW(vtemp, false);
return { true };
}
if (a == ADDR_STACKLIM || a == ADDR_STACKLIM + 1) { // stack limit register
TRACE("WRITE-I/O stack limit register %s: %03o", a & 1 ? "MSB" : "LSB", value);
uint16_t v = c->getStackLimitRegister();
update_word(&v, a & 1, value);
v |= 0377;
c->setStackLimitRegister(v);
return { false };
}
if (a == ADDR_MICROPROG_BREAK_REG || a == ADDR_MICROPROG_BREAK_REG + 1) { // microprogram break register
TRACE("WRITE-I/O micropram break register %s: %03o", a & 1 ? "MSB" : "LSB", value);
update_word(&microprogram_break_register, a & 1, value);
return { false };
}
if (a == ADDR_MMR0 || a == ADDR_MMR0 + 1) { // MMR0
TRACE("WRITE-I/O MMR0 register %s: %03o", a & 1 ? "MSB" : "LSB", value);
uint16_t temp = mmu_->getMMR0();
update_word(&temp, a & 1, value);
mmu_->setMMR0(temp);
return { false };
}
}
else {
if (a == ADDR_PSW) { // PSW
TRACE("WRITE-I/O PSW: %06o", value);
c->setPSW(value & ~16, false);
return { true };
}
if (a == ADDR_STACKLIM) { // stack limit register
TRACE("WRITE-I/O stack limit register: %06o", value);
c->setStackLimitRegister(value & 0xff00);
return { false };
}
if (a >= ADDR_KERNEL_R && a <= ADDR_KERNEL_R + 5) { // kernel R0-R5
int reg = a - ADDR_KERNEL_R;
TRACE("WRITE-I/O kernel R%d: %06o", reg, value);
c->setRegister(reg, value);
return { false };
}
if (a >= ADDR_USER_R && a <= ADDR_USER_R + 5) { // user R0-R5
int reg = a - ADDR_USER_R;
TRACE("WRITE-I/O user R%d: %06o", reg, value);
c->setRegister(reg, value);
return { false };
}
if (a == ADDR_KERNEL_SP) { // kernel SP
TRACE("WRITE-I/O kernel SP: %06o", value);
c->setStackPointer(0, value);
return { false };
}
if (a == ADDR_PC) { // PC
TRACE("WRITE-I/O PC: %06o", value);
c->setPC(value);
return { false };
}
if (a == ADDR_SV_SP) { // supervisor SP
TRACE("WRITE-I/O supervisor sp: %06o", value);
c->setStackPointer(1, value);
return { false };
}
if (a == ADDR_USER_SP) { // user SP
TRACE("WRITE-I/O user sp: %06o", value);
c->setStackPointer(3, value);
return { false };
}
if (a == ADDR_MICROPROG_BREAK_REG) { // microprogram break register
TRACE("WRITE-I/O microprogram break register: %06o", value);
microprogram_break_register = value & 0xff; // only 8b on 11/70?
return { false };
}
}
if (a == ADDR_CPU_ERR) { // cpu error register
TRACE("WRITE-I/O CPUERR: %06o", value);
mmu_->setCPUERR(0);
return { false };
}
if (a == ADDR_MMR3) { // MMR3
TRACE("WRITE-I/O set MMR3: %06o", value);
mmu_->setMMR3(value);
return { false };
}
if (a == ADDR_MMR0) { // MMR0
TRACE("WRITE-I/O set MMR0: %06o", value);
mmu_->setMMR0(value);
return { false };
}
if (a == ADDR_PIR) { // PIR
TRACE("WRITE-I/O set PIR: %06o", value);
value &= 0177000;
int bits = value >> 9;
while(bits) {
value += 042; // bit 1...3 and 5...7
bits >>= 1;
}
mmu_->setPIR(value);
return { false };
}
if (a == ADDR_LFC) { // line frequency clock and status register
kw11_l_->write_word(a, value);
return { false };
}
if (tm11 && a >= TM_11_BASE && a < TM_11_END) {
TRACE("WRITE-I/O TM11 register %d: %06o", (a - TM_11_BASE) / 2, value);
word_mode == wm_byte ? tm11->write_byte(a, value) : tm11->write_word(a, value);
return { false };
}
if (rk05_ && a >= RK05_BASE && a < RK05_END) {
TRACE("WRITE-I/O RK05 register %d: %06o", (a - RK05_BASE) / 2, value);
word_mode == wm_byte ? rk05_->write_byte(a, value) : rk05_->write_word(a, value);
return { false };
}
if (rl02_ && a >= RL02_BASE && a < RL02_END) {
TRACE("WRITE-I/O RL02 register %d: %06o", (a - RL02_BASE) / 2, value);
word_mode == wm_byte ? rl02_->write_byte(a, value) : rl02_->write_word(a, value);
return { false };
}
if (tty_ && a >= PDP11TTY_BASE && a < PDP11TTY_END) {
TRACE("WRITE-I/O TTY register %d: %06o", (a - PDP11TTY_BASE) / 2, value);
word_mode == wm_byte ? tty_->write_byte(a, value) : tty_->write_word(a, value);
return { false };
}
if (dc11_ && a >= DC11_BASE && a < DC11_END) {
word_mode == wm_byte ? dc11_->write_byte(a, value) : dc11_->write_word(a, value);
return { false };
}
if (rp06_ && a >= RP06_BASE && a < RP06_END) {
word_mode == wm_byte ? rp06_->write_byte(a, value) : rp06_->write_word(a, value);
return { false };
}
if (a >= 0172100 && a <= 0172137) { // MM11-LP parity
TRACE("WRITE-I/O MM11-LP parity (%06o): %o", a, value);
return { false };
}
/// MMU ///
// supervisor
if ((a >= ADDR_PDR_SV_START && a < ADDR_PDR_SV_END) ||
(a >= ADDR_PAR_SV_START && a < ADDR_PAR_SV_END) ||
(a >= ADDR_PDR_K_START && a < ADDR_PDR_K_END) ||
(a >= ADDR_PAR_K_START && a < ADDR_PAR_K_END) ||
(a >= ADDR_PDR_U_START && a < ADDR_PDR_U_END) ||
(a >= ADDR_PAR_U_START && a < ADDR_PAR_U_END)) {
if (word_mode == wm_word)
mmu_->write_word(a, value);
else
mmu_->write_byte(a, value);
return { false };
}
if (a >= 0177740 && a <= 0177753) { // cache control register and others
// TODO
return { false };
}
if (a >= 0170200 && a <= 0170377) { // unibus map
TRACE("writing %06o to unibus map (%06o)", value, a);
// TODO
return { false };
}
if (a == ADDR_CONSW) { // switch register
console_leds = value;
return { false };
}
if (a == ADDR_SYSSIZE || a == ADDR_SYSSIZE + 2) // system size (is read-only)
return { false };
if (a == ADDR_SYSTEM_ID) // is r/o
return { false };
///////////
TRACE("WRITE-I/O UNHANDLED %08o(%c): %06o (base: %o)", m_offset, word_mode == wm_byte ? 'B' : 'W', value, mmu_->get_io_base());
if (word_mode == wm_word && (a & 1)) [[unlikely]] {
TRACE("WRITE-I/O to %08o (value: %06o) - odd address!", m_offset, value);
mmu_->trap_if_odd(a, run_mode, space, true);
throw 8;
}
c->trap(004); // no such i/o
throw 9;
}
if (word_mode == wm_word && (addr_in & 1)) [[unlikely]] {
TRACE("WRITE to %06o (value: %06o) - odd address!", addr_in, value);
mmu_->trap_if_odd(addr_in, run_mode, space, true);
throw 10;
}
TRACE("WRITE to %06o/%07o %c %c: %06o", addr_in, m_offset, space == d_space ? 'D' : 'I', word_mode == wm_byte ? 'B' : 'W', value);
if (m_offset >= m->get_memory_size()) {
c->trap(004); // no such RAM
throw 1;
}
if (word_mode == wm_byte)
m->write_byte(m_offset, value);
else
m->write_word(m_offset, value);
return { false };
}
void bus::writePhysical(const uint32_t a, const uint16_t value)
{
TRACE("physicalWRITE %06o to %o", value, a);
if (a >= m->get_memory_size()) {
TRACE("physicalWRITE to %o: trap 004", a);
c->trap(004);
throw 12;
}
else {
m->write_word(a, value);
}
}
uint16_t bus::readPhysical(const uint32_t a)
{
if (a >= m->get_memory_size()) {
TRACE("physicalREAD from %o: trap 004", a);
c->trap(004);
throw 13;
}
uint16_t value = m->read_word(a);
TRACE("physicalREAD %06o from %o", value, a);
return value;
}
uint16_t bus::read_word(const uint16_t a, const d_i_space_t s)
{
return read(a, wm_word, rm_cur, false, s);
}
uint16_t bus::peekWord(const uint16_t a)
{
return read(a, wm_word, rm_cur, true);
}
void bus::write_word(const uint16_t a, const uint16_t value, const d_i_space_t s)
{
write(a, wm_word, value, rm_cur, s);
}
uint8_t bus::readUnibusByte(const uint32_t a)
{
uint8_t v = m->read_byte(a);
TRACE("readUnibusByte[%08o]=%03o", a, v);
return v;
}
void bus::writeUnibusByte(const uint32_t a, const uint8_t v)
{
TRACE("writeUnibusByte[%08o]=%03o", a, v);
m->write_byte(a, v);
}