python-pdp1170/pdpasmhelper.py
2023-09-20 09:10:41 -05:00

582 lines
19 KiB
Python

# MIT License
#
# Copyright (c) 2023 Neil Webber
#
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in
# all copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
# SOFTWARE.
# FUNCTIONALITY DISCLAIMER:
# This is NOT meant to recreate the entire idea of a PDP-11 assembler.
# Rather, it is meant as an ad-hoc assistance for creating and
# debugging small test programs, of the sort that are found in pdptest.
# As such, the methods here are written on an "as-needed" basis and
# are focused around helping to create hand-constructed test code.
#
from contextlib import AbstractContextManager
from branches import BRANCH_CODES
from collections import namedtuple
FwdRef = namedtuple('FwdRef', ['f', 'loc', 'name', 'block'])
class PDP11InstructionAssembler:
B6MODES = {}
_rnames = [(f"R{_i}", _i) for _i in range(8)] + [("SP", 6), ("PC", 7)]
for _rn, _i in _rnames:
B6MODES[f"{_rn}"] = _i # register direct
B6MODES[f"({_rn})"] = 0o10 | _i # register indirect
B6MODES[f"({_rn})+"] = 0o20 | _i # autoincrement
B6MODES[f"@({_rn})+"] = 0o30 | _i # autoincr deferred
B6MODES[f"-({_rn})"] = 0o40 | _i # autodecrement
B6MODES[f"@-({_rn})"] = 0o50 | _i # autodecr deferred
del _i, _rn, _rnames
# see InstructionBlock for explanation of 'with' syntax use
@classmethod
def __enter__(cls):
return InstructionBlock()
def __exit__(self, *args, **kwargs):
return None
def immediate_value(self, s):
base = 8
if s[-1] == '.':
base = 10
s = s[:-1]
val = int(s, base)
# as a convenience, allow negative values and convert them
if val < 0 and val >= -32768:
val += 65536
if val > 65535 or val < 0:
raise ValueError(f"illegal value '{s}' = {val}")
return val
# this is a notational convenience to create a f'*${i].' string
# for an operand that is an immediate deferred (i.e., numeric pointer)
def ptr(self, i):
return f'*${i}.'
def operand_parser(self, operand_token, /):
"""Parse operand_token ('r1', '-(sp)', '4(r5)', $177776, etc).
Returns: sequence: [6 bit code, additional words ...]
Raises ValueError for syntax errors.
Literals that should become (pc)+ (mode 0o27) must start with '$'
They will be octal unless they end with a '.'
Literals that are pointers and should become @(pc)+ must
start with '*$' and will be octal unless they end with a '.'
An integer, i, can be passed in directly; it is becomes f"${i}.
FwdRefs are stuck into the stream for later patching.
"""
# for convenience
def valerr():
return ValueError(f"cannot parse '{operand_token}'")
if isinstance(operand_token, FwdRef):
return [0o27, operand_token]
# normalize the operand, upper case for strings, turn ints back
# into their corresponding string (roundabout, but easiest)
try:
operand = operand_token.upper()
except AttributeError:
operand = f"${operand_token}."
# bail out if spaces in middle, and remove spaces at ends
s = operand.split()
if len(s) > 1:
raise valerr()
operand = s[0]
# operand now fully normalized: upper case, no spaces.
# the first/easiest to try is to see if it is an immediate.
# It will (must) start with either '$', or '*$' if so.
try:
if operand[0] == '$':
return [0o27, self.immediate_value(operand[1:])]
elif operand.startswith('*$'):
return [0o37, self.immediate_value(operand[2:])]
except ValueError:
raise valerr() from None
# wasn't immediate, see if it matches the precomputed modes
try:
return [self.B6MODES[operand]]
except KeyError:
pass
# last chance: X(Rn) and @X(rn)
# see if X(Rn) or @X(Rn)...
if operand[0] == '@':
mode = 0o70
operand = operand[1:]
else:
mode = 0o60
# for starters, it must contain one '(' so should split to 2
s = operand.split('(')
if len(s) != 2:
raise valerr()
idxval = self.immediate_value(s[0])
# the back end of this, with the '(' put back on,
# must end with ')' and must parse
if s[1][-1] != ')':
raise valerr()
try:
b6 = self.B6MODES['(' + s[1]]
except KeyError:
raise valerr() from None
return [mode | (b6 & 0o07), idxval]
# gets overridden in InstructionBlock to track generated instructions
def _seqwords(self, seq):
return seq
# All 2 operand instructions end up here eventually
def _2op(self, operation, src, dst):
src6, *src_i = self.operand_parser(src)
dst6, *dst_i = self.operand_parser(dst)
return self._seqwords([operation | src6 << 6 | dst6, *src_i, *dst_i])
# All 1 operand instructions end up here eventually
# This also supports 0 operand "literals" (which are typically
# instructions that have been hand-assembled another way)
def _1op(self, operation, dst):
"""dst can be None for, essentially, a _0op."""
if dst is None:
dst6 = 0
dst_i = []
else:
dst6, *dst_i = self.operand_parser(dst)
return self._seqwords([operation | dst6, *dst_i])
# XXX the instructions are not complete, this is being developed
# as needed for pdptests.py
#
# ALSO: see InstructionBlock for (primitive) branching support
#
def mov(self, src, dst):
return self._2op(0o010000, src, dst)
def movb(self, src, dst):
return self._2op(0o110000, src, dst)
def cmp(self, src, dst):
return self._2op(0o020000, src, dst)
def bit(self, src, dst):
return self._2op(0o030000, src, dst)
def bic(self, src, dst):
return self._2op(0o040000, src, dst)
def bis(self, src, dst):
return self._2op(0o050000, src, dst)
def add(self, src, dst):
return self._2op(0o060000, src, dst)
def sub(self, src, dst):
return self._2op(0o160000, src, dst)
def jmp(self, dst):
return self._1op(0o000100, dst)
def br(self, offs):
return self.literal(0o000400 | (offs & 0o377))
def clr(self, dst):
return self._1op(0o005000, dst)
def inc(self, dst):
return self._1op(0o005200, dst)
def dec(self, dst):
return self._1op(0o005300, dst)
def tst(self, dst):
return self._1op(0o005700, dst)
def swab(self, dst):
return self._1op(0o000300, dst)
def ash(self, cnt, dst):
try:
return self.literal(0o072000 | dst << 6, cnt)
except TypeError:
dstb6, *dst_i = self.operand_parser(dst)
if dstb6 & 0o70:
raise ValueError("ash dst must be register direct")
return self.literal(0o072000 | dstb6 << 6, cnt)
def halt(self):
return self.literal(0)
def rtt(self):
return self.literal(6)
def mtpi(self, dst):
return self._1op(0o006600, dst)
def mfpi(self, src):
return self._1op(0o006500, src)
def mtpd(self, dst):
return self._1op(0o106600, dst)
def mfpd(self, src):
return self._1op(0o106500, src)
def trap(self, tnum):
return self.literal(0o104400 | tnum)
def literal(self, inst, oprnd=None, /):
"""For hand-assembled instructions. Also allows 1 operand."""
return self._1op(inst, oprnd)
# An InstructionBlock is a thin layer on just accumulating a sequence
# of results from calling the instruction methods.
#
# Instead of:
# insts = (
# a.mov('r1', 'r2'),
# a.clr('r0'),
# etc ...
# )
#
# The context manager can be used to write it this way:
#
# with ASM() as a:
# a.mov('r1', 'r2')
# a.clr('r0')
# etc ...
#
# which, subject to opinion, may be notationally cleaner/clearer and also
# opens the possibility of if/for/etc full programming constructs as needed.
#
# The context manager also supports bare-bones labels, helpful for branches
#
# A list of instructions in an InstructionBlock can be obtained at any
# time via: insts = a.instructions()
#
class InstructionBlock(PDP11InstructionAssembler, AbstractContextManager):
def __init__(self):
super().__init__()
self._instblock = []
self._labels = {}
self._fwdrefs = {}
def _seqwords(self, seq):
"""seq can be an iterable, or a naked (integer) instruction."""
try:
self._instblock += seq
except TypeError:
self._instblock += [seq]
return seq
def __len__(self):
"""Returns the length of the sequence in WORDS"""
return len(self._instblock)
def __dotandnumbers(self, w):
"""Turn '.' into 2x current offset, turn numbers into integers"""
if isinstance(w, int): # already an integer
return w
elif w in '+-':
return w
elif w == '.':
return len(self) * 2
elif w[-1] == '.': # 12345. for example
return int(w[:-1])
else:
try:
return self.getlabel(w)
except KeyError:
pass
return int(w, 8)
@staticmethod
def _fwdword(fref):
block = fref.block
# the location to be patched is in one of three places, look for it:
for loco in (0, 1, 2):
if block._instblock[fref.loc + loco] == fref:
break
fwdoffs = block.getlabel(fref.name) - (2*fref.loc)
block._instblock[fref.loc + loco] = fwdoffs
def label(self, name, *, value=None):
"""Record the current position, or 'value', as 'name'.
If value is '.', the current position is multiplied by 2
(so that value will be suitable for adding to a base address)
A trivial amount of arithmetic processing is allowed in the value:
token + token
token - token
where 'token' is a symbol name, a number, or '.'
"""
if value is None:
value = '.'
try:
value_tokens = value.split()
except AttributeError:
value_tokens = [value]
value_tokens = [self.__dotandnumbers(w) for w in value_tokens]
if len(value_tokens) == 3:
if value_tokens[1] == '+':
value_tokens = [value_tokens[0] + value_tokens[2]]
elif value_tokens[1] == '-':
value_tokens = [value_tokens[0] - value_tokens[2]]
if len(value_tokens) != 1:
raise ValueError(f"cannot parse '{value}'")
self._labels[name] = value_tokens[0]
try:
frefs = self._fwdrefs[name]
except KeyError:
pass
else:
for fref in frefs:
fref.f(fref)
del self._fwdrefs[name]
return self._labels[name]
def getlabel(self, name, *, callback=None):
"""Return value (loc) of name; register a callback if fwd ref.
If no callback given the default word-substitution callback is used,
which is generally sufficient for most operand purposes, e.g.:
a.mov(a.getlabel('foo'), 'r0')
will work just fine if 'foo' is a forward reference.
"""
try:
return self._labels[name]
except KeyError:
if callback is None:
callback = self._fwdword
# otherwise, register the callback and return None.
fref = FwdRef(f=callback, loc=len(self), name=name, block=self)
try:
self._fwdrefs[name].append(fref)
except KeyError:
self._fwdrefs[name] = [fref]
return fref
@staticmethod
def _neg16(x):
"""convert negative numbers in 16-bit two's complement."""
origx = x
if x < 0 and x >= -32768:
x += 65536
if x < 0 or x > 65535:
raise ValueError(f"offset '{origx}' out of 16-bit range")
return x
def _branch_label_or_offset(self, x):
"""Return offset: either 'x' itself or computed from x as label.
DOES NO VALIDATION OF SIZE OF RESULT (because different instructions
have different requirements.
"""
# If it's a str, treat it as a (possibly-forward-ref) label
if isinstance(x, str):
offs = self.getlabel(x, callback=self._branchpatch)
if isinstance(offs, FwdRef):
return 0
else:
# got a value - compute the delta
x = offs - (2 * (len(self) + 1))
return self._neg16(x)
# can't use the standard fwdword patcher because the offset
# needs to be divided by 2 and checked if fits within 8 bits
def _branchpatch(self, fref):
fwdoffs = self.getlabel(fref.name) - (2 * (fref.loc + 1))
block = fref.block
block._instblock[fref.loc] |= block.bxx_offset(fwdoffs)
# Branch instruction support only exists within a given InstructionBlock
def bxx_offset(self, target, /):
"""Generate offset for Bxx target
A target can be a string label or a number. Numbers are taken as-is.
Names are looked up in the labels and offsets generated.
"""
try:
offs = self._branch_label_or_offset(target)
except ValueError:
raise ValueError(f"branch target ({target}) too far or illegal")
# offsets come back from _label.. in 16-bit form, as byte offsets
# convert to 8 bit and word offset, and make sure not too big
if offs > 254 and offs < (65536 - 256):
raise ValueError(f"branch target ('{target}') too far.")
offs >>= 1
return offs & 0o377
def bne(self, target):
return self.literal(BRANCH_CODES['bne'] | self.bxx_offset(target))
def blt(self, target):
return self.literal(BRANCH_CODES['blt'] | self.bxx_offset(target))
def beq(self, target):
return self.literal(BRANCH_CODES['beq'] | self.bxx_offset(target))
# overrides the base br to implement label support
def br(self, target):
return self.literal(0o000400 | self.bxx_offset(target))
def sob(self, reg, target):
# the register can be a naked integer 0 .. 5 or an 'r' string
try:
lc = reg.lower()
except AttributeError:
pass
else:
if len(lc) == 2 and lc[0] == 'r':
reg = int(lc[1:])
# note: target can't be forward reference; sob only goes backwards
offs = self._branch_label_or_offset(target)
# offsets are always negative and are allowed from 0 to -126
# but they come from _label... as two's complement, so:
if offs < 0o177602: # (65536-126)
raise ValueError(f"sob illegal target {target}")
return self.literal(0o077000 | (reg << 6) | (((-offs) >> 1) & 0o77))
def instructions(self):
# it is an error to request the instructions if there are unresolved
# forward references. This is where that is enforced.
if self._fwdrefs:
raise ValueError(f"unresolved references: "
f"{list(self._fwdrefs)}")
return self._instblock
# this is a convenience that allows a list of words (usually instructions)
# to be "embedded" into an InstructionBlock with a leading jmp .+N
# to jump over it.
def jump_over_and_embed(self, words, /, *, name=None):
"""Embed words with leading 'jumpover'; returns offset of words
If optional name given, creates a label for the words
"""
if name is None:
# an internal label name is generated instead
name = f"__{id(object)}"
self.jmp(f"{len(words)*2}.(pc)")
words_offs = self.label(name)
for w in words:
self.literal(w)
return words_offs
def simh(self, *, startaddr=0o10000):
"""Generate lines of SIMH deposit commands."""
for offs, w in enumerate(self.instructions()):
yield f"D {oct(startaddr + (2 * offs))[2:]} {oct(w)[2:]}"
if __name__ == "__main__":
import unittest
ASM = PDP11InstructionAssembler
# NOTE: these are tests of instruction ASSEMBLY not execution.
class TestMethods(unittest.TestCase):
def test_bne_label_distance(self):
# this should just execute without any issue
for i in range(127):
with ASM() as a:
a.label('foo')
for _ in range(i):
a.mov('r0', 'r0')
a.bne('foo')
# but this should ValueError ... branch too far
with ASM() as a:
a.label('foo')
for _ in range(128):
a.mov('r0', 'r0')
with self.assertRaises(ValueError):
a.bne('foo')
def test_labelmath_plus(self):
with ASM() as a:
a.label('L1', value=17)
a.label('L2', value='L1 + 25.')
self.assertEqual(a.getlabel('L2'), 42)
def test_labelmath_minus(self):
with ASM() as a:
a.label('L1')
a.clr('r0')
a.label('L2', value='. - L1')
self.assertEqual(a.getlabel('L2'), 2)
def test_unresolved(self):
with ASM() as a:
a.br('bozo')
a.clr('r0')
a.mov(a.getlabel('xyzzy'), 'r0')
with self.assertRaises(ValueError):
foo = a.instructions()
def test_sob(self):
for i in range(63): # 0..62 because the sob also counts
with self.subTest(i=i):
with ASM() as a:
a.label('foosob')
for _ in range(i):
a.mov('r0', 'r0')
inst = a.sob(0, 'foosob')
self.assertEqual(len(inst), 1)
self.assertEqual(inst[0] & 0o77, i+1)
unittest.main()