python-pdp1170/pdptests.py
2023-09-24 09:00:42 -04:00

1373 lines
52 KiB
Python

# MIT License
#
# Copyright (c) 2023 Neil Webber
#
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in
# all copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
# SOFTWARE.
from types import SimpleNamespace
from machine import PDP1170
from branches import BRANCH_CODES
from pdptraps import PDPTraps
import unittest
import random
from pdpasmhelper import PDP11InstructionAssembler as ASM
class TestMethods(unittest.TestCase):
PDPLOGLEVEL = 'INFO'
# used to create various instances, collects all the options
# detail into this one place... mostly this is about loglevel
@classmethod
def make_pdp(cls):
return PDP1170(loglevel=cls.PDPLOGLEVEL)
@staticmethod
def ioaddr(p, offs):
"""Given a within-IO-page IO offset, return an IO addr."""
return (offs + p.mmu.iopage_base) & 0o177777
# convenience routine to load word values into physical memory
@staticmethod
def loadphysmem(p, words, addr):
for a, w in enumerate(words, start=(addr >> 1)):
p.physmem[a] = w
# some of these can't be computed at class definition time, so...
@classmethod
def usefulconstants(cls):
p = cls.make_pdp() # meh, need this for some constants
ns = SimpleNamespace()
# Kernel instruction space PDR registers
ns.KISD0 = cls.ioaddr(p, p.mmu.APR_KERNEL_OFFS)
ns.KISD7 = ns.KISD0 + 0o16
# Kernel data space PDR registers
ns.KDSD0 = ns.KISD0 + 0o20
ns.KDSD7 = ns.KDSD0 + 0o16
# Kernel instruction space PAR registers
ns.KISA0 = ns.KDSD0 + 0o20
ns.KISA7 = ns.KISA0 + 0o16
# Kernel data space PAR registers
ns.KDSA0 = ns.KISA0 + 0o20
ns.KDSA7 = ns.KDSA0 + 0o16
# User mode similar
ns.UISD0 = cls.ioaddr(p, p.mmu.APR_USER_OFFS)
ns.UDSD0 = ns.UISD0 + 0o20
ns.UISA0 = ns.UDSD0 + 0o20
ns.UDSA0 = ns.UISA0 + 0o20
ns.MMR0 = cls.ioaddr(p, p.mmu.MMR0_OFFS)
ns.MMR3 = cls.ioaddr(p, p.mmu.MMR3_OFFS)
return ns
#
# Create and return a test machine with a simple memory mapping:
# Kernel Instruction space seg 0 points to physical 0
# Kernel Data space segment 0 also points to physical 0
# User instruction space seg 0 points to physical 0o20000
# User Data space seg 0 points to physical 0o40000
# and turns on the MMU
#
# premmu is an optional list of instructions to execute
# before turning on the MMU
#
# postmmu is an optional list of instructions to execute
# after turning on the MMU
#
def simplemapped_pdp(self, p=None, *, premmu=[], postmmu=[]):
if p is None:
p = self.make_pdp()
cn = self.usefulconstants()
# this is a table of instructions that ...
# Puts the system stack at 0o20000 (8K)
# Puts 0o22222 into physical location 0o20000
# Puts 0o33333 into physical location 0o20002
# Puts 0o44444 into physical location 0o40000
# Sets Kernel Instruction space A0 to point to physical 0
# Sets Kernel Data space A0 to point to physical 0
# Sets Kernel Data space A7 to point to the IO page
# Sets User Instruction space A0 to point to physical 0o20000
# sets User Data space D0 to point to physical 0o40000
# and turns on the MMU with I/D sep
#
# These instructions will be placed at 2K in memory
#
with ASM() as a:
a.mov(0o20000, 'sp') # start system stack at 8k
# write the constants as described above
a.mov(0o22222, a.ptr(0o20000))
a.mov(0o33333, a.ptr(0o20002))
a.mov(0o44444, a.ptr(0o40000))
# point both kernel seg 0 PARs to physical zero
a.clr(a.ptr(cn.KISA0))
a.clr(a.ptr(cn.KDSA0))
# kernel seg 7 D space PAR to I/O page (at 22-bit location)
a.mov(0o017760000 >> 6, a.ptr(cn.KDSA0 + (7 * 2)))
# user I seg 0 to 0o20000, user D seg 0 to 0o40000
a.mov(0o20000 >> 6, a.ptr(cn.UISA0))
a.mov(0o40000 >> 6, a.ptr(cn.UDSA0))
# set the PDRs for segment zero
a.mov(0o077406, 'r3')
# 77406 = PDR<2:0> = ACF = 0o110 = read/write
# PLF<14:8> =0o0774 = full length (128*64 bytes = 8K)
a.mov('r3', a.ptr(cn.KISD0))
a.mov('r3', a.ptr(cn.KDSD0))
a.mov('r3', a.ptr(cn.UISD0))
a.mov('r3', a.ptr(cn.UDSD0))
# PDR for segment 7
a.mov('r3', a.ptr(cn.KDSD0 + (7 * 2)))
# set previous mode to USER, keeping current mode KERNEL, pri 7
a.mov((p.KERNEL << 14) | (p.USER << 12) | (7 << 5),
a.ptr(self.ioaddr(p, p.PS_OFFS)))
# turn on 22-bit mode, unibus mapping, and I/D sep for k & u
a.mov(0o000065, a.ptr(cn.MMR3))
# Instructions supplied by caller, to be executed before
# enabling the MMU. They are "literals" since they have
# already been assembled.
for w in premmu:
a.literal(w)
# turn on relocation mode ...
a.inc(a.ptr(cn.MMR0))
# and the post-MMU instructions
for w in postmmu:
a.literal(w)
a.halt()
instloc = 0o4000 # 2K
self.loadphysmem(p, a.instructions(), instloc)
return p, instloc
# these tests end up testing other stuff too of course, including MMU
def test_mfpi(self):
tvecs = []
for result, r1tval in ((0o33333, 2), (0o22222, 0)):
# r1=r1tval, mfpi (r1) -> r0; expect r0 = result
with ASM() as a:
a.mov(r1tval, 'r1')
a.mfpi('(r1)')
a.mov('(sp)+', 'r0')
tvecs.append((result, a.instructions()))
for result, insts in tvecs:
with self.subTest(result=result, insts=insts):
p, pc = self.simplemapped_pdp(postmmu=insts)
p.run(pc=pc)
self.assertEqual(p.r[0], result)
def test_mfpxsp(self):
cn = self.usefulconstants()
with ASM() as u:
u.mov('r2', 'r6')
u.trap(0)
user_mode_instructions = u.instructions()
with ASM() as premmu:
ts = premmu # just for brevity...
ts.mov(0o14000, ts.ptr(0o34)) # set vector 034 to 14000
ts.clr(ts.ptr(0o36)) # PSW for trap - zero work
ts.mov(0o20000, 'r0') # mov #20000,r0
for uinst in user_mode_instructions:
ts.mov(uinst, '(r0)+')
ts.mov(0o123456, 'r2') # mov #123456,r2
ts.mov(0o140340, '-(sp)') # push user-ish PSW to K stack
ts.clr('-(sp)') # new user PC = 0
with ASM() as postmmu:
postmmu.literal(6) # RTT - goes to user mode, addr 0
p, pc = self.simplemapped_pdp(premmu=premmu.instructions(),
postmmu=postmmu.instructions())
# put the trap handler at 14000 as expected
with ASM() as th:
th.mfpd('sp')
th.mov('(sp)+', 'r3')
th.halt()
self.loadphysmem(p, th.instructions(), 0o14000)
p.run(pc=pc)
self.assertEqual(p.r[2], p.r[3])
def test_mtpi(self):
cn = self.usefulconstants()
with ASM() as ts:
ts.mov(0o1717, '-(sp)') # pushing 0o1717
ts.mtpi(ts.ptr(0o02)) # and MTPI it to user location 2
ts.clr(ts.ptr(cn.MMR0)) # turn MMU back off
ts.mov(ts.ptr(0o20002), 'r0') # r0 = (020002)
tvecs = ((0o1717, ts.instructions()),)
for r0result, insts in tvecs:
with self.subTest(r0result=r0result, insts=insts):
p, pc = self.simplemapped_pdp(postmmu=insts)
p.run(pc=pc)
self.assertEqual(p.r[0], r0result)
def test_add_sub(self):
p = self.make_pdp()
testvecs = (
# (op0, op1, expected op0 + op1, nzvc, expected op0 - op1, nzvc)
# None for nzvc means dont test that (yet/for-now/need to verify)
(1, 1, 2, 0, 0, 4), # 1 + 1 = 2(_); 1 - 1 = 0(Z)
(1, 32767, 32768, 0o12, 32766, 0),
(0, 0, 0, 0o04, 0, 0o04),
(32768, 1, 32769, 0o10, 32769, 0o13),
(65535, 1, 0, 0o05, 2, 1),
)
testloc = 0o10000
add_loc = testloc
sub_loc = testloc + 4
for addsub, loc in (('add', add_loc), ('sub', sub_loc)):
with ASM() as a:
getattr(a, addsub)('r0', 'r1')
a.halt()
for offs, inst in enumerate(a.instructions()):
p.physmem[(loc >> 1) + offs] = inst
for r0, r1, added, a_nzvc, subbed, s_nzvc in testvecs:
with self.subTest(r0=r0, r1=r1, op="add"):
p.r[0] = r0
p.r[1] = r1
p.run(pc=add_loc)
self.assertEqual(p.r[1], added)
if a_nzvc is not None:
self.assertEqual(p.psw & 0o17, a_nzvc)
with self.subTest(r0=r0, r1=r1, op="sub"):
p.r[0] = r0
p.r[1] = r1
p.run(pc=sub_loc)
self.assertEqual(p.r[1], subbed)
if s_nzvc is not None:
self.assertEqual(p.psw & 0o17, s_nzvc)
# test BNE (and, implicitly, INC/DEC)
def test_bne(self):
p = self.make_pdp()
loopcount = 0o1000
with ASM() as a:
# Program is:
# MOV loopcount,R1
# CLR R0
# LOOP: INC R0
# DEC R1
# BNE LOOP
# HALT
a.mov(loopcount, 'r1')
a.clr('r0')
a.label('LOOP')
a.inc('r0')
a.dec('r1')
a.bne('LOOP')
a.halt()
instloc = 0o4000
self.loadphysmem(p, a.instructions(), instloc)
p.run(pc=instloc)
self.assertEqual(p.r[0], loopcount)
self.assertEqual(p.r[1], 0)
# test BEQ and BNE (BNE was also tested in test_bne)
def test_eqne(self):
p = self.make_pdp()
goodval = 0o4321 # arbitrary, not zero
with ASM() as a:
a.clr('r1') # if successful r1 will become goodval
a.clr('r0')
a.beq('good')
a.halt() # stop here if BEQ fails
a.label('good')
a.literal(0o000257) # 1f: CCC .. clear all the condition codes
a.bne('good2')
a.halt() # stop here if BNE fails
a.label('good2')
a.mov(goodval, 'r1') # indicate success
a.halt()
instloc = 0o4000
self.loadphysmem(p, a.instructions(), instloc)
p.run(pc=instloc)
self.assertEqual(p.r[1], goodval)
# create the instruction sequence shared by test_cc and test_ucc
def _cc_unscc(self, br1, br2):
with ASM() as a:
# program is:
# CLR R0
# MOV @#05000,R1 ; see discussion below
# MOV @#05002,R2 ; see discussion below
# CMP R1,R2
# br1 1f ; see discussion
# HALT
# 1: DEC R0
# CMP R2,R1
# br2 1f ; see discussion
# HALT
# 1: DEC R0
# HALT
#
# The test_cc and test_unscc tests will poke various test
# cases into locations 5000 and 5002, knowing the order of
# the operands in the two CMP instructions and choosing
# test cases and br1/br2 accordingly.
#
# If the program makes it to the end R0 will be 65554 (-2)
a.clr('r0')
a.mov(a.ptr(0o5000), 'r1')
a.mov(a.ptr(0o5002), 'r2')
a.cmp('r1', 'r2')
a.literal((br1 & 0o177400) | 1) # br1 1f
a.halt()
a.dec('r0')
a.cmp('r2', 'r1')
a.literal((br2 & 0o177400) | 1) # br2 1f
a.halt()
a.dec('r0')
a.halt()
return a.instructions()
def test_cc(self):
# various condition code tests
p = self.make_pdp()
insts = self._cc_unscc(BRANCH_CODES['blt'], BRANCH_CODES['bgt'])
instloc = 0o4000
self.loadphysmem(p, insts, instloc)
# just a convenience so the test data can use neg numbers
def s2c(x):
return x & 0o177777
for lower, higher in ((0, 1), (s2c(-1), 0), (s2c(-1), 1),
(s2c(-32768), 32767),
(s2c(-32768), 0), (s2c(-32768), 32767),
(17, 42), (s2c(-42), s2c(-17))):
p.physmem[0o5000 >> 1] = lower
p.physmem[0o5002 >> 1] = higher
with self.subTest(lower=lower, higher=higher):
p.run(pc=instloc)
self.assertEqual(p.r[0], 65534)
# probably never a good idea, but ... do some random values
for randoms in range(1000):
a = random.randint(-32768, 32767)
b = random.randint(-32768, 32767)
while a == b:
b = random.randint(-32768, 32767)
if a > b:
a, b = b, a
p.physmem[0o5000 >> 1] = s2c(a)
p.physmem[0o5002 >> 1] = s2c(b)
with self.subTest(lower=a, higher=b):
p.run(pc=instloc)
self.assertEqual(p.r[0], 65534)
def test_unscc(self):
# more stuff like test_cc but specifically testing unsigned Bxx codes
p = self.make_pdp()
insts = self._cc_unscc(BRANCH_CODES['blo'], BRANCH_CODES['bhi'])
instloc = 0o4000
self.loadphysmem(p, insts, instloc)
for lower, higher in ((0, 1), (0, 65535), (32768, 65535),
(65534, 65535),
(32767, 32768),
(17, 42)):
p.physmem[0o5000 >> 1] = lower
p.physmem[0o5002 >> 1] = higher
with self.subTest(lower=lower, higher=higher):
p.run(pc=instloc)
self.assertEqual(p.r[0], 65534)
# probably never a good idea, but ... do some random values
for randoms in range(1000):
a = random.randint(0, 65535)
b = random.randint(0, 65535)
while a == b:
b = random.randint(0, 65535)
if a > b:
a, b = b, a
p.physmem[0o5000 >> 1] = a
p.physmem[0o5002 >> 1] = b
with self.subTest(lower=a, higher=b):
p.run(pc=instloc)
self.assertEqual(p.r[0], 65534)
def test_ash1(self):
# this code sequence taken from Unix startup, it's not really
# much of a test.
with ASM() as a:
a.mov(0o0122451, 'r2') # mov #122451,R2
a.literal(0o072200, 0o0177772) # ash -6,R2
a.bic(0o0176000, 'r2') # bic #0176000,R2
a.halt()
p = self.make_pdp()
instloc = 0o4000
self.loadphysmem(p, a.instructions(), instloc)
p.run(pc=instloc)
self.assertEqual(p.r[2], 0o1224)
def test_br(self):
# though the bug has been fixed, this is a test of whether
# all branch offset values work correctly. Barn door shut...
p = self.make_pdp()
# the idea is a block of INC R0 instructions
# followed by a halt, then a spot for a branch
# then a block of INC R1 instructions followed by a halt
#
# By tweaking the BR instruction (different forward/back offsets)
# and starting execution at the BR, the result on R0 and R1
# will show if the correct branch offset was effected.
#
# NOTE: 0o477 (branch offset -1) is a tight-loop branch to self
# and that case is tested separately.
#
insts = [0o5200] * 300 # 300 INC R0 instructions
insts += [0] # 1 HALT instruction
insts += [0o477] # BR instruction .. see below
# want to know where in memory this br will is
brspot = len(insts) - 1
insts += [0o5201] * 300 # 300 INC R1 instructions
insts += [0] # 1 HALT instruction
# put that mess into memory at an arbitrary spot
baseloc = 0o10000
for a, w in enumerate(insts, start=(baseloc >> 1)):
p.physmem[a] = w
# test the negative offsets:
# Set R0 to 65535 (-1)
# Set R1 to 17
# -1 is a special case, that's the tight loop and not tested here
# -2 reaches the HALT instruction only, R0 will remain 65535
# -3 reaches back to one INC R0, R0 will be 0
# -4 reaches back two INC R0's, R0 will be 1
# and so on
# 0o400 | offset starting at 0o376 will be the BR -2 case
expected_R0 = 65535
for offset in range(0o376, 0o200, -1):
p.physmem[(baseloc >> 1) + brspot] = (0o400 | offset)
p.r[0] = 65535
p.r[1] = 17
# note the 2* because PC is an addr vs physmem word index
p.run(pc=baseloc + (2*brspot))
with self.subTest(offset=offset):
self.assertEqual(p.r[0], expected_R0)
self.assertEqual(p.r[1], 17)
expected_R0 = (expected_R0 + 1) & 0o177777
# and the same sort of test but with forward branching
expected_R1 = 42 + 300
for offset in range(0, 0o200):
p.physmem[(baseloc >> 1) + brspot] = (0o400 | offset)
p.r[0] = 17
p.r[1] = 42
# note the 2* because PC is an addr vs physmem word index
p.run(pc=baseloc + (2*brspot))
with self.subTest(offset=offset):
self.assertEqual(p.r[0], 17)
self.assertEqual(p.r[1], expected_R1)
expected_R1 = (expected_R1 - 1) & 0o177777
def test_trap(self):
# test some traps
p = self.make_pdp()
# put a handlers for different traps into memory
# starting at location 0o10000 (4K). This just knows
# that each handler is 3 words long, the code being:
# MOV something,R4
# RTT
#
# where the "something" changes with each handler.
handlers_addr = 0o10000
handlers = (
0o012704, 0o4444, 0o000006, # for vector 0o004
0o012704, 0o1010, 0o000006, # for vector 0o010
0o012704, 0o3030, 0o000006, # for vector 0o030
0o012704, 0o3434, 0o000006 # for vector 0o034
)
self.loadphysmem(p, handlers, handlers_addr)
# and just jam the vectors in place
p.physmem[2] = handlers_addr # vector 0o004
p.physmem[3] = 0 # new PSW, stay in kernel mode
p.physmem[4] = handlers_addr + 6 # each handler above was 6 bytes
p.physmem[5] = 0
p.physmem[12] = handlers_addr + 12 # vector 0o30 (EMT)
p.physmem[13] = 0
p.physmem[14] = handlers_addr + 18 # vector 0o34 (TRAP)
p.physmem[15] = 0
# (tnum, insts)
testvectors = (
# this will reference an odd address, trap 4
(0o4444, (
# establish reasonable stack pointer (at 8K)
0o012706, 0o20000,
# CLR R3 and R4 so will know if they get set to something
0o005003, 0o005004,
# put 0o1001 into R0
0o012700, 0o1001,
# and reference it ... boom!
0o011001,
# show that the RTT got to here by putting magic into R3
0o012703, 0o123456)),
# this will execute a reserved instruction trap 10
(0o1010, (
# establish reasonable stack pointer (at 8K)
0o012706, 0o20000,
# CLR R3 and R4 so will know if they get set to something
0o005003, 0o005004,
# 0o007777 is a reserved instruction ... boom!
0o007777,
# show that the RTT got to here by putting magic into R3
0o012703, 0o123456)),
# this will execute an EMT instruction
(0o3030, (
# establish reasonable stack pointer (at 8K)
0o012706, 0o20000,
# CLR R3 and R4 so will know if they get set to something
0o005003, 0o005004,
# EMT #42
0o104042,
# show that the RTT got to here by putting magic into R3
0o012703, 0o123456)),
# this will execute an actual TRAP instruction
(0o3434, (
# establish reasonable stack pointer (at 8K)
0o012706, 0o20000,
# CLR R3 and R4 so will know if they get set to something
0o005003, 0o005004,
# TRAP #17
0o104417,
# show that the RTT got to here by putting magic into R3
0o012703, 0o123456)),
)
for R4, insts in testvectors:
self.loadphysmem(p, insts, 0o3000)
p.run(pc=0o3000)
self.assertEqual(p.r[3], 0o123456)
self.assertEqual(p.r[4], R4)
def test_trapcodes(self):
# a more ambitious testing of TRAP which verifies all
# available TRAP instruction codes work
p = self.make_pdp()
# poke the TRAP vector info directly in
p.physmem[14] = 0o10000 # vector 0o34 (TRAP) --> 0o10000
p.physmem[15] = 0
# this trap handler puts the trap # into R3
with ASM() as handler:
# the saved PC is at the top of the stack ... get it
handler.mov('(sp)', 'r0')
# get the low byte of the instruction which is the trap code
# note that the PC points after the TRAP instruction so:
handler.movb('-2(r0)', 'r3')
handler.rtt()
self.loadphysmem(p, handler.instructions(), 0o10000)
# just bash a stack pointer directly in
p.r[6] = 0o20000 # 8K and working down
for i in range(256):
with ASM() as a:
a.trap(i) # TRAP #i
a.mov('r3', 'r1') # MOV R3,R1 just to show RTT worked
a.halt()
self.loadphysmem(p, a.instructions(), 0o30000)
p.run(pc=0o30000)
self.assertEqual(p.r[3], p.r[1])
# because the machine code did MOVB, values over 127 get
# sign extended, so take that into consideration
if i > 127:
trapexpected = 0xFF00 | i
else:
trapexpected = i
self.assertEqual(p.r[1], trapexpected)
def _make_updown(self, taddr, uaddr, kaddr, uphysdata=0o200000):
# Makes the instruction blocks required for the mmu_updown tests.
# This is separated out so (as described below) it becomes possible
# to execute this in isolation just to generate the instructions
# and use them in other simulators (e.g., SIMH)
#
# Returns three tuples:
# (taddr, t), (uaddr, u), (k addr, k)
# where the t/u/k elements are the instruction blocks.
# the kernel stack will start at 8K and work its way down.
# This is fixed/required in the code. The taddr and kaddr must also
# be in that first 8K and MUST leave space for the kernel stack.
# The kernel stack is arbitrarily given at least 256 bytes
# (in reality it doesn't come close to using that)
APR0_end = 0o20000
if APR0_end - max(taddr, kaddr) < 256:
raise ValueError("not enough room for kernel stack")
kernel_stack = APR0_end
# there are some variable locations needed in the code, they
# are allocated from the "stack", like this:
kernel_stack -= 2
saved_r5 = kernel_stack
cn = self.usefulconstants()
# Two tests - up and down.
#
# In both tests, KERNEL I space page 0 is mapped to physical 0
# and KERNEL I space page 7 is mapped to the I/O page.
# I/D separation is NOT enabled for KERNEL.
# taddr and kaddr MUST be in this first 8K of memory (if only
# because the mapping setup doesn't map anything else)
#
# USER I space is mapped to uaddr which can be any 64-byte
# (i.e., mappable to user 0) boundary 0o20000 and beyond.
#
# All 64K of USER D space is mapped to 64K of physical memory
# from uphysdata to uphysdata + 64K, but with a bizarre page
# length scheme according to UP or DOWN phase of the test as
# below. I/D separation is (obviously) enabled for USER.
# All 64K of that memory is filled with sequential words such
# that (vaddr) + vaddr = 0o123456 (where vaddr is a user D space
# virtual address 0 .. 65534). This gives the test two ways to verify
# the MMU map is working correctly: by where the accessibility of a
# segment ends and by the value at the location where it ends.
#
# Segment pages in the PDP-11 are broken down into 32-word (64-byte)
# units called "blocks" in the manual. There are 128 blocks in
# each 8KB page.
#
# For UP direction test:
#
# using ED=0 (segments grow upwards), create a user DSPACE mapping
# where page zero has length ("PLF") 0, page 1 has
# length 16, page 2 has length 32 (all measured in blocks) etc...
# and then check that valid addresses map correctly and
# invalid ones fault correctly. Note a subtle semantic of the PDP
# page length field: to be invalid (in an upward growing segment)
# the address has to be GREATER than the computed block number.
# Thus a length of "zero" still has 1 valid block of words.
#
# For DOWN:
# using ED=1 ("dirbit" = 0o10) segments grow downwards, with the
# same 0, 16, 32 .. progression (of valid "blocks") but they
# are at the end of the segments.
#
# This test can be rightly criticized as unnecessarily complex;
# once the math has been shown correct for a few important length
# cases to consider, the possibility of further bugs is remote.
# Nevertheless, here it is.
# this code will go at taddr
with ASM() as tr:
# The trap handler for MMU faults and the trap 0 / trap 1 from
# the user code (when there is no MMU fault). It is integrated
# into one routine.
#
# The user code gets to use r0 and r1, the trap handler
# gets to use r2-r5:
# r2: expected good flag (initialized elsewhere)
# r3: determined good flag (by trap entry)
# r5: test table data pointer (initialized elsewhere)
tr.label('UTrap')
# first determine if trap0 (bad) or trap1 (good)
tr.mov('(sp)', 'r3') # get user PC from trap frame
tr.mfpi('-2(r3)') # get the trap instruction
tr.mov('(sp)+', 'r3') # r3 is now the trap instruction
tr.bic(0o177400, 'r3')
tr.cmp(1, 'r3')
tr.beq('common') # skip the HALT and the MMU entry point
# this was not a "good" trap, the user code failed
tr.halt()
tr.label('TrapMMU')
tr.clr('r3') # indicate MMU fault case
# both Utrap and TrapMMU join in common here on out
# see if the access was good/bad as expected
tr.label('common')
tr.cmp('r2', 'r3')
tr.beq('bump') # jump over the HALT
tr.halt() # NOPE, something wrong!
# the user mode code specifically avoids '(r0)+'
# to avoid ambiguity in machine types for when the
# autoincrement happens in the face of MMU aborts.
# Bump r0 for the user code here accordingly:
tr.label('bump')
tr.add(2, 'r0')
# see if it is time to switch to next table entry
tr.cmp('2(r5)', 'r0')
tr.bne('rtu') # skip over the "time to switch" stanza
# it is time to switch
tr.add(4, 'r5')
tr.mov('(r5)', 'r2')
tr.cmp(0o666, 'r2')
tr.bne('rtu')
tr.halt() # test done; success if r2 = 0o666
tr.label('rtu')
# next iteration of the user code loop
tr.clr('(sp)') # put user PC back to zero
tr.rtt()
# this trap handler is only used during the startup phase
# See where the kernel code invokes the user setup code
tr.label('trap_usersetup')
# the kernel put a resume address onto the stack, just go there
tr.add(4, 'sp') # get rid of user trap frame, don't care
tr.mov('(sp)+', 'pc')
# user mode program: there are two parts to this
# Starting at (user) location ZERO: the test program:
# read the given address: mov (r0),r1
# If this causes an MMU fault, it goes to the MMU trap handler
# If it succeeds, it then hits the trap(1) and goes to that
# handler. The kernel trap handler, using the test table,
# can then validate that the right thing happened.
# The code "loops" only because the kernel trap handler resets
# the PC to zero and bumps r0 then returns to user mode for the
# next iteration. (Yes, all this could have been done with mfpd
# but that feels like a different test than this)
#
# Start at (user) location labelled 'setup'
# user-mode code executed before the test begins to put
# the test pattern into memory
with ASM() as u:
# this subtract combines the access check with part1 of chksum
u.mov(0o123456, 'r1')
u.sub('(r0)', 'r1')
u.cmp('r0', 'r1')
u.beq('good')
u.trap(0o77) # trap 77 indicates miscompare
u.label('good')
u.trap(1) # indicate good status
# the kernel puts the PC back to zero after the good trap
# and also bumps r0. This is how the loop loops.
u.halt() # never get here, this is illegal
# this code is executed one time at startup (see kernel code)
u.label('setup')
# Initialize the user D space pattern that will be checked
# by the user code. In python this was:
#
# checksum = 0o123456 # arbitrary
# user_phys_DSPACEbase = 0o200000
# words = (checksum - (user_phys_DSPACEbase + o) & 0o177777
# for o in range(0, 65536, 2))
# self.loadphysmem(p, words, user_phys_DSPACEbase)
u.clr('r0')
u.mov(0o123456, 'r1')
u.label('pattern')
u.mov('r1', '(r0)+')
u.sub(2, 'r1')
u.tst('r0')
u.bne('pattern')
# the kernel code looks for this in r1 as success flag
u.mov(0o3333, 'r1')
u.trap(0)
# The kernel-mode code that drives the whole test
# this is certainly one way to allocate data variables,
# given the limitations of the non-assembler ASM() methodology...
#
# The stack will start at kstackstart
with ASM() as k:
k.mov(kernel_stack, 'sp')
# KERNEL I SPACE
# PAR 0 to physical 0
# PAR 7 to physical 760000 and 22bit not turned on
#
# PDR 77406 = read/write, full length
k.clr(k.ptr(cn.KISA0))
k.mov(0o760000 >> 6, k.ptr(cn.KISA7))
k.mov(0o077406, k.ptr(cn.KISD0))
k.mov(0o077406, k.ptr(cn.KISD7))
# USER I SPACE
k.mov(uaddr >> 6, k.ptr(cn.UISA0))
k.mov(0o077406, k.ptr(cn.UISD0))
# USER D SPACE... first set it up to be simply/fully
# accessible at its physical home, so that the pattern
# can be set. Then come back and limit the page lengths later.
k.mov(cn.UDSD0, 'r3') # will walk through D0 .. D7
# NOTE: A0 .. A7 is 040(r3)
k.mov(uphysdata >> 6, 'r4') # phys addr base
k.mov(8, 'r0')
k.label('utmp')
k.mov('r4', '040(r3)') # set U PAR; don't bump r3 yet
k.add(0o200, 'r4') # 0o200 = 8192>>6
k.mov(0o77406, '(r3)+') # set U PDR and bump to next
k.sob(0, 'utmp')
k.bis(1, k.ptr(cn.MMR3)) # enable I/D sep just for USER
k.mov(1, k.ptr(cn.MMR0)) # turn on MMU
# certainly could have used mtpd to set up the user mode
# pattern but this is just another excuse to test more things
# jump to the user 'setup' code, but first establish a handler
# for the trap it will execute when done.
k.mov(taddr + tr.getlabel('trap_usersetup'), '*$34')
k.mov(0o340, '*$36')
k.mov('pc', '-(sp)')
# add the offset to (forward ref) back_from_u
k.add(k.getlabel('back_from_u'), '(sp)')
k.mov(0o140340, '-(sp)') # push user-ish PSW to K stack
k.mov(u.getlabel('setup'), '-(sp)') # PC for setup code
k.rtt()
k.label('back_from_u')
# user code dropped this magic value into r1 on success
k.cmp(0o3333, 'r1')
k.beq('ok')
k.halt()
k.label('ok')
# and now set the length limits on the user D space
k.mov(cn.UDSD0, 'r3') # will walk through D0 .. D7
k.clr('r0') # r0: segno*2 = (0, 2, 4, .., 14)
k.label('PDRloop')
k.mov('r0', 'r2') # r2 = segno*2
k.ash(3, 'r2') # r2 = segno*16
k.swab('r2') # really (segno*16)<<8
k.add(0o06, 'r2') # ACF r/w segment
k.mov('r2', '(r3)+') # set U PDR
k.inc('r0') # bump r0 by two
k.inc('r0')
k.cmp('r0', 16) # and loop until done all 8 segments
k.blt('PDRloop')
# create the test table, just push it onto the stack (yeehah!)
k.mov(0, '-(sp)') # this is a PAD (not really needed)
k.mov(0o666, '-(sp)') # this is a sentinel
k.mov(0, '-(sp)')
k.mov(0, '-(sp)')
k.mov(0o176100, '-(sp)')
k.mov(1, '-(sp)')
k.mov(0o160000, '-(sp)')
k.mov(0, '-(sp)')
k.mov(0o154100, '-(sp)')
k.mov(1, '-(sp)')
k.mov(0o140000, '-(sp)')
k.mov(0, '-(sp)')
k.mov(0o132100, '-(sp)')
k.mov(1, '-(sp)')
k.mov(0o120000, '-(sp)')
k.mov(0, '-(sp)')
k.mov(0o110100, '-(sp)')
k.mov(1, '-(sp)')
k.mov(0o100000, '-(sp)')
k.mov(0, '-(sp)')
k.mov(0o66100, '-(sp)')
k.mov(1, '-(sp)')
k.mov(0o60000, '-(sp)')
k.mov(0, '-(sp)')
k.mov(0o44100, '-(sp)')
k.mov(1, '-(sp)')
k.mov(0o40000, '-(sp)')
k.mov(0, '-(sp)')
k.mov(0o22100, '-(sp)')
k.mov(1, '-(sp)')
k.mov(0o20000, '-(sp)')
k.mov(0, '-(sp)')
k.mov(0o100, '-(sp)')
k.mov(1, '-(sp)')
# the test table for the trap handler is now here:
k.mov('sp', 'r5')
k.mov('sp', k.ptr(saved_r5)) # so it can be recovered later
# test starts in the region at the start of the table
k.mov('(r5)', 'r2')
# poke the MMU trap handler vector (250)
k.mov(taddr + tr.getlabel('TrapMMU'), '*$250')
k.mov(0o340, '*$252')
# same for the "trap N" handler
k.mov(taddr + tr.getlabel('UTrap'), '*$34')
k.mov(0o340, '*$36')
# ok, now ready to start the user program
k.mov(0o140340, '-(sp)') # push user-ish PSW to K stack
k.clr('-(sp)') # new user PC = 0
k.clr('r0') # user test expects r0 to start zero
k.rtt()
# this is where the DOWN test starts.
k.label('DOWNTEST')
# re-establish initial kernel stack
k.mov(kernel_stack, 'sp')
# Redo the entire test table for the down address cases
# these were precomputed from the algorithm for setting PDRs
k.mov(0, '-(sp)')
k.mov(0o666, '-(sp)')
k.mov(0, '-(sp)')
k.mov(1, '-(sp)')
k.mov(0o161700, '-(sp)')
k.mov(0, '-(sp)')
k.mov(0o160000, '-(sp)')
k.mov(1, '-(sp)')
k.mov(0o143700, '-(sp)')
k.mov(0, '-(sp)')
k.mov(0o140000, '-(sp)')
k.mov(1, '-(sp)')
k.mov(0o125700, '-(sp)')
k.mov(0, '-(sp)')
k.mov(0o120000, '-(sp)')
k.mov(1, '-(sp)')
k.mov(0o107700, '-(sp)')
k.mov(0, '-(sp)')
k.mov(0o100000, '-(sp)')
k.mov(1, '-(sp)')
k.mov(0o71700, '-(sp)')
k.mov(0, '-(sp)')
k.mov(0o60000, '-(sp)')
k.mov(1, '-(sp)')
k.mov(0o53700, '-(sp)')
k.mov(0, '-(sp)')
k.mov(0o40000, '-(sp)')
k.mov(1, '-(sp)')
k.mov(0o35700, '-(sp)')
k.mov(0, '-(sp)')
k.mov(0o20000, '-(sp)')
k.mov(1, '-(sp)')
k.mov(0o17700, '-(sp)')
k.mov(1, '-(sp)')
k.mov('sp', 'r5') # r5 is where the table starts
k.mov('sp', k.ptr(saved_r5)) # store location for re-use
# fiddle the PDRs (PARs stay the same) for the down configuration
k.mov(cn.UDSD0, 'r3')
k.clr('r0')
k.label('PARloopDOWN')
# compute segno * 8 in r2 (r0 starts as segno*2)
k.mov('r0', 'r2')
k.ash(3, 'r2')
# pln = 0o177 - (segno * 16)
k.mov(0o177, 'r1')
k.sub('r2', 'r1')
k.mov('r1', 'r2')
k.swab('r2')
k.add(0o16, 'r2') # the downward growing case
k.mov('r2', '(r3)+') # set U PDR
k.inc('r0')
k.inc('r0')
k.cmp('r0', 16)
k.blt('PARloopDOWN')
k.clr('r2') # the down test starts in 'bad' zone
# ok, now ready to start the user program
k.mov(0o140340, '-(sp)') # push user-ish PSW to K stack
k.clr('-(sp)') # new user PC = 0
k.clr('r0') # user test expects r0 to start zero
k.rtt()
# Now for something extra frosty... relocate just segment 4
# (arbitrarily chosen) of the user memory to a different
# physical page and run the test again to ensure it still works.
# This will make use of KERNEL A1 and A2 segments to map the
# relocation (note: I space because no sep I/D for kernel here)
k.label('BONUS')
# recover the r5 stack table beginning
k.mov(k.ptr(saved_r5), 'r5')
# copy UDSA4 into KISA1 - mapping old segment into kernel space
k.mov(k.ptr(cn.UDSA0 + 4*2), k.ptr(cn.KISA0 + 2)) # i.e., A1
# the new location for this data will be physical 0o600000
# (not a typo) which becomes 0o6000 in the PAR
k.mov(0o6000, k.ptr(cn.KISA0 + 4)) # i.e., A2
# the standard PDR access/full-length/etc bits
k.mov(0o077406, k.ptr(cn.KISD0 + 2))
k.mov(0o077406, k.ptr(cn.KISD0 + 4))
# count r0, source address r1, destination r2
k.mov(4096, 'r0')
k.mov(8192, 'r1')
k.mov(8192*2, 'r2')
k.mov('(r1)+', '(r2)+')
k.literal(0o077002) # SOB to the copy
# switch the user page to the new mapping
k.mov(0o6000, k.ptr(cn.UDSA0 + 4*2))
# and the standard initialization dance
k.clr('r2') # the down test starts in 'bad' zone
k.clr('r0')
k.clr('(sp)') # just knows the user loop starts at zero
k.rtt()
return (taddr, tr), (uaddr, u), (kaddr, k)
def test_mmu_updown(self):
# test the page length field support in both up and down directions
# This somewhat-irresponsible magnum opus of assembly code would
# have been much easier to write, understand, and maintain if it
# used the PDP1170/mmu/etc methods directly and was mostly
# written at the python level rather than elaborate machine code.
# For example, it could have looped over calls to mmu.v2p()
# instead of performing an elaborate dance of user mode code
# and kernel trap handlers to analyze the same thing.
#
# HOWEVER, doing it as machine code allowed the same instructions
# to be run through SIMH for cross-verification of the test itself
# and the machine behavior. Was the juice worth the squeeze?
# Someone else will have to decide; the deed is done.
#
# Note that the assembly of three code segments
# (the trap handlers, the user code, and the "kernel") are
# in a separate method, which is helpful for getting at the
# instructions in the "import to SIMH" usage scenario.
#
cn = self.usefulconstants()
p = self.make_pdp()
# On these addresses: the code isn't fully general (mostly in
# how the MMU is set up). The kernel stack will start at 8K
# (0o20000 physical) and work downwards. The traps and kernel
# code can be "anywhere" so long as it is in that first 8K
# of memory and leaves room for trap vectors at the bottom and
# stack at the top.
#
# The user code can be on any 64-byte (!) physical boundary.
# The kernel knows the virtual address for the start will be zero.
#
# this are all PHYSICAL addresses. The code is not fully general,
# there are constraints: taddr and kaddr must be in the first
# 8K of physical memory (if only because that's how the trivial
# kernel mapping is set up). The kernel stack, which also
# requires room for the test tables, must start at the tail end
# of the first 8K.
#
# The uaddr must be on an 8K boundary
taddr = 0o4000
kaddr = 0o6000 # make sure enough room for the traps code
uaddr = 0o20000
for addr, b in self._make_updown(taddr, uaddr, kaddr):
if addr == kaddr:
# need to know DOWNTEST and BONUS
downtest = kaddr + b.getlabel('DOWNTEST')
bonus = kaddr + b.getlabel('BONUS')
self.loadphysmem(p, b.instructions(), addr)
with self.subTest(phase="UP"):
# finally ready to run the whole shebang!
p.run(pc=kaddr)
# a halt was encountered, verify r2 is the end sentinel
self.assertEqual(p.r[2], 0o666)
with self.subTest(phase="DOWN"):
# run the down test
p.r[2] = 0 # superfluous but makes sure
p.run(pc=downtest)
self.assertEqual(p.r[2], 0o666)
with self.subTest(phase="BONUS"):
# and the bonus test
p.r[2] = 0 # superfluous but makes sure
p.run(pc=bonus)
self.assertEqual(p.r[2], 0o666)
def test_mmu_AWbits(self):
cn = self.usefulconstants()
p = self.make_pdp()
base_address = 0o10000
with ASM() as k:
# this is silly but easy, just put the trap handler here and
# jump over it
k.br('L1')
k.label('traphandler')
k.rtt()
k.label('L1')
k.mov(base_address, 'sp') # system stack just below this code
#
# No I/D separation turned on, so everything is mapped via I SPACE
# PAR 0 to physical 0
# PAR 1 to physical 8K
# PAR 2 to physical 16K
# ... etc ... 1:1 virtual:physical mapping up to ...
# PAR 7 to phys 760000 and 22bit not turned on (i.e., I/O page)
#
k.clr('r2') # r2 will step by 0o200 for 8K PAR incrs
k.mov(cn.KISA0, 'r0') # r0 will chug through the PARs
k.mov(7, 'r1') # count of PARs to set
k.label('parloop')
k.mov('r2', '(r0)+')
k.add(0o200, 'r2')
k.sob('r1', 'parloop')
# set the PAR7 to I/O page
k.mov(0o7600, '(r0)')
# now the PDRs
k.mov(cn.KISD0, 'r4')
k.mov(0o77406, '(r4)+') # read/write, full length for PDR0
k.mov(0o77404, 'r2') # r/w, full length, trap on any r/w
k.mov(6, 'r1') # setting PDR1 .. PDR6
k.label('pdrloop')
k.mov('r2', '(r4)+')
k.sob('r1', 'pdrloop')
k.mov(0o77406, '(r4)+') # r/w, full length for PDR7 / IO page
# NOTE: at this point '-(r4)' will be PDR7 ... that is used below
# set up the trap handler
k.mov(base_address + k.getlabel('traphandler'), '*$250')
k.mov(0o340, '*$252')
k.mov(1, k.ptr(cn.MMR0)) # turn on MMU
# this test code just "knows" the code is in APR0 (8K and below)
# and makes three accesses:
# a READ at 12K (APR1)
# a WRITE at 20K (APR2)
# a READ-then-WRITE at 28K (APR3)
#
# then it dumps the 8 kernel PDRS onto the stack in reverse
# (so that at the end (sp) -> PDR0
#
k.mov(0o20000, 'r0') # 8K will will be the base for:
k.mov('010000(r0)', 'r1') # read from 12K
k.mov(1234, '030000(r0)') # write to 20K
k.inc('050000(r0)') # read-then-write to 28K
# push (the dumb way) PDRs onto the stack for examination
k.mov('-(r4)', '-(sp)')
k.mov('-(r4)', '-(sp)')
k.mov('-(r4)', '-(sp)')
k.mov('-(r4)', '-(sp)')
k.mov('-(r4)', '-(sp)')
k.mov('-(r4)', '-(sp)')
k.mov('-(r4)', '-(sp)')
k.mov('-(r4)', '-(sp)')
# expected:
# * PDR0: W only, mgmt traps not set here
# * PDR1 to be only A bit
# * PDR2 to be A and W
# * PDR3 to be A and W
# * PDR4-6 to be neither
# * PDR7 (not really part of the test but will be neither)
# These expected_PDRs were obtained by running the machine
# code in this test under SIMH.
expected_PDRs = [0o077506,
0o077604,
0o077704,
0o077704,
0o077404,
0o077404,
0o077404,
0o077406]
k.clr('r0')
k.mov('sp', 'r1')
for i, xpdr in enumerate(expected_PDRs):
k.cmp(xpdr, '(r1)+')
k.beq(f"LXX{i}")
k.mov(i | 0o100000, 'r0')
k.mov('-2(r1)', 'r3')
k.br('_done')
k.label(f"LXX{i}")
k.label('_done')
k.halt()
self.loadphysmem(p, k.instructions(), base_address)
p.run(pc=base_address)
self.assertEqual(p.r[0], 0)
def test_ubmap(self):
p = self.make_pdp()
ubmaps = self.ioaddr(p, p.ub.UBMAP_OFFS)
# code paraphrased from UNIX startup, creates a mapping pattern
# that the rest of the code expects (and fiddles upper bits)
# So ... test that.
for i in range(0, 62, 2):
p.mmu.wordRW(ubmaps + (2 * i), i << 12 & 0o1777777)
p.mmu.wordRW(ubmaps + (2 * (i + 1)), 0)
# XXX there is no real test yet because the UBMAPs
# are all just dummied up right now
# this is not a unit test, invoke it using timeit etc
def speed_test_setup(self, *, loopcount=200, mmu=True, inst=None):
"""Set up a test run of 10*loopcount inst instructions.
Returns tuple: p, pc
"""
p, pc = self.simplemapped_pdp()
# the returned pdp is loaded with instructions for setting up
# the mmu; only do them if that's what is wanted
if mmu:
p.run(pc=pc)
# by default the instruction being timed will be MOV R1,R0
# but other instructions could be used. MUST ONLY BE ONE WORD
if inst is None:
inst = 0o010100
# now load the test timing loop... 49 "inst" instructions
# and an SOB for looping (so 50 overall instructions per loop)
with ASM() as a:
a.mov(loopcount, 'r4')
a.label('LOOP')
for i in range(49):
a.literal(inst)
a.sob('r4', 'LOOP')
a.halt()
insts = a.instructions()
instloc = 0o4000
for a2, w in enumerate(insts):
p.mmu.wordRW(instloc + (2 * a2), w)
return p, instloc
def speed_test_run(self, p, instloc):
"""See speed_test_setup"""
p.run(pc=instloc)
if __name__ == "__main__":
import argparse
import timeit
movr1r0 = 0o010100
parser = argparse.ArgumentParser()
parser.add_argument('-p', '--performance', action="store_true")
parser.add_argument('-i', '--instruction', default=movr1r0, type=int)
args = parser.parse_args()
if args.performance:
# the goal is to execute inst 1M times. The loop executes 49 inst
# instructions and 1 sob (which taken together are considered as 50).
# Want to drive "number=" up more than loopcount, so use
# loopcount=20 ... means "1000" inst instructions
# number=1000 ... do that 1000 times, for 1M instructions
t = TestMethods()
p, pc = t.speed_test_setup(loopcount=20, inst=args.instruction)
t = timeit.timeit(stmt='t.speed_test_run(p, pc)',
number=1000, globals=globals())
tnsec = round(1000 * t, 1)
print(f"Instruction {oct(args.instruction)} took {tnsec} nsecs")
else:
unittest.main()