more updown tests

This commit is contained in:
Neil Webber 2023-09-15 14:43:12 -04:00
parent cb9cafc3fb
commit e9b71fecd5

View file

@ -62,15 +62,19 @@ class TestMethods(unittest.TestCase):
# Kernel instruction space PDR registers # Kernel instruction space PDR registers
ns.KISD0 = cls.ioaddr(p, p.mmu.APR_KERNEL_OFFS) ns.KISD0 = cls.ioaddr(p, p.mmu.APR_KERNEL_OFFS)
ns.KISD7 = ns.KISD0 + 0o16
# Kernel data space PDR registers # Kernel data space PDR registers
ns.KDSD0 = ns.KISD0 + 0o20 ns.KDSD0 = ns.KISD0 + 0o20
ns.KDSD7 = ns.KDSD0 + 0o16
# Kernel instruction space PAR registers # Kernel instruction space PAR registers
ns.KISA0 = ns.KDSD0 + 0o20 ns.KISA0 = ns.KDSD0 + 0o20
ns.KISA7 = ns.KISA0 + 0o16
# Kernel data space PAR registers # Kernel data space PAR registers
ns.KDSA0 = ns.KISA0 + 0o20 ns.KDSA0 = ns.KISA0 + 0o20
ns.KDSA7 = ns.KDSA0 + 0o16
# User mode similar # User mode similar
ns.UISD0 = cls.ioaddr(p, p.mmu.APR_USER_OFFS) ns.UISD0 = cls.ioaddr(p, p.mmu.APR_USER_OFFS)
@ -660,17 +664,24 @@ class TestMethods(unittest.TestCase):
def test_mmu_updown(self): def test_mmu_updown(self):
# test the page length field support in both up and down directions # test the page length field support in both up and down directions
# XXX whether it was wise to code this test as a magnum opus
# of assembler prowess is well open to debate. On the plus
# side, it certainly exercises a bunch of features besides
# just testing the MMU page length functionality.
cn = self.usefulconstants() cn = self.usefulconstants()
p = self.make_pdp()
# Two tests - up and down. # Two tests - up and down.
# #
# In both tests, KERNEL I space page 0 is mapped to physical 0 # In both tests, KERNEL I space page 0 is mapped to physical 0
# and I/D separation is NOT enabled for KERNEL. # and KERNEL I space page 7 is mapped to the I/O page.
# I/D separation is NOT enabled for KERNEL.
#
# #
# USER I space is mapped to 0o20000. # USER I space is mapped to 0o20000.
# All 64K of USER D space is mapped to 64K of physical memory # All 64K of USER D space is mapped to 64K of physical memory
# ranging from 0o200000 (not a typo) to 0o # from 0o200000 (not a typo) to 0o400000 (not a typo), but with
# from 0o200000 (not a typo) .. 0o400000 (not a typo), but with
# a bizarre segment length scheme according to UP or DOWN phase of # a bizarre segment length scheme according to UP or DOWN phase of
# the test as below. I/D separation is (obviously) enabled for USER. # the test as below. I/D separation is (obviously) enabled for USER.
# All 64K of that memory is filled with sequential words such # All 64K of that memory is filled with sequential words such
@ -693,22 +704,25 @@ class TestMethods(unittest.TestCase):
# same 0, 1, 2 .. progression (of valid "blocks") but they # same 0, 1, 2 .. progression (of valid "blocks") but they
# are at the end of the segments. # are at the end of the segments.
# this programs the MMU as above, according to dirbit (0 = up) # these instructions do initialization common to both up/down cases
# NOTE: the physical memory is filled in elsewhere kernel_addr = 0o4000 # arbitrary start for all this
def mmusetup(dirbit): # "dirbit" as in PDR direction bit
with ASM() as a: with ASM() as a:
a.mov(0o20000, 'sp') # start system stack at 8k a.mov(0o20000, 'sp') # start system stack at 8k
# KERNEL I SPACE # KERNEL I SPACE
# PAR to physical 0 # PAR 0 to physical 0
# PAR 7 to physical 760000 and 22bit not turned on
#
# PDR 77406 = read/write, full length # PDR 77406 = read/write, full length
a.clr(a.ptr(cn.KISA0)) a.clr(a.ptr(cn.KISA0))
a.mov(0o760000 >> 6, a.ptr(cn.KISA7))
a.mov(0o077406, a.ptr(cn.KISD0)) a.mov(0o077406, a.ptr(cn.KISD0))
a.mov(0o077406, a.ptr(cn.KISD7))
# USER I SPACE # USER I SPACE
a.mov(0o20000 >> 6, a.ptr(cn.UISA0)) a.mov(0o20000 >> 6, a.ptr(cn.UISA0))
a.mov(0o077406, a.ptr(cn.UISD0)) a.mov(0o077406, a.ptr(cn.UISD0))
# USER D SPACE ... # USER D SPACE going UP...
a.mov(cn.UDSD0, 'r3') # will walk through D0 .. D7 a.mov(cn.UDSD0, 'r3') # will walk through D0 .. D7
# NOTE: A0 .. A7 is 040(r3) # NOTE: A0 .. A7 is 040(r3)
a.clr('r0') # r0: segno*2 = (0, 2, 4, .., 14) a.clr('r0') # r0: segno*2 = (0, 2, 4, .., 14)
@ -719,59 +733,115 @@ class TestMethods(unittest.TestCase):
a.mov('r4', '040(r3)') # set U PAR; don't bump r3 yet a.mov('r4', '040(r3)') # set U PAR; don't bump r3 yet
a.add(0o200, 'r4') # 0o200 = 8192>>6 a.add(0o200, 'r4') # 0o200 = 8192>>6
a.mov('r0', 'r2') # r2 = segno*2
a.ash(3, 'r2') # r2 = segno*16
a.swab('r2') # really (segno*16)<<8
a.add(0o06, 'r2') # ACF r/w segment
a.mov('r2', '(r3)+') # set U PDR
a.inc('r0') # bump r0 by two
a.inc('r0')
a.cmp('r0', 16) # and loop until done all 8 segments
a.blt('PARloop')
a.bis(1, a.ptr(cn.MMR3)) # enable I/D sep just for USER
a.mov(1, a.ptr(cn.MMR0)) # turn on MMU
a.mov(0o140340, '-(sp)') # push user-ish PSW to K stack
a.clr('-(sp)') # new user PC = 0
a.clr('r0') # user test expects r0 to start zero
# this halt will be right before the first run of user mode test
a.halt()
# the subsequent p.run() picks up here and starts the user code!
a.rtt()
# these instructions are the trap handlers for both
# the MMU abort and the trap 0 "all good". The only difference
# is that only the MMU abort puts 666 into r5.
a.label('TrapMMU')
a.mov(0o666, 'r5')
a.label('Trap0')
a.halt()
# when test code starts again with p.run(), restarts here...
a.clr('(sp)') # just knows the user loop starts at zero
a.rtt() # back for another iteration
# these instructions will be used to switch over
# to the DOWN phase of the test. Similar to the UP but
# don't have to do the PARs (they stay the same) and the
# pln calculations are different.
a.label('DOWN')
a.mov(cn.UDSD0, 'r3')
a.clr('r0')
a.label('PARloopDOWN')
# compute segno * 8 in r2 (r0 starts as segno*2) # compute segno * 8 in r2 (r0 starts as segno*2)
a.mov('r0', 'r2') a.mov('r0', 'r2')
a.ash(3, 'r2') a.ash(3, 'r2')
if dirbit:
# pln = 0o177 - (segno * 16) # pln = 0o177 - (segno * 16)
a.mov(0o177, 'r1') a.mov(0o177, 'r1')
a.sub('r2', 'r1') a.sub('r2', 'r1')
a.mov('r1', 'r2') a.mov('r1', 'r2')
a.swab('r2') a.swab('r2')
a.add(0o10, 'r2') # the downward growing case a.add(0o16, 'r2') # the downward growing case
else:
# pln = segno * 16 ... already in r2
# pln << 8
a.swab('r2')
a.add(0o06, 'r2')
a.mov('r2', '(r3)+') # set U PDR a.mov('r2', '(r3)+') # set U PDR
a.inc('r0') a.inc('r0')
a.inc('r0') a.inc('r0')
a.cmp('r0', 16) a.cmp('r0', 16)
a.blt('PARloop') a.blt('PARloopDOWN')
return a # this halt will be right before the first run of user mode test
a.halt()
for dirbit in (0o00, 0o10): a.clr('r0') # initial loop condition
p = self.make_pdp() a.clr('(sp)') # just knows the user loop starts at zero
# trap handler for MMU faults; puts 0o666 into r5 and halts a.rtt()
trap_h_location = 0o3000
with ASM() as th: # Now for something extra frosty... relocate just segment 4
th.mov(0o666, 'r5') # (arbitrarily chosen) of the user memory to a different
trap0_offs = th.label('Trap0') # physical page and run the test again to ensure it still works.
th.halt() # This will make use of KERNEL A1 and A2 segments to map the
th.clr('(sp)') # just know the loop starts at zero # relocation (note: I space because no sep I/D for kernel here)
th.rtt() a.label('BONUS')
self.loadphysmem(p, th.instructions(), trap_h_location)
# copy UDSA4 into KISA1 - mapping old segment into kernel space
a.mov(a.ptr(cn.UDSA0 + 4*2), a.ptr(cn.KISA0 + 2)) # i.e., A1
# the new location for this data will be physical 0o600000
# (not a typo) which becomes 0o6000 in the PAR
a.mov(0o6000, a.ptr(cn.KISA0 + 4)) # i.e., A2
# the standard PDR access/full-length/etc bits
a.mov(0o077406, a.ptr(cn.KISD0 + 2))
a.mov(0o077406, a.ptr(cn.KISD0 + 4))
# count r0, source address r1, destination r2
a.mov(4096, 'r0')
a.mov(8192, 'r1')
a.mov(8192*2, 'r2')
a.mov('(r1)+', '(r2)+')
a.literal(0o077002) # SOB to the copy
# switch the user page to the new mapping
a.mov(0o6000, a.ptr(cn.UDSA0 + 4*2))
# and the standard initialization/resume dance
a.halt()
a.clr('r0')
a.clr('(sp)') # just knows the user loop starts at zero
a.rtt()
# poke the trap handler vector (250) # poke the trap handler vector (250)
pcps = [trap_h_location, 0] pcps = [kernel_addr + (a.labels['TrapMMU'] * 2), 0]
self.loadphysmem(p, pcps, 0o250) self.loadphysmem(p, pcps, 0o250)
# same for the "trap 0" handler but skip to trap0_offs # same for the "trap 0" handler but skip to trap0_offs
pcps[0] += (trap0_offs*2) pcps = [kernel_addr + (a.labels['Trap0'] * 2), 0]
self.loadphysmem(p, pcps, 0o34) self.loadphysmem(p, pcps, 0o34)
# set the physical memory that will be mapped to user D # all those kernel instructions
# space to this pattern so the test can verify the mapping self.loadphysmem(p, a.instructions(), kernel_addr)
checksum = 0o123456 # arbitrary
user_phys_DSPACEbase = 0o200000
words = (checksum - (user_phys_DSPACEbase + o) & 0o177777
for o in range(0, 65536, 2))
self.loadphysmem(p, words, user_phys_DSPACEbase)
# user mode program: # user mode program:
# read the given address: mov (r0)+,r1 # read the given address: mov (r0)+,r1
@ -792,40 +862,27 @@ class TestMethods(unittest.TestCase):
u.mov(0o42, 'r5') u.mov(0o42, 'r5')
u.trap(0) u.trap(0)
u.halt() # never get here, this is illegal u.halt() # never get here, this is illegal
self.loadphysmem(p, u.instructions(), user_phys_ISPACEaddr) self.loadphysmem(p, u.instructions(), user_phys_ISPACEaddr)
a = mmusetup(dirbit) # set the physical memory that will be mapped to user D
a.bis(1, a.ptr(cn.MMR3)) # enable I/D sep just for USER # space to this pattern so the test can verify the mapping
a.mov(1, a.ptr(cn.MMR0)) # turn on MMU checksum = 0o123456 # arbitrary
a.mov(0o20000, 'sp') # establish kernel stack user_phys_DSPACEbase = 0o200000
a.mov(0o140340, '-(sp)') # push user-ish PSW to K stack words = (checksum - (user_phys_DSPACEbase + o) & 0o177777
a.clr('-(sp)') # new user PC = 0 for o in range(0, 65536, 2))
a.clr('r0') # user test expects r0 to start zero self.loadphysmem(p, words, user_phys_DSPACEbase)
a.halt() # finally ready to run the kernel setup instructions
rtt_offs = a.label('RTT') * 2 p.run(pc=kernel_addr)
a.rtt()
addr = 0o4000
self.loadphysmem(p, a.instructions(), addr)
p.run(pc=addr) # note HALT prior to RTT
def good(dirbit, segno, o):
if dirbit:
minvalidoffset = 8192 - (64 + ((segno * 64) * 16))
return o >= minvalidoffset
else:
maxvalidoffset = 63 + ((segno * 64) * 16)
return o <= maxvalidoffset
# this will be used for both up/down testing, based on goodf
def _test(goodf):
for segno in range(8): for segno in range(8):
for o in range(4096): for o in range(4096):
p.run() # picks up at rtt pc p.run() # picks up at rtt pc
physval = (checksum - physval = (checksum -
((segno * 8192) + (o * 2))) & 0o177777 ((segno * 8192) + (o * 2))) & 0o177777
if good(dirbit, segno, o*2): if goodf(segno, o*2):
r5_expected = 0o42 r5_expected = 0o42
r1_expected = physval r1_expected = physval
else: else:
@ -834,6 +891,17 @@ class TestMethods(unittest.TestCase):
self.assertEqual(p.r[1], r1_expected) self.assertEqual(p.r[1], r1_expected)
self.assertEqual(p.r[5], r5_expected) self.assertEqual(p.r[5], r5_expected)
# run the UP test:
_test(lambda _segno, _o: _o <= (63 + ((_segno * 64) * 16)))
# run the code to convert over to DOWN MMU format, and then the test
p.run(pc=kernel_addr + (a.labels['DOWN'] * 2))
_test(lambda _segno, _o: _o >= 8192 - (64 + ((_segno * 64) * 16)))
# last but not least, the BONUS test
p.run(pc=kernel_addr + (a.labels['BONUS'] * 2))
_test(lambda _segno, _o: _o >= 8192 - (64 + ((_segno * 64) * 16)))
def test_ubmap(self): def test_ubmap(self):
p = self.make_pdp() p = self.make_pdp()