python-pdp1170/pdpasmhelper.py
2024-04-01 08:47:08 -05:00

744 lines
25 KiB
Python

# MIT License
#
# Copyright (c) 2023 Neil Webber
#
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in
# all copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
# SOFTWARE.
# FUNCTIONALITY DISCLAIMER:
# This is NOT meant to recreate the entire idea of a PDP-11 assembler.
# Rather, it is meant as an ad-hoc assistance for creating and
# debugging small test programs, of the sort that are found in pdptest.
# As such, the methods here are written on an "as-needed" basis and
# are focused around helping to create hand-constructed test code.
#
from branches import BRANCH_CODES
from collections import defaultdict
from functools import partial
class PDP11InstructionAssembler:
B6MODES = {}
_rnames = [(f"R{_i}", _i) for _i in range(8)] + [("SP", 6), ("PC", 7)]
for _rn, _i in _rnames:
B6MODES[f"{_rn}"] = _i # register direct
B6MODES[f"({_rn})"] = 0o10 | _i # register indirect
B6MODES[f"({_rn})+"] = 0o20 | _i # autoincrement
B6MODES[f"@({_rn})+"] = 0o30 | _i # autoincr deferred
B6MODES[f"-({_rn})"] = 0o40 | _i # autodecrement
B6MODES[f"@-({_rn})"] = 0o50 | _i # autodecr deferred
del _i, _rn, _rnames
def __iter__(self):
if self._fwdrefs:
raise ValueError(f"unresolved refs: " f"{list(self._fwdrefs)}")
return iter(self._instblock)
def immediate_value(self, s):
# called in various contexts which may or may not
# require a '$' on immediate constants; skip it if present
if s[0] == '$':
s = s[1:]
# default octal unless number terminates with '.'
base = 8
if s[-1] == '.':
base = 10
s = s[:-1]
val = int(s, base)
# as a convenience, allow negative values and convert them
if val < 0 and val >= -32768:
val += 65536
if val > 65535 or val < 0:
raise ValueError(f"illegal value '{s}' = {val}")
return val
# this is a notational convenience to create a f'*${i].' string
# for an operand that is an immediate deferred (i.e., numeric pointer)
def ptr(self, i):
return f'*${i}.'
def operand_parser(self, operand_token, /):
"""Parse operand_token ('r1', '-(sp)', '4(r5)', $177776, etc).
Returns: sequence: [6 bit code, additional words ...]
Raises ValueError for syntax errors.
Literals that should become (pc)+ (mode 0o27) must start with '$'
They will be octal unless they end with a '.'
Literals that are pointers and should become @(pc)+ must
start with '*$' and will be octal unless they end with a '.'
An integer, i, can be passed in directly.
"""
# for convenience
cannotparse = ValueError(f"cannot parse '{operand_token}'")
# normalize the operand, upper case for strings, turn ints back
# into their corresponding string (roundabout, but easiest)
try:
operand = operand_token.upper()
except AttributeError:
operand = f"${operand_token}."
# bail out if spaces in middle, and remove spaces at ends
s = operand.split()
if len(s) > 1:
raise cannotparse
operand = s[0]
# operand now fully normalized: upper case, no spaces.
# the first/easiest to try is to see if it is an immediate.
# It will (must) start with either '$', or '*$' if so.
try:
if operand[0] == '$':
return [0o27, self.immediate_value(operand)]
elif operand.startswith('*$'):
return [0o37, self.immediate_value(operand[1:])]
except ValueError:
raise cannotparse from None
# wasn't immediate, see if it matches the precomputed modes
try:
return [self.B6MODES[operand]]
except KeyError:
pass
# last chance: X(Rn) and @X(rn)
# see if X(Rn) or @X(Rn)...
if operand[0] == '@':
mode = 0o70
operand = operand[1:]
else:
mode = 0o60
# for starters, it must contain one '(' so should split to 2
s = operand.split('(')
if len(s) != 2:
raise cannotparse
idxval = self.immediate_value(s[0])
# the back end of this, with the '(' put back on,
# must end with ')' and must parse
if s[1][-1] != ')':
raise cannotparse
try:
b6 = self.B6MODES['(' + s[1]]
except KeyError:
raise cannotparse from None
return [mode | (b6 & 0o07), idxval]
def register_parser(self, operand_token, /):
"""Like operand_parser but token MUST be register direct."""
seq = self.operand_parser(operand_token)
if len(seq) > 1 or seq[0] > 0o07:
raise ValueError(f"{operand_token} must be register-direct")
return seq[0]
# gets overridden in InstructionBlock to track generated instructions
def _seqwords(self, seq):
return seq
# All 2 operand instructions end up here eventually
def _2op(self, operation, src, dst):
src6, *src_i = self.operand_parser(src)
dst6, *dst_i = self.operand_parser(dst)
return self._seqwords([operation | src6 << 6 | dst6, *src_i, *dst_i])
# All 1 operand instructions end up here eventually
# This also supports 0 operand "literals" (which are typically
# instructions that have been hand-assembled another way)
def _1op(self, operation, dst):
"""dst can be None for, essentially, a _0op."""
if dst is None:
return self._seqwords([operation])
else:
dst6, *dst_i = self.operand_parser(dst)
return self._seqwords([operation | dst6, *dst_i])
# some instructions only operate on registers not fully-general operands
def _regdirect(self, operation, regspec):
regnum = self.register_parser(regspec)
return self._seqwords([operation | regnum])
# XXX the instructions are not complete, this is being developed
# as needed for pdptests.py
# ALSO: see InstructionBlock for branch support
def mov(self, src, dst):
return self._2op(0o010000, src, dst)
def movb(self, src, dst):
return self._2op(0o110000, src, dst)
def cmp(self, src, dst):
return self._2op(0o020000, src, dst)
def bit(self, src, dst):
return self._2op(0o030000, src, dst)
def bic(self, src, dst):
return self._2op(0o040000, src, dst)
def bis(self, src, dst):
return self._2op(0o050000, src, dst)
def add(self, src, dst):
return self._2op(0o060000, src, dst)
def sub(self, src, dst):
return self._2op(0o160000, src, dst)
# note: gets overridden in InstructionBlock to add label support
def jmp(self, dst):
return self._1op(0o000100, dst)
# note: gets overridden in InstructionBlock to add label support
def br(self, offs):
return self.literal(0o000400 | (offs & 0o377))
# note: gets overridden in InstructionBlock to add label support
def jsr(self, reg, dst):
return self._1op(0o004000 | (self.register_parser(reg) << 6), dst)
def rts(self, reg):
return self.literal(0o000200 | self.register_parser(reg))
def clr(self, dst):
return self._1op(0o005000, dst)
def inc(self, dst):
return self._1op(0o005200, dst)
def dec(self, dst):
return self._1op(0o005300, dst)
def tst(self, dst):
return self._1op(0o005700, dst)
def swab(self, dst):
return self._1op(0o000300, dst)
def asl(self, dst):
return self._1op(0o006300, dst)
def asrb(self, dst):
return self._1op(0o106200, dst)
def rorb(self, dst):
return self._1op(0o106000, dst)
def ash(self, cnt, dst):
dstreg = self.register_parser(dst)
return self.literal(0o072000 | dstreg << 6, cnt)
def halt(self):
return self.literal(0)
def rtt(self):
return self.literal(6)
def rti(self):
return self.literal(2)
def nop(self):
return self.literal(0o000240)
def clc(self):
"""Clear Carry"""
return self.literal(0o000241)
def wait(self):
return self.literal(1)
def mtpi(self, dst):
return self._1op(0o006600, dst)
def mfpi(self, src):
return self._1op(0o006500, src)
def mtpd(self, dst):
return self._1op(0o106600, dst)
def mfpd(self, src):
return self._1op(0o106500, src)
def trap(self, tnum):
return self.literal(0o104400 | tnum)
def literal(self, inst, oprnd=None, /):
"""For hand-assembled instructions. Also allows 1 operand."""
return self._1op(inst, oprnd)
class FwdRef:
"""Values determined by a not-yet-seen label() definition."""
def __init__(self, name, block, *, idxrel=False, idxadj=0):
self.loc = len(block)
self.name = name
self.block = block
if idxrel:
self.adjust = (2 * self.loc) + idxadj
else:
self.adjust = 0
block._fwdrefs[name].append(self)
def __call__(self):
block = self.block
# the location to be patched is in one of three places, look for it:
for loco in (0, 1, 2):
if block._instblock[self.loc + loco] is self:
block._instblock[self.loc + loco] = self.transform()
break
else:
raise ValueError(f"could not find FwdRef {self}")
def __iter__(self):
return iter([0o27, self])
def __repr__(self):
s = f"{self.__class__.__name__}<"
s += f"{str(self.name)}, block<len={len(self.block)}>"
s += f", loc={self.loc}>"
return s
def transform(self):
return self.block._neg16(self.block.getlabel(self.name) - self.adjust)
class BranchTarget(FwdRef):
def __init__(self, brcode, *args, **kwargs):
super().__init__(*args, **kwargs)
self.__brcode = brcode
@staticmethod
def branchencode(brcode, offs, name):
"""The guts of encoding/checking a branch offset."""
# offs is in 16-bit form as a byte offset; convert it to
# 8-bit branch (word offset) form and make sure not too big
if offs > 254 and offs < (65536 - 256):
raise ValueError(f"branch target ('{name}') too far.")
offs >>= 1
return brcode | (offs & 0o377)
def transform(self):
"""Called when a forward branch ref is ready to be resolved."""
offs = self.block.getlabel(self.name) - (2 * (self.loc + 1))
return self.branchencode(self.__brcode, offs, self.name)
# An InstructionBlock is a thin layer on just accumulating a sequence
# of results from calling the instruction methods.
#
# Instead of:
# a = PDP11InstructionAssembler()
# insts = (
# a.mov('r1', 'r2'),
# a.clr('r0'),
# etc ...
# )
#
# An InstructionBlock can be used this way:
#
# a = InstructionBlock()
# a.mov('r1', 'r2')
# a.clr('r0')
# etc ...
#
# Each call to an instruction method appends that instruction to the block.
# Subject to opinion, this may be notationally cleaner/clearer and also
# opens the possibility of if/for/etc full programming constructs in
# forming the instruction sequence itself.
#
# An InstructionBlock adds simple label support as well, useful for branching.
#
# If care is taken to write position-independent code, an InstructionBlock
# can eventually be placed at any arbitrary location in memory. When labels
# are used in jmp or jsr instructions, they are automatically assembled
# as PC-relative offsets (mode = 0o67) rather than absolute values.
#
# The current list of instruction words is available by using the
# instruction block as an iterable. For example:
#
# instlist = list(a)
#
# or perhaps 'for x in a:'
#
# NOTE: If there are dangling forward references asking for the instructions
# raises a ValueError. This can be suppressed (usually only useful
# for debugging) by requesting a._instructions()
#
class InstructionBlock(PDP11InstructionAssembler):
def __init__(self):
super().__init__()
self._instblock = []
self._labels = {}
self._fwdrefs = defaultdict(list)
def _seqwords(self, seq):
self._instblock += seq
return seq
# Extend base operand_parser with ability to handle labels,
# including forward references
def operand_parser(self, operand_token, *args, **kwargs):
# it's possible to get here with operand_token already
# being a forward ref (e.g., if getlabel was used)
if isinstance(operand_token, FwdRef):
return operand_token
else:
try:
return super().operand_parser(operand_token, *args, **kwargs)
except ValueError as e:
if not self._allowable_label(operand_token):
raise
# falling through to here means it is a label or forward reference
# IF it starts with '+' it means use PC-relative addr mode
# which will require some fussing around...
if operand_token[0] == '+':
return [0o67,
self.getlabel(
operand_token[1:], idxrel=True, idxadj=4)
]
else:
return [0o27, self.getlabel(operand_token)]
def __len__(self):
"""Returns the length of the sequence in WORDS"""
return len(self._instblock)
def __dotandnumbers(self, w):
"""Turn '.' into 2x current offset, turn numbers into integers"""
if isinstance(w, int): # already an integer
return w
elif w in '+-':
return w
elif w == '.':
return len(self) * 2
elif w[-1] == '.': # 12345. for example
return int(w[:-1])
elif self._allowable_label(w):
return self.getlabel(w)
else:
return int(w, 8)
def _allowable_label(self, s):
if not hasattr(s, 'isalpha'):
return False
if s[0] == '+':
s = s[1:]
return ((s.upper() not in self.B6MODES) and
(s[0].isalpha() or s[0] == '_'))
def label(self, name, *, value='.'):
"""Record the current position, or 'value', as 'name'.
If no value specified, it defaults to '.' which means
the current position index, multiplied by 2 so that it
is suitable to add to a base address. Otherwise the value
is taken as-is, or with a trivial amount of arithmetic.
Labels must start with a .isalpha() character and
must not match (ignoring case) any of the tokens in B6MODES
"""
try:
value_tokens = value.split()
except AttributeError:
value_tokens = [value]
value_tokens = [self.__dotandnumbers(w) for w in value_tokens]
if len(value_tokens) == 3:
if value_tokens[1] == '+':
value_tokens = [value_tokens[0] + value_tokens[2]]
elif value_tokens[1] == '-':
value_tokens = [value_tokens[0] - value_tokens[2]]
if len(value_tokens) != 1:
raise ValueError(f"cannot parse '{value}'")
self._labels[name] = value_tokens[0]
# if there were any forward references to this name, process them
for fref in self._fwdrefs[name]:
fref()
del self._fwdrefs[name]
return self._labels[name]
def getlabel(self, name, *, fwdfactory=FwdRef, idxrel=False, idxadj=0):
"""Return value (loc) of name, which may be a FwdRef object.
Label values are offsets relative to the start of the block.
If the label is a forward reference, the fwdfactory argument
(default=FwdRef) will be used to create a FwdRef object placed
into the instruction stream until resolved later. The default FwdRef
class patches in a 16-bit value once known. Branch (and other)
instructions supply FwdRef subclasses via fwdfactory for customized
encoding/processing of resolved references.
If fwdfactory is passed in as None (default is FwdRef),
forward references raise a TypeError
"""
try:
x = self._labels[name]
except KeyError:
return fwdfactory(name=name, block=self,
idxrel=idxrel, idxadj=idxadj)
else:
if idxrel:
x = self._neg16(x - ((2 * len(self)) + idxadj))
return x
@staticmethod
def _neg16(x):
"""convert negative numbers in 16-bit two's complement."""
origx = x
if x < 0 and x >= -32768:
x += 65536
if x < 0 or x > 65535:
raise ValueError(f"offset '{origx}' out of 16-bit range")
return x
def _branchcommon(self, target, *, fwdfactory=None):
"""Common logic for bne, bgt, etc including unconditional br."""
# target at this point can be:
# An integer -- treat directly as an offset value
# A string representing a direct offset - parse/use
# A label -- possibly forward reference or not
try:
if target.startswith('$'):
x = self.immediate_value(target)
else:
# it's a label, which may or may not be forward ref
x = self.getlabel(target, fwdfactory=fwdfactory)
try:
x -= (2 * (len(self) + 1))
except TypeError: # a forward reference
pass
except AttributeError:
# it's not a string, assume it is an offset
x = target
# At this point it's either a number or a forward ref.
# For numbers, complete everything now.
# For forward refs, that work is deferred.
try:
x = self._neg16(x)
except TypeError:
pass
return x
# dynamically construct the methods for all the Bxx branches
# This makes methods: beq, bne, bgt, etc
for _bname, _code in BRANCH_CODES.items():
def branchxx(self, target, code=_code):
bxxfactory = partial(BranchTarget, code)
w = self._branchcommon(target, fwdfactory=bxxfactory)
# it's either an integer offset or a forward reference.
# Encode integers now; forward references are encoded later
if isinstance(w, int):
w = BranchTarget.branchencode(code, offs=w, name=target)
return self._seqwords([w])
branchxx.__name__ = _bname
setattr(PDP11InstructionAssembler, _bname, branchxx)
del _bname, _code, branchxx
# override JSR to provide reference/label support (like branches)
def jsr(self, reg, dst):
# anything not a label handled by the regular jsr method:
if not self._allowable_label(dst):
return super().jsr(reg, dst)
# labels become operand mode 0o67 ... PC-relative w/offset
inst = 0o004067 | (self.register_parser(reg) << 6)
offs = self.getlabel(dst, idxrel=True, idxadj=4)
return self._seqwords([inst, offs])
def jmp(self, dst):
# anything not a label handled by the regular jmp method:
if not self._allowable_label(dst):
return super().jmp(dst)
# labels become operand mode 0o67 ... PC-relative w/offset
inst = 0o000167
return self._seqwords(
[inst, self.getlabel(dst, idxrel=True, idxadj=4)])
def sob(self, reg, target):
# the register can be a naked integer 0 .. 5 or an 'r' string
try:
lc = reg.lower()
except AttributeError:
pass
else:
if len(lc) == 2 and lc[0] == 'r':
reg = int(lc[1:])
# NOTE: forward references illegal; no fwdfactory given
try:
x = self._branchcommon(target)
except (ValueError, TypeError):
raise ValueError(f"sob '{target}' illegal target") from None
# stricter limits on the offset size for sob:
# Must be between 0 and -126
if x < 0o177602: # (65536-126)
raise ValueError(f"sob target ({x}) too far")
return self.literal(0o077000 | (reg << 6) | (((-x) >> 1) & 0o77))
def _instructions(self):
# By default, it is an error to request the instructions if there
# are unresolved forward references. This is a way around that.
return list(self._instblock)
def simh(self, *, startaddr=0o10000):
"""Generate lines of SIMH deposit commands."""
for offs, w in enumerate(self):
yield f"D {oct(startaddr + (2 * offs))[2:]} {oct(w)[2:]}\n"
# This method shows one typical way to use the simh generator
#
# A .ini file full of deposit ('D') commands starting at startaddr
# will be created from the instructions in the InstructionBlock
def export_to_simh_ini(self, outfilename, /, *, startaddr=0o10000):
with open(outfilename, 'w') as f:
for s in self.simh(startaddr=startaddr):
f.write(s)
# and set the PC to the start address
f.write(f"D PC {oct(startaddr)[2:]}\n")
if __name__ == "__main__":
import unittest
ASM = PDP11InstructionAssembler
# NOTE: these are tests of instruction ASSEMBLY not execution.
class TestMethods(unittest.TestCase):
def test_bne_label_distance(self):
# this should just execute without any issue
for i in range(127):
a = InstructionBlock()
a.label('foo')
for _ in range(i):
a.mov('r0', 'r0')
a.bne('foo')
# but this should ValueError ... branch too far
a = InstructionBlock()
a.label('foo')
for _ in range(128):
a.mov('r0', 'r0')
with self.assertRaises(ValueError):
a.bne('foo')
def test_backlab(self):
a = InstructionBlock()
a.mov('bozo', 'r0')
a.clr('r1')
a.label('bozo')
a.mov('bozo', 'r1')
insts = list(a)
self.assertEqual(list(a), [0o012700, 6, 0o005001, 0o012701, 6])
def test_labelmath_dot(self):
a = InstructionBlock()
a.mov('bozo', 'r0')
a.label('B')
a.label('BP2', value='. + 2')
a.clr('r0')
a.label('bozo')
self.assertEqual(a.getlabel('B'), 4)
self.assertEqual(a.getlabel('BP2'), 6)
self.assertEqual(a.getlabel('BP2'), a.getlabel('bozo'))
self.assertEqual(list(a)[1], 6)
def test_labelmath_plus(self):
a = InstructionBlock()
a.label('L1', value=17)
a.label('L2', value='L1 + 25.')
self.assertEqual(a.getlabel('L2'), 42)
def test_labelmath_minus(self):
a = InstructionBlock()
a.label('L1')
a.clr('r0')
a.label('L2', value='. - L1')
self.assertEqual(a.getlabel('L2'), 2)
def test_unresolved(self):
a = InstructionBlock()
a.br('bozo')
a.clr('r0')
a.mov(a.getlabel('xyzzy'), 'r0')
with self.assertRaises(ValueError):
foo = list(a)
def test_identity(self):
a = InstructionBlock()
a.mov('r0', 'r1')
a.br('bozo')
a.mov('r1', 'r2')
a.label('bozo')
a.mov('r2', 'r3')
b = InstructionBlock()
b.mov('r0', 'r1')
b.br('bozo')
b.mov('r1', 'r2')
b.label('bozo')
b.mov('r2', 'r3')
self.assertEqual(list(a), list(b))
def test_sob(self):
for i in range(63): # 0..62 because the sob also counts
with self.subTest(i=i):
a = InstructionBlock()
a.label('foosob')
for _ in range(i):
a.mov('r0', 'r0')
inst = a.sob(0, 'foosob')
self.assertEqual(len(inst), 1)
self.assertEqual(inst[0] & 0o77, i+1)
unittest.main()