KEK/bus.cpp
2023-03-18 14:45:44 +01:00

935 lines
24 KiB
C++

// (C) 2018-2022 by Folkert van Heusden
// Released under Apache License v2.0
#include <assert.h>
#include <stdio.h>
#include <string.h>
#include "bus.h"
#include "gen.h"
#include "cpu.h"
#include "log.h"
#include "memory.h"
#include "tm-11.h"
#include "tty.h"
#if defined(ESP32)
// ESP32 goes in a crash-loop when allocating 128kB
// see also https://github.com/espressif/esp-idf/issues/1934
constexpr int n_pages = 12;
#else
constexpr int n_pages = 32;
#endif
constexpr uint16_t di_ena_mask[4] = { 4, 2, 0, 1 };
bus::bus()
{
m = new memory(n_pages * 8192);
memset(pages, 0x00, sizeof pages);
CPUERR = MMR0 = MMR1 = MMR2 = MMR3 = PIR = CSR = 0;
}
bus::~bus()
{
delete c;
delete tm11;
delete rk05_;
delete rl02_;
delete tty_;
delete m;
}
void bus::clearmem()
{
m -> reset();
}
void bus::init()
{
MMR0 = 0;
MMR3 = 0;
}
uint16_t bus::read_pdr(const uint32_t a, const int run_mode, const bool word_mode, const bool peek_only)
{
bool is_11_34 = c->get_34();
int page = (a >> 1) & 7;
bool is_d = is_11_34 ? false : (a & 16);
uint16_t t = pages[run_mode][is_d][page].pdr;
DOLOG(debug, !peek_only, "read run-mode %d: %c PDR for %d: %o", run_mode, is_d ? 'D' : 'I', page, t);
return word_mode ? (a & 1 ? t >> 8 : t & 255) : t;
}
uint16_t bus::read_par(const uint32_t a, const int run_mode, const bool word_mode, const bool peek_only)
{
bool is_11_34 = c->get_34();
int page = (a >> 1) & 7;
bool is_d = is_11_34 ? false : (a & 16);
uint16_t t = pages[run_mode][is_d][page].par;
DOLOG(debug, !peek_only, "read run-mode %d: %c PAR for %d: %o (phys: %07o)", run_mode, is_d ? 'D' : 'I', page, t, t * 64);
return word_mode ? (a & 1 ? t >> 8 : t & 255) : t;
}
uint16_t bus::read(const uint16_t a, const bool word_mode, const bool use_prev, const bool peek_only, const d_i_space_t space)
{
uint16_t temp = 0;
if (a >= 0160000) {
if (word_mode)
DOLOG(debug, false, "READ I/O %06o in byte mode", a);
if (a == ADDR_MAINT) { // MAINT
DOLOG(debug, !peek_only, "read MAINT");
return 1; // POWER OK
}
if (a == ADDR_CONSW) { // console switch & display register
DOLOG(debug, !peek_only, "read console switch (%06o)", console_switches);
return console_switches;
}
if (a == ADDR_KW11P) { // KW11P programmable clock
DOLOG(debug, !peek_only, "read programmable clock");
return 128;
}
if (a == ADDR_PIR) { // PIR
DOLOG(debug, !peek_only, "read PIT");
return PIR;
}
if (a == ADDR_LFC) { // line frequency clock and status register
DOLOG(debug, !peek_only, "read line freq clock");
return lf_csr;
}
if (a == ADDR_LP11CSR) { // printer, CSR register, LP11
DOLOG(debug, !peek_only, "read LP11 CSR");
return 0x80;
}
/// MMU ///
if (a >= ADDR_PDR_SV_START && a < ADDR_PDR_SV_END)
return read_pdr(a, 1, word_mode, peek_only);
else if (a >= ADDR_PAR_SV_START && a < ADDR_PAR_SV_END)
return read_par(a, 1, word_mode, peek_only);
else if (a >= ADDR_PDR_K_START && a < ADDR_PDR_K_END)
return read_pdr(a, 0, word_mode, peek_only);
else if (a >= ADDR_PAR_K_START && a < ADDR_PAR_K_END)
return read_par(a, 0, word_mode, peek_only);
else if (a >= ADDR_PDR_U_START && a < ADDR_PDR_U_END)
return read_pdr(a, 3, word_mode, peek_only);
else if (a >= ADDR_PAR_U_START && a < ADDR_PAR_U_END)
return read_par(a, 3, word_mode, peek_only);
///////////
if (word_mode) {
if (a == ADDR_PSW) { // PSW
DOLOG(debug, !peek_only, "readb PSW LSB");
return c -> getPSW() & 255;
}
if (a == ADDR_PSW + 1) {
DOLOG(debug, !peek_only, "readb PSW MSB");
return c -> getPSW() >> 8;
}
if (a == ADDR_STACKLIM) { // stack limit register
DOLOG(debug, !peek_only, "readb stack limit register");
return c -> getStackLimitRegister() & 0xff;
}
if (a == ADDR_STACKLIM + 1) { // stack limit register
DOLOG(debug, !peek_only, "readb stack limit register");
return c -> getStackLimitRegister() >> 8;
}
if (a >= ADDR_KERNEL_R && a <= ADDR_KERNEL_R + 5) { // kernel R0-R5
DOLOG(debug, !peek_only, "readb kernel R%d", a - ADDR_KERNEL_R);
return c -> getRegister(a - ADDR_KERNEL_R, 0, false) & 0xff;
}
if (a >= ADDR_USER_R && a <= ADDR_USER_R + 5) { // user R0-R5
DOLOG(debug, !peek_only, "readb user R%d", a - ADDR_USER_R);
return c -> getRegister(a - ADDR_USER_R, 3, false) & 0xff;
}
if (a == ADDR_KERNEL_SP) { // kernel SP
DOLOG(debug, !peek_only, "readb kernel sp");
return c -> getStackPointer(0) & 0xff;
}
if (a == ADDR_PC) { // PC
DOLOG(debug, !peek_only, "readb pc");
return c -> getPC() & 0xff;
}
if (a == ADDR_SV_SP) { // supervisor SP
DOLOG(debug, !peek_only, "readb supervisor sp");
return c -> getStackPointer(1) & 0xff;
}
if (a == ADDR_USER_SP) { // user SP
DOLOG(debug, !peek_only, "readb user sp");
return c -> getStackPointer(3) & 0xff;
}
if (a == ADDR_CPU_ERR) { // cpu error register
DOLOG(debug, !peek_only, "readb cpuerr");
return CPUERR & 0xff;
}
}
else {
if (a == ADDR_MMR0) {
DOLOG(debug, !peek_only, "read MMR0");
return MMR0;
}
if (a == ADDR_MMR1) { // MMR1
DOLOG(debug, !peek_only, "read MMR1");
return MMR1;
}
if (a == ADDR_MMR2) { // MMR2
DOLOG(debug, !peek_only, "read MMR2");
return MMR2;
}
if (a == ADDR_MMR3) { // MMR3
DOLOG(debug, !peek_only, "read MMR3");
return MMR3;
}
if (a == ADDR_PSW) { // PSW
DOLOG(debug, !peek_only, "read PSW");
return c -> getPSW();
}
if (a == ADDR_STACKLIM) { // stack limit register
return c -> getStackLimitRegister();
}
if (a >= ADDR_KERNEL_R && a <= ADDR_KERNEL_R + 5) { // kernel R0-R5
DOLOG(debug, !peek_only, "read kernel R%d", a - ADDR_KERNEL_R);
return c -> getRegister(a - ADDR_KERNEL_R, 0, false);
}
if (a >= ADDR_USER_R && a <= ADDR_USER_R + 5) { // user R0-R5
DOLOG(debug, !peek_only, "read user R%d", a - ADDR_USER_R);
return c -> getRegister(a - ADDR_USER_R, 3, false);
}
if (a == ADDR_KERNEL_SP) { // kernel SP
DOLOG(debug, !peek_only, "read kernel sp");
return c -> getStackPointer(0);
}
if (a == ADDR_PC) { // PC
DOLOG(debug, !peek_only, "read pc");
return c -> getPC();
}
if (a == ADDR_SV_SP) { // supervisor SP
DOLOG(debug, !peek_only, "read supervisor sp");
return c -> getStackPointer(1);
}
if (a == ADDR_USER_SP) { // user SP
DOLOG(debug, !peek_only, "read user sp");
return c -> getStackPointer(3);
}
if (a == ADDR_CPU_ERR) { // cpu error register
DOLOG(debug, !peek_only, "read CPUERR");
return CPUERR;
}
}
if (tm11 && a >= TM_11_BASE && a < TM_11_END)
return word_mode ? tm11 -> readByte(a) : tm11 -> readWord(a);
if (rk05_ && a >= RK05_BASE && a < RK05_END)
return word_mode ? rk05_ -> readByte(a) : rk05_ -> readWord(a);
if (rl02_ && a >= RL02_BASE && a < RL02_END)
return word_mode ? rl02_ -> readByte(a) : rl02_ -> readWord(a);
if (tty_ && a >= PDP11TTY_BASE && a < PDP11TTY_END) {
if (peek_only)
return 012345;
return word_mode ? tty_ -> readByte(a) : tty_ -> readWord(a);
}
// LO size register field must be all 1s, so subtract 1
constexpr uint32_t system_size = n_pages * 8192 / 64 - 1;
if (a == ADDR_SYSSIZE + 2) // system size HI
return system_size >> 16;
if (a == ADDR_SYSSIZE) // system size LO
return system_size & 65535;
if (a & 1)
DOLOG(debug, !peek_only, "bus::readWord: odd address UNHANDLED %o", a);
DOLOG(debug, !peek_only, "UNHANDLED read %o(%c)", a, word_mode ? 'B' : ' ');
return -1;
}
int run_mode = (c->getPSW() >> (use_prev ? 12 : 14)) & 3;
uint32_t m_offset = calculate_physical_address(run_mode, a, !peek_only, false, peek_only, space == d_space);
if (word_mode)
temp = m -> readByte(m_offset);
else
temp = m -> readWord(m_offset);
DOLOG(debug, !peek_only, "READ from %06o/%07o: %o", a, m_offset, temp);
return temp;
}
void bus::setMMR0(int value)
{
value &= ~(3 << 10); // bit 10 & 11 always read as 0
if (value & 1)
value &= ~(7 << 13); // reset error bits
if (MMR0 & 0160000) {
if ((value & 1) == 0)
value &= 254; // bits 7...1 are protected
}
// TODO if bit 15/14/13 are set (either of them), then do not modify bit 1...7
MMR0 = value;
}
void bus::setMMR0Bit(const int bit)
{
assert(bit != 10 && bit != 11);
assert(bit < 16 && bit >= 0);
MMR0 |= 1 << bit;
}
void bus::clearMMR0Bit(const int bit)
{
assert(bit != 10 && bit != 11);
assert(bit < 16 && bit >= 0);
MMR0 &= ~(1 << bit);
}
void bus::setMMR2(const uint16_t value)
{
MMR2 = value;
}
memory_addresses_t bus::calculate_physical_address(const int run_mode, const uint16_t a)
{
const uint8_t apf = a >> 13; // active page field
uint32_t physical_instruction = pages[run_mode][0][apf].par * 64;
uint32_t physical_data = pages[run_mode][1][apf].par * 64;
uint16_t p_offset = a & 8191; // page offset
physical_instruction += p_offset;
physical_data += p_offset;
if (MMR0 & 1) { // MMU enabled?
if ((MMR3 & 16) == 0) { // offset is 18bit
physical_instruction &= 0x3ffff;
physical_data &= 0x3ffff;
}
}
return { a, apf, physical_instruction, physical_data };
}
void bus::check_address(const bool trap_on_failure, const bool is_write, const memory_addresses_t & addr, const bool word_mode, const bool is_data, const int run_mode)
{
// check for odd address access
if ((addr.virtual_address & 1) && word_mode == 0) {
if (is_write)
pages[run_mode][is_data][addr.apf].pdr |= 1 << 7;
c->schedule_trap(004); // invalid access
throw 5;
}
if (!trap_on_failure)
return;
// check access to page
if ((MMR0 & (1 << 9)) || c->get_34()) {
const int access_control = pages[run_mode][is_data][addr.apf].pdr & 7;
// write
if (is_write && access_control != 6) {
c->schedule_trap(0250); // invalid address
if (is_write)
pages[run_mode][is_data][addr.apf].pdr |= 1 << 7;
if ((MMR0 & 0160000) == 0) {
MMR0 &= 017777;
MMR0 |= 1 << 13; // read-only
MMR0 &= ~(3 << 5);
MMR0 |= run_mode << 5; // TODO: kernel-mode or user-mode when a trap occurs in user-mode?
MMR0 &= ~14; // add current page
MMR0 |= addr.apf << 1;
}
DOLOG(debug, true, "MMR0: %06o", MMR0);
throw 1;
}
// read
if (!is_write) {
if (access_control == 0 || access_control == 1 || access_control == 3 || access_control == 4 || access_control == 7) {
c->schedule_trap(0250); // invalid address
if (is_write)
pages[run_mode][is_data][addr.apf].pdr |= 1 << 7; // TODO: D/I
if ((MMR0 & 0160000) == 0) {
MMR0 &= 017777;
if (access_control == 0 || access_control == 4)
MMR0 |= 1 << 15; // not resident
else
MMR0 |= 1 << 13; // read-only
MMR0 &= ~(3 << 5);
MMR0 |= run_mode << 5;
MMR0 &= ~14; // add current page
MMR0 |= addr.apf << 1;
}
throw 2;
}
}
}
// beyond physical range?
if ((is_data && addr.physical_data >= n_pages * 8192) || (!is_data && addr.physical_instruction >= n_pages * 8192)) {
if ((MMR0 & 0160000) == 0) {
MMR0 &= 017777;
MMR0 |= 1 << 15; // non-resident
MMR0 &= ~14; // add current page
MMR0 |= addr.apf << 1;
MMR0 &= ~(3 << 5);
MMR0 |= run_mode << 5;
}
if (is_write)
pages[run_mode][is_data][addr.apf].pdr |= 1 << 7; // TODO: D/I
c->schedule_trap(04);
throw 3;
}
// check if invalid access IN a page
uint16_t pdr_len = (pages[run_mode][is_data][addr.apf].pdr >> 8) & 127;
uint16_t pdr_cmp = (addr.virtual_address >> 6) & 127;
bool direction = pages[run_mode][is_data][addr.apf].pdr & 8; // TODO: D/I
if ((pdr_cmp > pdr_len && direction == false) || (pdr_cmp < pdr_len && direction == true)) {
c->schedule_trap(0250); // invalid access
if ((MMR0 & 0160000) == 0) {
MMR0 &= 017777;
MMR0 |= 1 << 14; // length
MMR0 &= ~14; // add current page
MMR0 |= addr.apf << 1;
MMR0 &= ~(3 << 5);
MMR0 |= run_mode << 5;
}
if (is_write)
pages[run_mode][0][addr.apf].pdr |= 1 << 7; // TODO: D/I
throw 4;
}
}
bool bus::get_use_data_space(const int run_mode)
{
return !!(MMR3 & di_ena_mask[run_mode]);
}
uint32_t bus::calculate_physical_address(const int run_mode, const uint16_t a, const bool trap_on_failure, const bool is_write, const bool peek_only, const bool is_data)
{
uint32_t m_offset = a;
if (MMR0 & 1) {
const uint8_t apf = a >> 13; // active page field
bool d = is_data & (!!(MMR3 & di_ena_mask[run_mode])) ? is_data : false;
uint16_t p_offset = a & 8191; // page offset
m_offset = pages[run_mode][d][apf].par * 64; // memory offset TODO: handle 16b int-s
m_offset += p_offset;
if ((MMR3 & 16) == 0) // off is 18bit
m_offset &= 0x3ffff;
if (trap_on_failure) {
if ((MMR0 & (1 << 9)) || c->get_34()) {
const int access_control = pages[run_mode][d][apf].pdr & 7;
if (is_write && access_control != 6) { // write
DOLOG(debug, true, "TRAP(0250) (throw 1) for access_control %d on address %06o", access_control, a);
c->schedule_trap(0250); // invalid address
if (is_write)
pages[run_mode][d][apf].pdr |= 1 << 7;
if ((MMR0 & 0160000) == 0) {
MMR0 &= 017777;
MMR0 |= 1 << 13; // read-only
MMR0 &= ~(3 << 5);
MMR0 |= run_mode << 5; // TODO: kernel-mode or user-mode when a trap occurs in user-mode?
MMR0 &= ~14; // add current page
MMR0 |= apf << 1;
}
DOLOG(debug, true, "MMR0: %06o", MMR0);
throw 1;
}
else if (!is_write) { // read
if (access_control == 0 || access_control == 1 || access_control == 3 || access_control == 4 || access_control == 7) {
DOLOG(debug, true, "TRAP(4) (throw 2) for access_control %d on address %06o", access_control, a);
c->schedule_trap(0250); // invalid address
if (is_write)
pages[run_mode][d][apf].pdr |= 1 << 7;
if ((MMR0 & 0160000) == 0) {
MMR0 &= 017777;
if (access_control == 0 || access_control == 4)
MMR0 |= 1 << 15; // not resident
else
MMR0 |= 1 << 13; // read-only
MMR0 &= ~(3 << 5);
MMR0 |= run_mode << 5;
MMR0 &= ~14; // add current page
MMR0 |= apf << 1;
}
throw 2;
}
}
}
if (m_offset >= n_pages * 8192) {
DOLOG(debug, !peek_only, "bus::calculate_physical_address %o >= %o", m_offset, n_pages * 8192);
DOLOG(debug, true, "TRAP(04) (throw 3) on address %06o", a);
if ((MMR0 & 0160000) == 0) {
MMR0 &= 017777;
MMR0 |= 1 << 15; // non-resident
MMR0 &= ~14; // add current page
MMR0 |= apf << 1;
MMR0 &= ~(3 << 5);
MMR0 |= run_mode << 5;
}
if (is_write)
pages[run_mode][d][apf].pdr |= 1 << 7; // TODO: D/I
c->schedule_trap(04);
throw 3;
}
uint16_t pdr_len = (pages[run_mode][d][apf].pdr >> 8) & 127;
uint16_t pdr_cmp = (a >> 6) & 127;
bool direction = pages[run_mode][d][apf].pdr & 8; // TODO: D/I
// DOLOG(debug, true, "p_offset %06o pdr_len %06o direction %d, run_mode %d, apf %d, pdr: %06o", p_offset, pdr_len, direction, run_mode, apf, pages[run_mode][d][apf].pdr);
if ((pdr_cmp > pdr_len && direction == false) || (pdr_cmp < pdr_len && direction == true)) {
DOLOG(debug, !peek_only, "bus::calculate_physical_address::p_offset %o versus %o direction %d", pdr_cmp, pdr_len, direction);
DOLOG(debug, true, "TRAP(0250) (throw 4) on address %06o", a);
c->schedule_trap(0250); // invalid access
if ((MMR0 & 0160000) == 0) {
MMR0 &= 017777;
MMR0 |= 1 << 14; // length
MMR0 &= ~14; // add current page
MMR0 |= apf << 1;
MMR0 &= ~(3 << 5);
MMR0 |= run_mode << 5;
}
if (is_write)
pages[run_mode][d][apf].pdr |= 1 << 7; // TODO: D/I
throw 4;
}
}
DOLOG(debug, !peek_only, "virtual address %06o maps to physical address %08o (run_mode: %d, apf: %d, par: %08o, poff: %o, AC: %d)", a, m_offset, run_mode, apf, pages[run_mode][d][apf].par * 64, p_offset, pages[run_mode][d][apf].pdr & 7); // TODO: D/I
}
return m_offset;
}
void bus::clearMMR1()
{
MMR1 = 0;
}
void bus::addToMMR1(const int8_t delta, const uint8_t reg)
{
MMR1 <<= 8;
MMR1 |= (delta & 31) << 3;
MMR1 |= reg;
}
void bus::write_pdr(const uint32_t a, const int run_mode, const uint16_t value, const bool word_mode)
{
bool is_11_34 = c->get_34();
bool is_d = is_11_34 ? false : (a & 16);
int page = (a >> 1) & 7;
if (word_mode) {
assert(a != 0 || value < 256);
a & 1 ? (pages[run_mode][is_d][page].pdr &= 0xff, pages[run_mode][is_d][page].pdr |= value << 8) :
(pages[run_mode][is_d][page].pdr &= 0xff00, pages[run_mode][is_d][page].pdr |= value);
}
else {
pages[run_mode][is_d][page].pdr = value;
}
if (is_11_34) // 11/34 has no cache bit
pages[run_mode][is_d][page].pdr &= 077416;
else
pages[run_mode][is_d][page].pdr &= ~(128 + 64 + 32 + 16); // set bit 4 & 5 to 0 as they are unused and A/W are set to 0 by writes
DOLOG(debug, true, "write run-mode %d: %c PDR for %d: %o [%d]", run_mode, is_d ? 'D' : 'I', page, value, word_mode);
}
void bus::write_par(const uint32_t a, const int run_mode, const uint16_t value, const bool word_mode)
{
bool is_11_34 = c->get_34();
bool is_d = is_11_34 ? false : (a & 16);
int page = (a >> 1) & 7;
if (word_mode) {
a & 1 ? (pages[run_mode][is_d][page].par &= 0xff, pages[run_mode][is_d][page].par |= value << 8) :
(pages[run_mode][is_d][page].par &= 0xff00, pages[run_mode][is_d][page].par |= value);
}
else {
pages[run_mode][is_d][page].par = value;
}
if (is_11_34) // 11/34 has 12 bit PARs
pages[run_mode][is_d][page].par &= 4095;
DOLOG(debug, true, "write run-mode %d: %c PAR for %d: %o (%07o)", run_mode, is_d ? 'D' : 'I', page, word_mode ? value & 0xff : value, pages[run_mode][is_d][page].par * 64);
}
void bus::write(const uint16_t a, const bool word_mode, uint16_t value, const bool use_prev, const d_i_space_t space)
{
int run_mode = (c->getPSW() >> (use_prev ? 12 : 14)) & 3;
if ((MMR0 & 1) == 1 && (a & 1) == 0 && a != ADDR_MMR0) {
const uint8_t apf = a >> 13; // active page field
bool is_data = space == d_space;
bool d = is_data & (!!(MMR3 & di_ena_mask[run_mode])) ? is_data : false;
pages[run_mode][d][apf].pdr |= 64; // set 'W' (written to) bit
}
if (a >= 0160000) {
if (word_mode) {
assert(value < 256);
DOLOG(debug, true, "WRITE I/O %06o in byte mode", a);
}
if (word_mode) {
if (a == ADDR_PSW || a == ADDR_PSW + 1) { // PSW
DOLOG(debug, true, "writeb PSW %s", a & 1 ? "MSB" : "LSB");
uint16_t vtemp = c -> getPSW();
if (a & 1)
vtemp = (vtemp & 0x00ff) | (value << 8);
else
vtemp = (vtemp & 0xff00) | value;
vtemp &= ~16; // cannot set T bit via this
c -> setPSW(vtemp, false);
return;
}
if (a == ADDR_STACKLIM || a == ADDR_STACKLIM + 1) { // stack limit register
DOLOG(debug, true, "writeb Set stack limit register: %o", value);
uint16_t v = c -> getStackLimitRegister();
if (a & 1)
v = (v & 0x00ff) | (value << 8);
else
v = (v & 0xff00) | value;
c -> setStackLimitRegister(v);
return;
}
}
else {
if (a == ADDR_PSW) { // PSW
DOLOG(debug, true, "write PSW %o", value);
c -> setPSW(value & ~16, false);
return;
}
if (a == ADDR_STACKLIM) { // stack limit register
DOLOG(debug, true, "write Set stack limit register: %o", value);
c -> setStackLimitRegister(value);
return;
}
if (a >= ADDR_KERNEL_R && a <= ADDR_KERNEL_R + 5) { // kernel R0-R5
DOLOG(debug, true, "write kernel R%d: %o", a - ADDR_KERNEL_R, value);
c -> setRegister(a - ADDR_KERNEL_R, false, false, value);
return;
}
if (a >= ADDR_USER_R && a <= ADDR_USER_R + 5) { // user R0-R5
DOLOG(debug, true, "write user R%d: %o", a - ADDR_USER_R, value);
c -> setRegister(a - ADDR_USER_R, true, false, value);
return;
}
if (a == ADDR_KERNEL_SP) { // kernel SP
DOLOG(debug, true, "write kernel SP: %o", value);
c -> setStackPointer(0, value);
return;
}
if (a == ADDR_PC) { // PC
DOLOG(debug, true, "write PC: %o", value);
c -> setPC(value);
return;
}
if (a == ADDR_SV_SP) { // supervisor SP
DOLOG(debug, true, "write supervisor sp: %o", value);
c -> setStackPointer(1, value);
return;
}
if (a == ADDR_USER_SP) { // user SP
DOLOG(debug, true, "write user sp: %o", value);
c -> setStackPointer(3, value);
return;
}
if (a == ADDR_MICROPROG_BREAK_REG) { // microprogram break register
return;
}
}
if (a == ADDR_CPU_ERR) { // cpu error register
DOLOG(debug, true, "write CPUERR: %o", value);
CPUERR = 0;
return;
}
if (a == ADDR_MMR3) { // MMR3
DOLOG(debug, true, "write set MMR3: %o", value);
MMR3 = value & 067;
return;
}
if (a == ADDR_MMR0) { // MMR0
DOLOG(debug, true, "write set MMR0: %o", value);
setMMR0(value);
return;
}
if (a == ADDR_PIR) { // PIR
DOLOG(debug, true, "write set PIR: %o", value);
PIR = value; // TODO
return;
}
if (a == ADDR_LFC) { // line frequency clock and status register
DOLOG(debug, true, "write set LFC/SR: %o", value);
lf_csr = value;
return;
}
if (tm11 && a >= TM_11_BASE && a < TM_11_END) {
word_mode ? tm11 -> writeByte(a, value) : tm11 -> writeWord(a, value);
return;
}
if (rk05_ && a >= RK05_BASE && a < RK05_END) {
word_mode ? rk05_ -> writeByte(a, value) : rk05_ -> writeWord(a, value);
return;
}
if (rl02_ && a >= RL02_BASE && a < RL02_END) {
word_mode ? rl02_ -> writeByte(a, value) : rl02_ -> writeWord(a, value);
return;
}
if (tty_ && a >= PDP11TTY_BASE && a < PDP11TTY_END) {
word_mode ? tty_ -> writeByte(a, value) : tty_ -> writeWord(a, value);
return;
}
/// MMU ///
// supervisor
if (a >= ADDR_PDR_SV_START && a < ADDR_PDR_SV_END) {
write_pdr(a, 1, value, word_mode);
return;
}
if (a >= ADDR_PAR_SV_START && a < ADDR_PAR_SV_END) {
write_par(a, 1, value, word_mode);
return;
}
// kernel
if (a >= ADDR_PDR_K_START && a < ADDR_PDR_K_END) {
write_pdr(a, 0, value, word_mode);
return;
}
if (a >= ADDR_PAR_K_START && a < ADDR_PAR_K_END) {
write_par(a, 0, value, word_mode);
return;
}
// user
if (a >= ADDR_PDR_U_START && a < ADDR_PDR_U_END) {
write_pdr(a, 3, value, word_mode);
return;
}
if (a >= ADDR_PAR_U_START && a < ADDR_PAR_U_END) {
write_par(a, 3, value, word_mode);
return;
}
////
if (a == ADDR_CCR) { // cache control register
// TODO
return;
}
if (a == ADDR_CONSW) { // switch register
switch_register = value;
return;
}
///////////
DOLOG(debug, true, "UNHANDLED write %o(%c): %o", a, word_mode ? 'B' : 'W', value);
// c -> busError();
return;
}
uint32_t m_offset = calculate_physical_address(run_mode, a, true, true, false, space == d_space);
DOLOG(debug, true, "WRITE to %06o/%07o: %o", a, m_offset, value);
if (word_mode)
m->writeByte(m_offset, value);
else
m->writeWord(m_offset, value);
}
void bus::writePhysical(const uint32_t a, const uint16_t value)
{
DOLOG(debug, true, "physicalWRITE %06o to %o", value, a);
if (a >= n_pages * 8192) {
DOLOG(debug, true, "physicalWRITE to %o: trap 004", a);
c->schedule_trap(004);
}
else {
m->writeWord(a, value);
}
}
uint16_t bus::readPhysical(const uint32_t a)
{
if (a >= n_pages * 8192) {
DOLOG(debug, true, "physicalREAD from %o: trap 004", a);
c->schedule_trap(004);
return 0;
}
else {
uint16_t value = m->readWord(a);
DOLOG(debug, true, "physicalREAD %06o from %o", value, a);
return value;
}
}
uint16_t bus::readWord(const uint16_t a, const d_i_space_t s)
{
return read(a, false, false, false, s);
}
uint16_t bus::peekWord(const uint16_t a)
{
return read(a, false, false, true);
}
void bus::writeWord(const uint16_t a, const uint16_t value)
{
write(a, false, value, false);
}
uint16_t bus::readUnibusByte(const uint16_t a)
{
return m->readByte(a);
}
void bus::writeUnibusByte(const uint16_t a, const uint8_t v)
{
m->writeByte(a, v);
}
void bus::set_lf_crs_b7()
{
lf_csr |= 128;
}
uint8_t bus::get_lf_crs()
{
return lf_csr;
}