KEK/mmu.cpp
Folkert van Heusden 1d2f3a7a3a
micro opt
2025-04-01 07:53:25 +02:00

567 lines
14 KiB
C++

#include <cassert>
#include <cstring>
#include "bus.h" // for (at least) ADDR_PSW
#include "gen.h"
#include "log.h"
#include "mmu.h"
#include "utils.h"
mmu::mmu()
{
reset();
}
mmu::~mmu()
{
}
void mmu::begin(memory *const m, cpu *const c)
{
this->m = m;
this->c = c;
reset();
}
void mmu::reset()
{
memset(pages, 0x00, sizeof pages);
CPUERR = MMR0 = MMR1 = MMR2 = MMR3 = PIR = CSR = 0;
}
void mmu::dump_par_pdr(console *const cnsl, const int run_mode, const bool d, const std::string & name, const int state, const std::optional<int> & selection) const
{
if (state == 0 || state == 2)
cnsl->put_string_lf(name);
else
cnsl->put_string_lf(format("%s DISABLED", name.c_str()));
cnsl->put_string_lf(" PAR PDR LEN");
for(int i=0; i<8; i++) {
if (selection.has_value() && i != selection.value())
continue;
uint16_t par_value = pages[run_mode][d][i].par;
uint16_t pdr_value = pages[run_mode][d][i].pdr;
uint16_t pdr_len = (((pdr_value >> 8) & 127) + 1) * 64;
cnsl->put_string_lf(format("%d] %06o %08o %06o %04o D%d A%d", i, par_value, par_value * 64, pdr_value, pdr_len, !!(pdr_value & 8), pdr_value & 7));
}
}
void mmu::show_state(console *const cnsl) const
{
cnsl->put_string_lf(MMR0 & 1 ? "MMU enabled" : "MMU NOT enabled");
cnsl->put_string_lf(format("MMR0: %06o", MMR0));
cnsl->put_string_lf(format("MMR1: %06o", MMR1));
cnsl->put_string_lf(format("MMR2: %06o", MMR2));
cnsl->put_string_lf(format("MMR3: %06o", MMR3));
dump_par_pdr(cnsl, 1, false, "supervisor i-space", 0, { });
dump_par_pdr(cnsl, 1, true, "supervisor d-space", 1 + (!!(MMR3 & 2)), { });
dump_par_pdr(cnsl, 0, false, "kernel i-space", 0, { });
dump_par_pdr(cnsl, 0, true, "kernel d-space", 1 + (!!(MMR3 & 2)), { });
dump_par_pdr(cnsl, 3, false, "user i-space", 0, { });
dump_par_pdr(cnsl, 3, true, "user d-space", 1 + (!!(MMR3 & 2)), { });
}
uint16_t mmu::read_pdr(const uint32_t a, const int run_mode)
{
int page = (a >> 1) & 7;
bool is_d = a & 16;
uint16_t t = pages[run_mode][is_d][page].pdr;
return t;
}
uint16_t mmu::read_par(const uint32_t a, const int run_mode)
{
int page = (a >> 1) & 7;
bool is_d = a & 16;
uint16_t t = pages[run_mode][is_d][page].par;
return t;
}
void mmu::setMMR0_as_is(uint16_t value)
{
MMR0 = value;
}
void mmu::setMMR0(uint16_t value)
{
value &= ~(3 << 10); // bit 10 & 11 always read as 0
if (value & 1)
value &= ~(7l << 13); // reset error bits
if (MMR0 & 0160000) {
if ((value & 1) == 0)
value &= 254; // bits 7...1 are protected
}
MMR0 = value;
}
void mmu::setMMR0Bit(const int bit)
{
assert(bit != 10 && bit != 11);
assert(bit < 16 && bit >= 0);
MMR0 |= 1 << bit;
}
void mmu::clearMMR0Bit(const int bit)
{
assert(bit != 10 && bit != 11);
assert(bit < 16 && bit >= 0);
MMR0 &= ~(1 << bit);
}
void mmu::setMMR2(const uint16_t value)
{
MMR2 = value;
}
void mmu::setMMR3(const uint16_t value)
{
MMR3 = value;
}
bool mmu::get_use_data_space(const int run_mode) const
{
constexpr const int di_ena_mask[4] = { 4, 2, 0, 1 };
return MMR3 & di_ena_mask[run_mode];
}
void mmu::clearMMR1()
{
MMR1 = 0;
}
void mmu::addToMMR1(const int8_t delta, const uint8_t reg)
{
assert(reg >= 0 && reg <= 7);
assert(delta >= -2 && delta <= 2);
assert((getMMR0() & 0160000) == 0); // MMR1 should not be locked
MMR1 <<= 8;
MMR1 |= (delta & 31) << 3;
MMR1 |= reg;
}
void mmu::write_pdr(const uint32_t a, const int run_mode, const uint16_t value, const word_mode_t word_mode)
{
bool is_d = a & 16;
int page = (a >> 1) & 7;
if (word_mode == wm_byte) {
assert(a != 0 || value < 256);
update_word(&pages[run_mode][is_d][page].pdr, a & 1, value);
}
else {
pages[run_mode][is_d][page].pdr = value;
}
pages[run_mode][is_d][page].pdr &= ~(32768 + 128 /*A*/ + 64 /*W*/ + 32 + 16); // set bit 4, 5 & 15 to 0 as they are unused and A/W are set to 0 by writes
TRACE("mmu WRITE-I/O PDR run-mode %d: %c for %d: %o [%d]", run_mode, is_d ? 'D' : 'I', page, value, word_mode);
}
void mmu::write_par(const uint32_t a, const int run_mode, const uint16_t value, const word_mode_t word_mode)
{
bool is_d = a & 16;
int page = (a >> 1) & 7;
if (word_mode == wm_byte)
update_word(&pages[run_mode][is_d][page].par, a & 1, value);
else
pages[run_mode][is_d][page].par = value;
pages[run_mode][is_d][page].pdr &= ~(128 /*A*/ + 64 /*W*/); // reset PDR A/W when PAR is written to
TRACE("mmu WRITE-I/O PAR run-mode %d: %c for %d: %o (%07o)", run_mode, is_d ? 'D' : 'I', page, word_mode == wm_byte ? value & 0xff : value, pages[run_mode][is_d][page].par * 64);
}
uint16_t mmu::read_word(const uint16_t a)
{
uint16_t v = 0;
if (a >= ADDR_PDR_SV_START && a < ADDR_PDR_SV_END)
v = read_pdr(a, 1);
else if (a >= ADDR_PAR_SV_START && a < ADDR_PAR_SV_END)
v = read_par(a, 1);
else if (a >= ADDR_PDR_K_START && a < ADDR_PDR_K_END)
v = read_pdr(a, 0);
else if (a >= ADDR_PAR_K_START && a < ADDR_PAR_K_END)
v = read_par(a, 0);
else if (a >= ADDR_PDR_U_START && a < ADDR_PDR_U_END)
v = read_pdr(a, 3);
else if (a >= ADDR_PAR_U_START && a < ADDR_PAR_U_END)
v = read_par(a, 3);
return v;
}
uint8_t mmu::read_byte(const uint16_t addr)
{
uint16_t v = read_word(addr);
if (addr & 1)
return v >> 8;
return v;
}
void mmu::write_word(const uint16_t a, const uint16_t value)
{
// supervisor
if (a >= ADDR_PDR_SV_START && a < ADDR_PDR_SV_END)
write_pdr(a, 1, value, wm_word);
else if (a >= ADDR_PAR_SV_START && a < ADDR_PAR_SV_END)
write_par(a, 1, value, wm_word);
// kernel
else if (a >= ADDR_PDR_K_START && a < ADDR_PDR_K_END)
write_pdr(a, 0, value, wm_word);
else if (a >= ADDR_PAR_K_START && a < ADDR_PAR_K_END)
write_par(a, 0, value, wm_word);
// user
else if (a >= ADDR_PDR_U_START && a < ADDR_PDR_U_END)
write_pdr(a, 3, value, wm_word);
else if (a >= ADDR_PAR_U_START && a < ADDR_PAR_U_END)
write_par(a, 3, value, wm_word);
}
void mmu::write_byte(const uint16_t a, const uint8_t value)
{
// supervisor
if (a >= ADDR_PDR_SV_START && a < ADDR_PDR_SV_END)
write_pdr(a, 1, value, wm_byte);
else if (a >= ADDR_PAR_SV_START && a < ADDR_PAR_SV_END)
write_par(a, 1, value, wm_byte);
// kernel
else if (a >= ADDR_PDR_K_START && a < ADDR_PDR_K_END)
write_pdr(a, 0, value, wm_byte);
else if (a >= ADDR_PAR_K_START && a < ADDR_PAR_K_END)
write_par(a, 0, value, wm_byte);
// user
else if (a >= ADDR_PDR_U_START && a < ADDR_PDR_U_END)
write_pdr(a, 3, value, wm_byte);
else if (a >= ADDR_PAR_U_START && a < ADDR_PAR_U_END)
write_par(a, 3, value, wm_byte);
}
void mmu::trap_if_odd(const uint16_t a, const int run_mode, const d_i_space_t space, const bool is_write)
{
int page = a >> 13;
if (is_write)
set_page_trapped(run_mode, space == d_space, page);
MMR0 &= ~(7 << 1);
MMR0 |= page << 1;
}
memory_addresses_t mmu::calculate_physical_address(const int run_mode, const uint16_t a) const
{
const uint8_t apf = a >> 13; // active page field
if (is_enabled() == false) {
bool is_psw = a == ADDR_PSW;
return { a, apf, a, is_psw, a, is_psw };
}
uint32_t physical_instruction = get_physical_memory_offset(run_mode, 0, apf);
uint32_t physical_data = get_physical_memory_offset(run_mode, 1, apf);
uint16_t p_offset = a & 8191; // page offset
physical_instruction += p_offset;
physical_data += p_offset;
if ((getMMR3() & 16) == 0) { // offset is 18bit
physical_instruction &= 0x3ffff;
physical_data &= 0x3ffff;
}
if (get_use_data_space(run_mode) == false)
physical_data = physical_instruction;
uint32_t io_base = get_io_base();
bool physical_instruction_is_psw = (physical_instruction - io_base + 0160000) == ADDR_PSW;
bool physical_data_is_psw = (physical_data - io_base + 0160000) == ADDR_PSW;
return { a, apf, physical_instruction, physical_instruction_is_psw, physical_data, physical_data_is_psw };
}
std::pair<trap_action_t, int> mmu::get_trap_action(const int run_mode, const bool d, const int apf, const bool is_write)
{
const int access_control = get_access_control(run_mode, d, apf);
constexpr const trap_action_t map[8][2] {
{ T_ABORT_4, T_ABORT_4 },
{ T_TRAP_250, T_ABORT_4 },
{ T_PROCEED, T_ABORT_4 },
{ T_ABORT_4, T_ABORT_4 },
{ T_TRAP_250, T_TRAP_250 },
{ T_PROCEED, T_TRAP_250 },
{ T_PROCEED, T_PROCEED },
{ T_ABORT_4, T_ABORT_4 },
};
assert(map[1][false] == T_TRAP_250);
assert(map[1][true ] == T_ABORT_4 );
return { map[access_control][is_write], access_control };
}
void mmu::mmudebug(const uint16_t a)
{
#if !defined(TURBO)
for(int rm=0; rm<4; rm++) {
auto ma = calculate_physical_address(rm, a);
TRACE("RM %d, a: %06o, apf: %d, PI: %08o (PSW: %d), PD: %08o (PSW: %d)", rm, ma.virtual_address, ma.apf, ma.physical_instruction, ma.physical_instruction_is_psw, ma.physical_data, ma.physical_data_is_psw);
}
#endif
}
void mmu::verify_page_access(const uint16_t virt_addr, const int run_mode, const bool d, const int apf, const bool is_write)
{
const auto [ trap_action, access_control ] = get_trap_action(run_mode, d, apf, is_write);
if (trap_action == T_PROCEED) [[likely]]
return;
if (is_write)
set_page_trapped(run_mode, d, apf);
if (is_locked() == false) {
uint16_t temp = getMMR0();
temp &= ~((1l << 15) | (1 << 14) | (1 << 13) | (1 << 12) | (3 << 5) | (7 << 1) | (1 << 4));
if (is_write && access_control != 6)
temp |= 1 << 13; // read-only
//
if (access_control == 0 || access_control == 4)
temp |= 1l << 15; // not resident
else
temp |= 1 << 13; // read-only
temp |= run_mode << 5; // TODO: kernel-mode or user-mode when a trap occurs in user-mode?
temp |= apf << 1; // add current page
temp |= d << 4;
setMMR0_as_is(temp);
TRACE("MMR0: %06o", temp);
}
if (trap_action == T_TRAP_250) {
TRACE("Page access %d (for virtual address %06o): trap 0250", access_control, virt_addr);
c->trap(0250); // trap
throw 5;
}
else { // T_ABORT_4
TRACE("Page access %d (for virtual address %06o): trap 004", access_control, virt_addr);
c->trap(004); // abort
throw 5;
}
}
void mmu::verify_access_valid(const uint32_t m_offset, const int run_mode, const bool d, const int apf, const bool is_io, const bool is_write)
{
if (m_offset >= m->get_memory_size() && !is_io) [[unlikely]] {
TRACE("TRAP(04) (throw 6) on address %08o", m_offset);
if (is_locked() == false) {
uint16_t temp = getMMR0();
temp &= 017777;
temp |= 1l << 15; // non-resident
temp &= ~14; // add current page
temp |= apf << 1;
temp &= ~(3 << 5);
temp |= run_mode << 5;
setMMR0_as_is(temp);
}
if (is_write)
set_page_trapped(run_mode, d, apf);
c->trap(04);
throw 6;
}
}
void mmu::verify_page_length(const uint16_t virt_addr, const int run_mode, const bool d, const int apf, const bool is_write)
{
uint16_t pdr_len = get_pdr_len(run_mode, d, apf);
if (pdr_len == 127)
return;
uint16_t pdr_cmp = (virt_addr >> 6) & 127;
bool direction = get_pdr_direction(run_mode, d, apf);
if (direction == false ? pdr_cmp > pdr_len : pdr_cmp < pdr_len) [[unlikely]] {
TRACE("mmu::calculate_physical_address::p_offset %o versus %o direction %d", pdr_cmp, pdr_len, direction);
TRACE("TRAP(0250) (throw 7) on address %06o", virt_addr);
c->trap(0250); // invalid access
if (is_locked() == false) {
uint16_t temp = getMMR0();
temp &= 017777;
temp |= 1 << 14; // length
temp &= ~14; // add current page
temp |= apf << 1;
temp &= ~(3 << 5);
temp |= run_mode << 5;
temp &= ~(1 << 4);
temp |= d << 4;
setMMR0_as_is(temp);
}
if (is_write)
set_page_trapped(run_mode, d, apf);
throw 7;
}
}
uint32_t mmu::calculate_physical_address(const int run_mode, const uint16_t a, const bool is_write, const d_i_space_t space)
{
uint32_t m_offset = a;
if (is_enabled() || (is_write && (getMMR0() & (1 << 8 /* maintenance check */)))) {
bool d = space == d_space && get_use_data_space(run_mode);
uint16_t p_offset = a & 8191; // page offset
uint8_t apf = a >> 13; // active page field
m_offset = get_physical_memory_offset(run_mode, d, apf);
m_offset += p_offset;
if ((getMMR3() & 16) == 0) // off is 18bit
m_offset &= 0x3ffff;
verify_page_access(a, run_mode, d, apf, is_write);
// e.g. ram or i/o, not unmapped
uint32_t io_base = get_io_base();
bool is_io = m_offset >= io_base;
verify_access_valid(m_offset, run_mode, d, apf, is_io, is_write);
verify_page_length(a, run_mode, d, apf, is_write);
}
return m_offset;
}
JsonDocument mmu::add_par_pdr(const int run_mode, const bool is_d) const
{
JsonDocument j;
JsonDocument ja_par;
JsonArray ja_par_work = ja_par.to<JsonArray>();
for(int i=0; i<8; i++)
ja_par_work.add(pages[run_mode][is_d][i].par);
j["par"] = ja_par;
JsonDocument ja_pdr;
JsonArray ja_pdr_work = ja_pdr.to<JsonArray>();
for(int i=0; i<8; i++)
ja_pdr_work.add(pages[run_mode][is_d][i].pdr);
j["pdr"] = ja_pdr;
return j;
}
JsonDocument mmu::serialize() const
{
JsonDocument j;
for(int run_mode=0; run_mode<4; run_mode++) {
if (run_mode == 2)
continue;
for(int is_d=0; is_d<2; is_d++)
j[format("runmode_%d_d_%d", run_mode, is_d)] = add_par_pdr(run_mode, is_d);
}
j["MMR0"] = MMR0;
j["MMR1"] = MMR1;
j["MMR2"] = MMR2;
j["MMR3"] = MMR3;
j["CPUERR"] = CPUERR;
j["PIR"] = PIR;
j["CSR"] = CSR;
return j;
}
void mmu::set_par_pdr(const JsonVariantConst j_in, const int run_mode, const bool is_d)
{
JsonArrayConst j_par = j_in["par"];
int i_par = 0;
for(auto v: j_par)
pages[run_mode][is_d][i_par++].par = v;
JsonArrayConst j_pdr = j_in["pdr"];
int i_pdr = 0;
for(auto v: j_pdr)
pages[run_mode][is_d][i_pdr++].pdr = v;
}
mmu *mmu::deserialize(const JsonVariantConst j, memory *const mem, cpu *const c)
{
mmu *m = new mmu();
m->begin(mem, c);
for(int run_mode=0; run_mode<4; run_mode++) {
if (run_mode == 2)
continue;
for(int is_d=0; is_d<2; is_d++)
m->set_par_pdr(j[format("runmode_%d_d_%d", run_mode, is_d)].as<JsonVariantConst>(), run_mode, is_d);
}
m->MMR0 = j["MMR0"];
m->MMR1 = j["MMR1"];
m->MMR2 = j["MMR2"];
m->MMR3 = j["MMR3"];
m->CPUERR = j["CPUERR"];
m->PIR = j["PIR"];
m->CSR = j["CSR"];
return m;
}