892 lines
32 KiB
Python
892 lines
32 KiB
Python
# MIT License
|
|
#
|
|
# Copyright (c) 2023 Neil Webber
|
|
#
|
|
# Permission is hereby granted, free of charge, to any person obtaining a copy
|
|
# of this software and associated documentation files (the "Software"), to deal
|
|
# in the Software without restriction, including without limitation the rights
|
|
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
|
# copies of the Software, and to permit persons to whom the Software is
|
|
# furnished to do so, subject to the following conditions:
|
|
#
|
|
# The above copyright notice and this permission notice shall be included in
|
|
# all copies or substantial portions of the Software.
|
|
#
|
|
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
|
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
|
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
|
# SOFTWARE.
|
|
|
|
from types import SimpleNamespace
|
|
|
|
from machine import PDP1170
|
|
from branches import BRANCH_CODES
|
|
from pdptraps import PDPTraps
|
|
import unittest
|
|
import random
|
|
|
|
from pdpasmhelper import PDP11InstructionAssembler as ASM
|
|
|
|
|
|
class TestMethods(unittest.TestCase):
|
|
|
|
PDPLOGLEVEL = 'INFO'
|
|
|
|
# used to create various instances, collects all the options
|
|
# detail into this one place... mostly this is about loglevel
|
|
@classmethod
|
|
def make_pdp(cls):
|
|
return PDP1170(loglevel=cls.PDPLOGLEVEL)
|
|
|
|
@staticmethod
|
|
def ioaddr(p, offs):
|
|
"""Given a within-IO-page IO offset, return an IO addr."""
|
|
return (offs + p.mmu.iopage_base) & 0o177777
|
|
|
|
# convenience routine to load word values into physical memory
|
|
@staticmethod
|
|
def loadphysmem(p, words, addr):
|
|
for a, w in enumerate(words, start=(addr >> 1)):
|
|
p.physmem[a] = w
|
|
|
|
# some of these can't be computed at class definition time, so...
|
|
@classmethod
|
|
def usefulconstants(cls):
|
|
|
|
p = cls.make_pdp() # meh, need this for some constants
|
|
|
|
ns = SimpleNamespace()
|
|
|
|
# Kernel instruction space PDR registers
|
|
ns.KISD0 = cls.ioaddr(p, p.mmu.APR_KERNEL_OFFS)
|
|
|
|
# Kernel data space PDR registers
|
|
ns.KDSD0 = ns.KISD0 + 0o20
|
|
|
|
# Kernel instruction space PAR registers
|
|
ns.KISA0 = ns.KDSD0 + 0o20
|
|
|
|
# Kernel data space PAR registers
|
|
ns.KDSA0 = ns.KISA0 + 0o20
|
|
|
|
# User mode similar
|
|
ns.UISD0 = cls.ioaddr(p, p.mmu.APR_USER_OFFS)
|
|
ns.UDSD0 = ns.UISD0 + 0o20
|
|
ns.UISA0 = ns.UDSD0 + 0o20
|
|
ns.UDSA0 = ns.UISA0 + 0o20
|
|
|
|
ns.MMR0 = cls.ioaddr(p, p.mmu.MMR0_OFFS)
|
|
ns.MMR3 = cls.ioaddr(p, p.mmu.MMR3_OFFS)
|
|
|
|
return ns
|
|
|
|
#
|
|
# Create and return a test machine with a simple memory mapping:
|
|
# Kernel Instruction space seg 0 points to physical 0
|
|
# Kernel Data space segment 0 also points to physical 0
|
|
# User instruction space seg 0 points to physical 0o20000
|
|
# User Data space seg 0 points to physical 0o40000
|
|
# and turns on the MMU
|
|
#
|
|
# premmu is an optional list of instructions to execute
|
|
# before turning on the MMU
|
|
#
|
|
# postmmu is an optional list of instructions to execute
|
|
# after turning on the MMU
|
|
#
|
|
|
|
def simplemapped_pdp(self, p=None, *, premmu=[], postmmu=[]):
|
|
if p is None:
|
|
p = self.make_pdp()
|
|
|
|
cn = self.usefulconstants()
|
|
|
|
# this is a table of instructions that ...
|
|
# Puts the system stack at 0o20000 (8K)
|
|
# Puts 0o22222 into physical location 0o20000
|
|
# Puts 0o33333 into physical location 0o20002
|
|
# Puts 0o44444 into physical location 0o40000
|
|
# Sets Kernel Instruction space A0 to point to physical 0
|
|
# Sets Kernel Data space A0 to point to physical 0
|
|
# Sets Kernel Data space A7 to point to the IO page
|
|
# Sets User Instruction space A0 to point to physical 0o20000
|
|
# sets User Data space D0 to point to physical 0o40000
|
|
# and turns on the MMU with I/D sep
|
|
#
|
|
# These instructions will be placed at 2K in memory
|
|
#
|
|
|
|
with ASM() as a:
|
|
a.mov(0o20000, 'sp') # start system stack at 8k
|
|
|
|
# write the constants as described above
|
|
a.mov(0o22222, a.ptr(0o20000))
|
|
a.mov(0o33333, a.ptr(0o20002))
|
|
a.mov(0o44444, a.ptr(0o40000))
|
|
|
|
# point both kernel seg 0 PARs to physical zero
|
|
a.clr(a.ptr(cn.KISA0))
|
|
a.clr(a.ptr(cn.KDSA0))
|
|
|
|
# kernel seg 7 D space PAR to I/O page (at 22-bit location)
|
|
a.mov(0o017760000 >> 6, a.ptr(cn.KDSA0 + (7 * 2)))
|
|
|
|
# user I seg 0 to 0o20000, user D seg 0 to 0o40000
|
|
a.mov(0o20000 >> 6, a.ptr(cn.UISA0))
|
|
a.mov(0o40000 >> 6, a.ptr(cn.UDSA0))
|
|
|
|
# set the PDRs for segment zero
|
|
a.mov(0o077406, 'r3')
|
|
# 77406 = PDR<2:0> = ACF = 0o110 = read/write
|
|
# PLF<14:8> =0o0774 = full length (128*64 bytes = 8K)
|
|
|
|
a.mov('r3', a.ptr(cn.KISD0))
|
|
a.mov('r3', a.ptr(cn.KDSD0))
|
|
a.mov('r3', a.ptr(cn.UISD0))
|
|
a.mov('r3', a.ptr(cn.UDSD0))
|
|
|
|
# PDR for segment 7
|
|
a.mov('r3', a.ptr(cn.KDSD0 + (7 * 2)))
|
|
|
|
# set previous mode to USER, keeping current mode KERNEL, pri 7
|
|
a.mov((p.KERNEL << 14) | (p.USER << 12) | (7 << 5),
|
|
a.ptr(self.ioaddr(p, p.PS_OFFS)))
|
|
|
|
# turn on 22-bit mode, unibus mapping, and I/D sep for k & u
|
|
a.mov(0o000065, a.ptr(cn.MMR3))
|
|
|
|
# Instructions supplied by caller, to be executed before
|
|
# enabling the MMU. They are "literals" since they have
|
|
# already been assembled.
|
|
for w in premmu:
|
|
a.literal(w)
|
|
|
|
# turn on relocation mode ...
|
|
a.inc(a.ptr(cn.MMR0))
|
|
|
|
# and the post-MMU instructions
|
|
for w in postmmu:
|
|
a.literal(w)
|
|
a.halt()
|
|
|
|
instloc = 0o4000 # 2K
|
|
self.loadphysmem(p, a.instructions(), instloc)
|
|
return p, instloc
|
|
|
|
# these tests end up testing other stuff too of course, including MMU
|
|
def test_mfpi(self):
|
|
|
|
tvecs = []
|
|
|
|
for result, r1tval in ((0o33333, 2), (0o22222, 0)):
|
|
# r1=r1tval, mfpi (r1) -> r0; expect r0 = result
|
|
with ASM() as a:
|
|
a.mov(r1tval, 'r1')
|
|
a.mfpi('(r1)')
|
|
a.mov('(sp)+', 'r0')
|
|
tvecs.append((result, a.instructions()))
|
|
|
|
for result, insts in tvecs:
|
|
with self.subTest(result=result, insts=insts):
|
|
p, pc = self.simplemapped_pdp(postmmu=insts)
|
|
p.run(pc=pc)
|
|
self.assertEqual(p.r[0], result)
|
|
|
|
def test_mfpxsp(self):
|
|
cn = self.usefulconstants()
|
|
|
|
with ASM() as u:
|
|
u.mov('r2', 'r6')
|
|
u.trap(0)
|
|
user_mode_instructions = u.instructions()
|
|
|
|
with ASM() as premmu:
|
|
ts = premmu # just for brevity...
|
|
ts.mov(0o14000, ts.ptr(0o34)) # set vector 034 to 14000
|
|
ts.clr(ts.ptr(0o36)) # PSW for trap - zero work
|
|
ts.mov(0o20000, 'r0') # mov #20000,r0
|
|
|
|
for uinst in user_mode_instructions:
|
|
ts.mov(uinst, '(r0)+')
|
|
ts.mov(0o123456, 'r2') # mov #123456,r2
|
|
ts.mov(0o140340, '-(sp)') # push user-ish PSW to K stack
|
|
ts.clr('-(sp)') # new user PC = 0
|
|
|
|
with ASM() as postmmu:
|
|
postmmu.literal(6) # RTT - goes to user mode, addr 0
|
|
|
|
p, pc = self.simplemapped_pdp(premmu=premmu.instructions(),
|
|
postmmu=postmmu.instructions())
|
|
|
|
# put the trap handler at 14000 as expected
|
|
with ASM() as th:
|
|
th.mfpd('sp')
|
|
th.mov('(sp)+', 'r3')
|
|
th.halt()
|
|
self.loadphysmem(p, th.instructions(), 0o14000)
|
|
p.run(pc=pc)
|
|
self.assertEqual(p.r[2], p.r[3])
|
|
|
|
def test_mtpi(self):
|
|
cn = self.usefulconstants()
|
|
|
|
with ASM() as ts:
|
|
ts.mov(0o1717, '-(sp)') # pushing 0o1717
|
|
ts.mtpi(ts.ptr(0o02)) # and MTPI it to user location 2
|
|
ts.clr(ts.ptr(cn.MMR0)) # turn MMU back off
|
|
ts.mov(ts.ptr(0o20002), 'r0') # r0 = (020002)
|
|
|
|
tvecs = ((0o1717, ts.instructions()),)
|
|
|
|
for r0result, insts in tvecs:
|
|
with self.subTest(r0result=r0result, insts=insts):
|
|
p, pc = self.simplemapped_pdp(postmmu=insts)
|
|
p.run(pc=pc)
|
|
self.assertEqual(p.r[0], r0result)
|
|
|
|
def test_add_sub(self):
|
|
p = self.make_pdp()
|
|
|
|
testvecs = (
|
|
# (op0, op1, expected op0 + op1, nzvc, expected op0 - op1, nzvc)
|
|
# None for nzvc means dont test that (yet/for-now/need to verify)
|
|
(1, 1, 2, 0, 0, 4), # 1 + 1 = 2(_); 1 - 1 = 0(Z)
|
|
(1, 32767, 32768, 0o12, 32766, 0),
|
|
(0, 0, 0, 0o04, 0, 0o04),
|
|
(32768, 1, 32769, 0o10, 32769, 0o13),
|
|
(65535, 1, 0, 0o05, 2, 1),
|
|
)
|
|
|
|
testloc = 0o10000
|
|
add_loc = testloc
|
|
sub_loc = testloc + 4
|
|
|
|
for addsub, loc in (('add', add_loc), ('sub', sub_loc)):
|
|
with ASM() as a:
|
|
getattr(a, addsub)('r0', 'r1')
|
|
a.halt()
|
|
for offs, inst in enumerate(a.instructions()):
|
|
p.physmem[(loc >> 1) + offs] = inst
|
|
|
|
for r0, r1, added, a_nzvc, subbed, s_nzvc in testvecs:
|
|
with self.subTest(r0=r0, r1=r1, op="add"):
|
|
p.r[0] = r0
|
|
p.r[1] = r1
|
|
p.run(pc=add_loc)
|
|
self.assertEqual(p.r[1], added)
|
|
if a_nzvc is not None:
|
|
self.assertEqual(p.psw & 0o17, a_nzvc)
|
|
|
|
with self.subTest(r0=r0, r1=r1, op="sub"):
|
|
p.r[0] = r0
|
|
p.r[1] = r1
|
|
p.run(pc=sub_loc)
|
|
self.assertEqual(p.r[1], subbed)
|
|
if s_nzvc is not None:
|
|
self.assertEqual(p.psw & 0o17, s_nzvc)
|
|
|
|
# test BNE (and, implicitly, INC/DEC)
|
|
def test_bne(self):
|
|
p = self.make_pdp()
|
|
loopcount = 0o1000
|
|
|
|
with ASM() as a:
|
|
# Program is:
|
|
# MOV loopcount,R1
|
|
# CLR R0
|
|
# LOOP: INC R0
|
|
# DEC R1
|
|
# BNE LOOP
|
|
# HALT
|
|
a.mov(loopcount, 'r1')
|
|
a.clr('r0')
|
|
a.label('LOOP')
|
|
a.inc('r0')
|
|
a.dec('r1')
|
|
a.bne('LOOP')
|
|
a.halt()
|
|
|
|
instloc = 0o4000
|
|
self.loadphysmem(p, a.instructions(), instloc)
|
|
|
|
p.run(pc=instloc)
|
|
self.assertEqual(p.r[0], loopcount)
|
|
self.assertEqual(p.r[1], 0)
|
|
|
|
# test BEQ and BNE (BNE was also tested in test_bne)
|
|
def test_eqne(self):
|
|
p = self.make_pdp()
|
|
|
|
goodval = 0o4321 # arbitrary, not zero
|
|
with ASM() as a:
|
|
a.clr('r1') # if successful r1 will become goodval
|
|
a.clr('r0')
|
|
a.beq(+1)
|
|
a.halt() # stop here if BEQ fails
|
|
a.literal(0o000257) # 1f: CCC .. clear all the condition codes
|
|
a.bne(+1)
|
|
a.halt() # stop here if BNE fails
|
|
a.mov(goodval, 'r1') # indicate success
|
|
a.halt()
|
|
|
|
instloc = 0o4000
|
|
self.loadphysmem(p, a.instructions(), instloc)
|
|
p.run(pc=instloc)
|
|
self.assertEqual(p.r[1], goodval)
|
|
|
|
# create the instruction sequence shared by test_cc and test_ucc
|
|
def _cc_unscc(self, br1, br2):
|
|
with ASM() as a:
|
|
# program is:
|
|
# CLR R0
|
|
# MOV @#05000,R1 ; see discussion below
|
|
# MOV @#05002,R2 ; see discussion below
|
|
# CMP R1,R2
|
|
# br1 1f ; see discussion
|
|
# HALT
|
|
# 1: DEC R0
|
|
# CMP R2,R1
|
|
# br2 1f ; see discussion
|
|
# HALT
|
|
# 1: DEC R0
|
|
# HALT
|
|
#
|
|
# The test_cc and test_unscc tests will poke various test
|
|
# cases into locations 5000 and 5002, knowing the order of
|
|
# the operands in the two CMP instructions and choosing
|
|
# test cases and br1/br2 accordingly.
|
|
#
|
|
# If the program makes it to the end R0 will be 65554 (-2)
|
|
|
|
a.clr('r0')
|
|
a.mov(a.ptr(0o5000), 'r1')
|
|
a.mov(a.ptr(0o5002), 'r2')
|
|
a.cmp('r1', 'r2')
|
|
a.literal((br1 & 0o177400) | 1) # br1 1f
|
|
a.halt()
|
|
a.dec('r0')
|
|
a.cmp('r2', 'r1')
|
|
a.literal((br2 & 0o177400) | 1) # br2 1f
|
|
a.halt()
|
|
a.dec('r0')
|
|
a.halt()
|
|
return a.instructions()
|
|
|
|
def test_cc(self):
|
|
# various condition code tests
|
|
p = self.make_pdp()
|
|
|
|
insts = self._cc_unscc(BRANCH_CODES['blt'], BRANCH_CODES['bgt'])
|
|
|
|
instloc = 0o4000
|
|
self.loadphysmem(p, insts, instloc)
|
|
|
|
# just a convenience so the test data can use neg numbers
|
|
def s2c(x):
|
|
return x & 0o177777
|
|
|
|
for lower, higher in ((0, 1), (s2c(-1), 0), (s2c(-1), 1),
|
|
(s2c(-32768), 32767),
|
|
(s2c(-32768), 0), (s2c(-32768), 32767),
|
|
(17, 42), (s2c(-42), s2c(-17))):
|
|
p.physmem[0o5000 >> 1] = lower
|
|
p.physmem[0o5002 >> 1] = higher
|
|
with self.subTest(lower=lower, higher=higher):
|
|
p.run(pc=instloc)
|
|
self.assertEqual(p.r[0], 65534)
|
|
|
|
# probably never a good idea, but ... do some random values
|
|
for randoms in range(1000):
|
|
a = random.randint(-32768, 32767)
|
|
b = random.randint(-32768, 32767)
|
|
while a == b:
|
|
b = random.randint(-32768, 32767)
|
|
if a > b:
|
|
a, b = b, a
|
|
p.physmem[0o5000 >> 1] = s2c(a)
|
|
p.physmem[0o5002 >> 1] = s2c(b)
|
|
with self.subTest(lower=a, higher=b):
|
|
p.run(pc=instloc)
|
|
self.assertEqual(p.r[0], 65534)
|
|
|
|
def test_unscc(self):
|
|
# more stuff like test_cc but specifically testing unsigned Bxx codes
|
|
p = self.make_pdp()
|
|
|
|
insts = self._cc_unscc(BRANCH_CODES['blo'], BRANCH_CODES['bhi'])
|
|
instloc = 0o4000
|
|
self.loadphysmem(p, insts, instloc)
|
|
|
|
for lower, higher in ((0, 1), (0, 65535), (32768, 65535),
|
|
(65534, 65535),
|
|
(32767, 32768),
|
|
(17, 42)):
|
|
p.physmem[0o5000 >> 1] = lower
|
|
p.physmem[0o5002 >> 1] = higher
|
|
with self.subTest(lower=lower, higher=higher):
|
|
p.run(pc=instloc)
|
|
self.assertEqual(p.r[0], 65534)
|
|
|
|
# probably never a good idea, but ... do some random values
|
|
for randoms in range(1000):
|
|
a = random.randint(0, 65535)
|
|
b = random.randint(0, 65535)
|
|
while a == b:
|
|
b = random.randint(0, 65535)
|
|
if a > b:
|
|
a, b = b, a
|
|
p.physmem[0o5000 >> 1] = a
|
|
p.physmem[0o5002 >> 1] = b
|
|
with self.subTest(lower=a, higher=b):
|
|
p.run(pc=instloc)
|
|
self.assertEqual(p.r[0], 65534)
|
|
|
|
def test_ash1(self):
|
|
# this code sequence taken from Unix startup, it's not really
|
|
# much of a test.
|
|
with ASM() as a:
|
|
a.mov(0o0122451, 'r2') # mov #122451,R2
|
|
a.literal(0o072200, 0o0177772) # ash -6,R2
|
|
a.bic(0o0176000, 'r2') # bic #0176000,R2
|
|
a.halt()
|
|
|
|
p = self.make_pdp()
|
|
instloc = 0o4000
|
|
self.loadphysmem(p, a.instructions(), instloc)
|
|
p.run(pc=instloc)
|
|
self.assertEqual(p.r[2], 0o1224)
|
|
|
|
def test_br(self):
|
|
# though the bug has been fixed, this is a test of whether
|
|
# all branch offset values work correctly. Barn door shut...
|
|
p = self.make_pdp()
|
|
|
|
# the idea is a block of INC R0 instructions
|
|
# followed by a halt, then a spot for a branch
|
|
# then a block of INC R1 instructions followed by a halt
|
|
#
|
|
# By tweaking the BR instruction (different forward/back offsets)
|
|
# and starting execution at the BR, the result on R0 and R1
|
|
# will show if the correct branch offset was effected.
|
|
#
|
|
# NOTE: 0o477 (branch offset -1) is a tight-loop branch to self
|
|
# and that case is tested separately.
|
|
#
|
|
insts = [0o5200] * 300 # 300 INC R0 instructions
|
|
insts += [0] # 1 HALT instruction
|
|
insts += [0o477] # BR instruction .. see below
|
|
|
|
# want to know where in memory this br will is
|
|
brspot = len(insts) - 1
|
|
|
|
insts += [0o5201] * 300 # 300 INC R1 instructions
|
|
insts += [0] # 1 HALT instruction
|
|
|
|
# put that mess into memory at an arbitrary spot
|
|
baseloc = 0o10000
|
|
for a, w in enumerate(insts, start=(baseloc >> 1)):
|
|
p.physmem[a] = w
|
|
|
|
# test the negative offsets:
|
|
# Set R0 to 65535 (-1)
|
|
# Set R1 to 17
|
|
# -1 is a special case, that's the tight loop and not tested here
|
|
# -2 reaches the HALT instruction only, R0 will remain 65535
|
|
# -3 reaches back to one INC R0, R0 will be 0
|
|
# -4 reaches back two INC R0's, R0 will be 1
|
|
# and so on
|
|
|
|
# 0o400 | offset starting at 0o376 will be the BR -2 case
|
|
expected_R0 = 65535
|
|
for offset in range(0o376, 0o200, -1):
|
|
p.physmem[(baseloc >> 1) + brspot] = (0o400 | offset)
|
|
p.r[0] = 65535
|
|
p.r[1] = 17
|
|
|
|
# note the 2* because PC is an addr vs physmem word index
|
|
p.run(pc=baseloc + (2*brspot))
|
|
|
|
with self.subTest(offset=offset):
|
|
self.assertEqual(p.r[0], expected_R0)
|
|
self.assertEqual(p.r[1], 17)
|
|
expected_R0 = (expected_R0 + 1) & 0o177777
|
|
|
|
# and the same sort of test but with forward branching
|
|
|
|
expected_R1 = 42 + 300
|
|
for offset in range(0, 0o200):
|
|
p.physmem[(baseloc >> 1) + brspot] = (0o400 | offset)
|
|
p.r[0] = 17
|
|
p.r[1] = 42
|
|
|
|
# note the 2* because PC is an addr vs physmem word index
|
|
p.run(pc=baseloc + (2*brspot))
|
|
|
|
with self.subTest(offset=offset):
|
|
self.assertEqual(p.r[0], 17)
|
|
self.assertEqual(p.r[1], expected_R1)
|
|
expected_R1 = (expected_R1 - 1) & 0o177777
|
|
|
|
def test_trap(self):
|
|
# test some traps
|
|
|
|
p = self.make_pdp()
|
|
|
|
# put a handlers for different traps into memory
|
|
# starting at location 0o10000 (4K). This just knows
|
|
# that each handler is 3 words long, the code being:
|
|
# MOV something,R4
|
|
# RTT
|
|
#
|
|
# where the "something" changes with each handler.
|
|
handlers_addr = 0o10000
|
|
handlers = (
|
|
0o012704, 0o4444, 0o000006, # for vector 0o004
|
|
0o012704, 0o1010, 0o000006, # for vector 0o010
|
|
0o012704, 0o3030, 0o000006, # for vector 0o030
|
|
0o012704, 0o3434, 0o000006 # for vector 0o034
|
|
)
|
|
self.loadphysmem(p, handlers, handlers_addr)
|
|
|
|
# and just jam the vectors in place
|
|
p.physmem[2] = handlers_addr # vector 0o004
|
|
p.physmem[3] = 0 # new PSW, stay in kernel mode
|
|
p.physmem[4] = handlers_addr + 6 # each handler above was 6 bytes
|
|
p.physmem[5] = 0
|
|
p.physmem[12] = handlers_addr + 12 # vector 0o30 (EMT)
|
|
p.physmem[13] = 0
|
|
p.physmem[14] = handlers_addr + 18 # vector 0o34 (TRAP)
|
|
p.physmem[15] = 0
|
|
|
|
# (tnum, insts)
|
|
testvectors = (
|
|
# this will reference an odd address, trap 4
|
|
(0o4444, (
|
|
# establish reasonable stack pointer (at 8K)
|
|
0o012706, 0o20000,
|
|
# CLR R3 and R4 so will know if they get set to something
|
|
0o005003, 0o005004,
|
|
# put 0o1001 into R0
|
|
0o012700, 0o1001,
|
|
# and reference it ... boom!
|
|
0o011001,
|
|
# show that the RTT got to here by putting magic into R3
|
|
0o012703, 0o123456)),
|
|
|
|
# this will execute a reserved instruction trap 10
|
|
(0o1010, (
|
|
# establish reasonable stack pointer (at 8K)
|
|
0o012706, 0o20000,
|
|
# CLR R3 and R4 so will know if they get set to something
|
|
0o005003, 0o005004,
|
|
# 0o007777 is a reserved instruction ... boom!
|
|
0o007777,
|
|
# show that the RTT got to here by putting magic into R3
|
|
0o012703, 0o123456)),
|
|
|
|
# this will execute an EMT instruction
|
|
(0o3030, (
|
|
# establish reasonable stack pointer (at 8K)
|
|
0o012706, 0o20000,
|
|
# CLR R3 and R4 so will know if they get set to something
|
|
0o005003, 0o005004,
|
|
# EMT #42
|
|
0o104042,
|
|
# show that the RTT got to here by putting magic into R3
|
|
0o012703, 0o123456)),
|
|
|
|
# this will execute an actual TRAP instruction
|
|
(0o3434, (
|
|
# establish reasonable stack pointer (at 8K)
|
|
0o012706, 0o20000,
|
|
# CLR R3 and R4 so will know if they get set to something
|
|
0o005003, 0o005004,
|
|
# TRAP #17
|
|
0o104417,
|
|
# show that the RTT got to here by putting magic into R3
|
|
0o012703, 0o123456)),
|
|
)
|
|
|
|
for R4, insts in testvectors:
|
|
self.loadphysmem(p, insts, 0o3000)
|
|
p.run(pc=0o3000)
|
|
self.assertEqual(p.r[3], 0o123456)
|
|
self.assertEqual(p.r[4], R4)
|
|
|
|
def test_trapcodes(self):
|
|
# a more ambitious testing of TRAP which verifies all
|
|
# available TRAP instruction codes work
|
|
|
|
p = self.make_pdp()
|
|
# poke the TRAP vector info directly in
|
|
p.physmem[14] = 0o10000 # vector 0o34 (TRAP) --> 0o10000
|
|
p.physmem[15] = 0
|
|
|
|
# this trap handler puts the trap # into R3
|
|
with ASM() as handler:
|
|
# the saved PC is at the top of the stack ... get it
|
|
handler.mov('(sp)', 'r0')
|
|
# get the low byte of the instruction which is the trap code
|
|
# note that the PC points after the TRAP instruction so:
|
|
handler.movb('-2(r0)', 'r3')
|
|
handler.rtt()
|
|
|
|
self.loadphysmem(p, handler.instructions(), 0o10000)
|
|
|
|
# just bash a stack pointer directly in
|
|
p.r[6] = 0o20000 # 8K and working down
|
|
|
|
for i in range(256):
|
|
with ASM() as a:
|
|
a.trap(i) # TRAP #i
|
|
a.mov('r3', 'r1') # MOV R3,R1 just to show RTT worked
|
|
a.halt()
|
|
|
|
self.loadphysmem(p, a.instructions(), 0o30000)
|
|
p.run(pc=0o30000)
|
|
self.assertEqual(p.r[3], p.r[1])
|
|
|
|
# because the machine code did MOVB, values over 127 get
|
|
# sign extended, so take that into consideration
|
|
if i > 127:
|
|
trapexpected = 0xFF00 | i
|
|
else:
|
|
trapexpected = i
|
|
self.assertEqual(p.r[1], trapexpected)
|
|
|
|
def test_mmu_updown(self):
|
|
# test the page length field support in both up and down directions
|
|
|
|
cn = self.usefulconstants()
|
|
|
|
# Two tests - up and down.
|
|
#
|
|
# In both tests, KERNEL I space page 0 is mapped to physical 0
|
|
# and I/D separation is NOT enabled for KERNEL.
|
|
#
|
|
# USER I space is mapped to 0o20000.
|
|
# All 64K of USER D space is mapped to 64K of physical memory
|
|
# ranging from 0o200000 (not a typo) to 0o
|
|
# from 0o200000 (not a typo) .. 0o400000 (not a typo), but with
|
|
# a bizarre segment length scheme according to UP or DOWN phase of
|
|
# the test as below. I/D separation is (obviously) enabled for USER.
|
|
# All 64K of that memory is filled with sequential words such
|
|
# that (vaddr) + vaddr = 0o123456 (where vaddr is a user D space
|
|
# virtual address 0 .. 65534). This gives the test two ways to verify
|
|
# the MMU map is working correctly: by where the accessibility of a
|
|
# segment ends and by the value at the location where it ends.
|
|
#
|
|
# For UP:
|
|
# using ED=0 (segments grow upwards), create a user DSPACE mapping
|
|
# where segment zero has length 0, segment 1 has 16 words,
|
|
# segment 2 has 32 ... etc and then check that valid addresses
|
|
# map correctly and invalid ones fault correctly.
|
|
#
|
|
# For DOWN:
|
|
# using ED=1 ("dirbit" = 0o10) segments grow downwards, with the
|
|
# same 0, 16, 32, .. progression. So segment 0 still has 0
|
|
# valid words, segment 1 ENDS with 16 valid words, segment 2
|
|
# ENDS with 32 valid words, etc.
|
|
|
|
# this programs the MMU as above, according to dirbit (0 = up)
|
|
# NOTE: the physical memory is filled in elsewhere
|
|
def mmusetup(dirbit): # "dirbit" as in PDR direction bit
|
|
with ASM() as a:
|
|
a.mov(0o20000, 'sp') # start system stack at 8k
|
|
# KERNEL I SPACE
|
|
# PAR to physical 0
|
|
# PDR 77406 = read/write, full length
|
|
a.clr(a.ptr(cn.KISA0))
|
|
a.mov(0o077406, a.ptr(cn.KISD0))
|
|
|
|
# USER I SPACE
|
|
a.mov(0o20000 >> 6, a.ptr(cn.UISA0))
|
|
a.mov(0o077406, a.ptr(cn.UISD0))
|
|
|
|
# USER D SPACE ...
|
|
a.mov(cn.UDSD0, 'r3') # will walk through D0 .. D7
|
|
# NOTE: A0 .. A7 is 040(r3)
|
|
a.clr('r0') # r0: segno*2 = (0, 2, 4, .., 14)
|
|
a.mov(0o2000, 'r4') # phys addr base (0o200000>>6)
|
|
|
|
a.label('PARloop')
|
|
|
|
a.mov('r4', '040(r3)') # set U PAR; don't bump r3 yet
|
|
a.add(0o200, 'r4') # 0o200 = 8192>>6
|
|
|
|
# compute segno * 8 in r2 (r0 starts as segno*2)
|
|
a.mov('r0', 'r2')
|
|
a.ash(3, 'r2')
|
|
|
|
if dirbit:
|
|
# pln = 0o177 - (segno * 16)
|
|
a.mov(0o177, 'r1')
|
|
a.sub('r2', 'r1')
|
|
a.mov('r1', 'r2')
|
|
a.swab('r2')
|
|
a.add(0o10, 'r2') # the downward growing case
|
|
else:
|
|
# pln = segno * 16 ... already in r2
|
|
# pln << 8
|
|
a.swab('r2')
|
|
|
|
a.add(0o06, 'r2')
|
|
a.mov('r2', '(r3)+') # set U PDR
|
|
|
|
a.inc('r0')
|
|
a.inc('r0')
|
|
a.cmp('r0', 16)
|
|
a.blt('PARloop')
|
|
|
|
return a
|
|
|
|
for dirbit in (0o00, 0o10):
|
|
p = self.make_pdp()
|
|
|
|
# trap handler for MMU faults; puts 0o666 into r5 aand halts
|
|
trap_h_location = 0o3000
|
|
with ASM() as th:
|
|
th.mov(0o666, 'r5')
|
|
th.halt()
|
|
self.loadphysmem(p, th.instructions(), trap_h_location)
|
|
|
|
# poke the trap handler vector (250)
|
|
self.loadphysmem(p, [trap_h_location, 0], 0o250)
|
|
|
|
# the trap handler for "trap 0" is just a halt (which is a zero)
|
|
# it resides at 0o3100
|
|
self.loadphysmem(p, [0], 0o3100)
|
|
self.loadphysmem(p, [0o3100, 0], 0o34)
|
|
|
|
# set the physical memory that will be mapped to user D
|
|
# space to this pattern so the test can verify the mapping
|
|
checksum = 0o123456 # arbitrary
|
|
user_phys_DSPACEbase = 0o200000
|
|
words = (checksum - (user_phys_DSPACEbase + o) & 0o177777
|
|
for o in range(0, 65536, 2))
|
|
self.loadphysmem(p, words, user_phys_DSPACEbase)
|
|
|
|
# user mode program:
|
|
# read the given address: mov (r0)+,r1
|
|
# puts 0o42 into r5 (flag that everything worked)
|
|
# trap 0 back to kernel
|
|
# Test can then verify correct value in r5 (indicating
|
|
# MMU aborted or not) and correct value in r1 (indicating
|
|
# mapping is correct)
|
|
user_phys_ISPACEaddr = 0o20000
|
|
with ASM() as u:
|
|
u.mov('(r0)+', 'r1')
|
|
u.mov(0o42, 'r5')
|
|
u.trap(0)
|
|
self.loadphysmem(p, u.instructions(), user_phys_ISPACEaddr)
|
|
|
|
a = mmusetup(dirbit)
|
|
a.bis(1, a.ptr(cn.MMR3)) # enable I/D sep just for USER
|
|
a.mov(1, a.ptr(cn.MMR0)) # turn on MMU
|
|
a.halt()
|
|
|
|
testcase_offs = a.label('TESTCASE') * 2
|
|
|
|
# this is the kernel code that will be run per-test case
|
|
|
|
a.mov(0o20000, 'sp') # reestablish stack each time
|
|
a.clr('r5') # sentinel becomes 0o42 or 0o666
|
|
|
|
# this value never occurs in user DSPACE (because every
|
|
# word location has been written with an even value)
|
|
# so this is a sentinel for whethe the read happened
|
|
user_noval = 1
|
|
a.mov(user_noval, 'r1')
|
|
a.mov(0o140340, '-(sp)') # push user-ish PSW to K stack
|
|
a.clr('-(sp)') # new user PC = 0
|
|
a.rtt()
|
|
|
|
addr = 0o4000
|
|
self.loadphysmem(p, a.instructions(), addr)
|
|
|
|
p.run(pc=addr) # note HALT prior to testcase_offs
|
|
|
|
def good(dirbit, segno, o):
|
|
if dirbit:
|
|
minvalidoffset = 8192 - (64 + ((segno * 64) * 16))
|
|
return o >= minvalidoffset
|
|
else:
|
|
maxvalidoffset = 63 + ((segno * 64) * 16)
|
|
return o <= maxvalidoffset
|
|
|
|
for segno in range(8):
|
|
p.r[0] = segno * 8192
|
|
for o in range(4096):
|
|
p.run(pc=addr + testcase_offs)
|
|
physval = (checksum -
|
|
((segno * 8192) + (o * 2))) & 0o177777
|
|
if good(dirbit, segno, o*2):
|
|
r5_expected = 0o42
|
|
r1_expected = physval
|
|
else:
|
|
r5_expected = 0o666
|
|
r1_expected = user_noval
|
|
self.assertEqual(p.r[1], r1_expected)
|
|
self.assertEqual(p.r[5], r5_expected)
|
|
|
|
def test_ubmap(self):
|
|
p = self.make_pdp()
|
|
|
|
ubmaps = self.ioaddr(p, p.ub.UBMAP_OFFS)
|
|
|
|
# code paraphrased from UNIX startup, creates a mapping pattern
|
|
# that the rest of the code expects (and fiddles upper bits)
|
|
# So ... test that.
|
|
for i in range(0, 62, 2):
|
|
p.mmu.wordRW(ubmaps + (2 * i), i << 12 & 0o1777777)
|
|
p.mmu.wordRW(ubmaps + (2 * (i + 1)), 0)
|
|
|
|
# XXX there is no real test yet because the UBMAPs
|
|
# are all just dummied up right now
|
|
|
|
# this is not a unit test, invoke it using timeit etc
|
|
def speed_test_setup(self, *, loopcount=10000, mmu=True, inst=None):
|
|
|
|
p, pc = self.simplemapped_pdp()
|
|
|
|
# the returned pdp is loaded with instructions for setting up
|
|
# the mmu; only do them if that's what is wanted
|
|
if mmu:
|
|
p.run(pc=pc)
|
|
|
|
# by default the instruction being timed will be MOV R1,R0
|
|
# but other instructions could be used. MUST ONLY BE ONE WORD
|
|
if inst is None:
|
|
inst = 0o010100
|
|
|
|
# now load the test timing loop... 9 MOV R1,R0 instructions
|
|
# and an SOB for looping (so 10 instructions per loop)
|
|
|
|
insts = (0o012704, loopcount, # loopcount into R4
|
|
inst,
|
|
inst,
|
|
inst,
|
|
inst,
|
|
inst,
|
|
inst,
|
|
inst,
|
|
inst,
|
|
inst,
|
|
|
|
0o077412, # SOB R4 back to first inst
|
|
0) # HALT
|
|
|
|
instloc = 0o4000
|
|
for a2, w in enumerate(insts):
|
|
p.mmu.wordRW(instloc + (2 * a2), w)
|
|
return p, instloc
|
|
|
|
def speed_test_run(self, p, instloc):
|
|
p.run(pc=instloc)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
unittest.main()
|