Merge branch 'VAX-TODR'

This commit is contained in:
Mark Pizzolato 2011-09-29 06:32:58 -07:00
commit 7f9a612e96
4 changed files with 314 additions and 66 deletions

View file

@ -29,6 +29,30 @@
todr TODR clock todr TODR clock
tmr interval timer tmr interval timer
28-Sep-11 MP Generalized setting TODR for all OSes.
Unbound the TODR value from the 100hz clock tick
interrupt. TODR now behaves like the original
battery backed-up clock and runs with the wall
clock, not the simulated instruction clock.
Two operational modes are available:
- Default VMS mode, which is similar to the previous
behavior in that without initializing the TODR it
would default to the value VMS would set it to if
VMS knew the correct time. This would be correct
almost all the time unless a VMS disk hadn't been
booted from for more than a year. This mode
produces strange time results for non VMS OSes on
each system boot.
- OS Agnostic mode. This mode behaves precisely like
the VAX780 TODR and works correctly for all OSes.
This mode is enabled by attaching the TODR to a
battery backup state file for the TOY clock
(i.e. sim> attach TODR TOY_CLOCK). When operating
in OS Agnostic mode, the TODR will initially start
counting from 0 and be adjusted differently when an
OS specifically writes to the TODR. VMS will prompt
to set the time on each boot unless the SYSGEN
parameter TIMEPROMPTWAIT is set to 0.
21-Mar-11 RMS Added reboot capability 21-Mar-11 RMS Added reboot capability
17-Aug-08 RMS Resync TODR on any clock reset 17-Aug-08 RMS Resync TODR on any clock reset
18-Jun-07 RMS Added UNIT_IDLE flag to console input, clock 18-Jun-07 RMS Added UNIT_IDLE flag to console input, clock
@ -56,7 +80,7 @@
*/ */
#include "vax_defs.h" #include "vax_defs.h"
#include <time.h>
/* Terminal definitions */ /* Terminal definitions */
@ -171,6 +195,11 @@ int32 clk_tps = 100; /* ticks/second */
int32 tmxr_poll = CLK_DELAY * TMXR_MULT; /* term mux poll */ int32 tmxr_poll = CLK_DELAY * TMXR_MULT; /* term mux poll */
int32 tmr_poll = CLK_DELAY; /* pgm timer poll */ int32 tmr_poll = CLK_DELAY; /* pgm timer poll */
int32 todr_reg = 0; /* TODR register */ int32 todr_reg = 0; /* TODR register */
struct todr_battery_info {
uint32 toy_gmtbase; /* GMT base of set value */
uint32 toy_gmtbasemsec; /* The milliseconds of the set value */
};
typedef struct todr_battery_info TOY;
int32 fl_fnc = 0; /* function */ int32 fl_fnc = 0; /* function */
int32 fl_esr = 0; /* error status */ int32 fl_esr = 0; /* error status */
@ -197,6 +226,8 @@ t_stat tmr_svc (UNIT *uptr);
t_stat tti_reset (DEVICE *dptr); t_stat tti_reset (DEVICE *dptr);
t_stat tto_reset (DEVICE *dptr); t_stat tto_reset (DEVICE *dptr);
t_stat clk_reset (DEVICE *dptr); t_stat clk_reset (DEVICE *dptr);
t_stat clk_attach (UNIT *uptr, char *cptr);
t_stat clk_detach (UNIT *uptr);
t_stat tmr_reset (DEVICE *dptr); t_stat tmr_reset (DEVICE *dptr);
t_stat fl_svc (UNIT *uptr); t_stat fl_svc (UNIT *uptr);
t_stat fl_reset (DEVICE *dptr); t_stat fl_reset (DEVICE *dptr);
@ -281,7 +312,7 @@ DEVICE tto_dev = {
/* TODR and TMR data structures */ /* TODR and TMR data structures */
UNIT clk_unit = { UDATA (&clk_svc, UNIT_IDLE, 0), CLK_DELAY }; /* 100Hz */ UNIT clk_unit = { UDATA (&clk_svc, UNIT_IDLE+UNIT_FIX, sizeof(TOY)), CLK_DELAY };/* 100Hz */
REG clk_reg[] = { REG clk_reg[] = {
{ DRDATA (TODR, todr_reg, 32), PV_LEFT }, { DRDATA (TODR, todr_reg, 32), PV_LEFT },
@ -296,9 +327,9 @@ REG clk_reg[] = {
DEVICE clk_dev = { DEVICE clk_dev = {
"TODR", &clk_unit, clk_reg, NULL, "TODR", &clk_unit, clk_reg, NULL,
1, 0, 0, 0, 0, 0, 1, 0, 8, 1, 0, 0,
NULL, NULL, &clk_reset, NULL, NULL, &clk_reset,
NULL, NULL, NULL, NULL, &clk_attach, &clk_detach,
NULL, 0 NULL, 0
}; };
@ -578,7 +609,6 @@ tmr_poll = sim_rtcn_calb (clk_tps, TMR_CLK); /* calibrate clock */
sim_activate (&clk_unit, tmr_poll); /* reactivate unit */ sim_activate (&clk_unit, tmr_poll); /* reactivate unit */
tmxr_poll = tmr_poll * TMXR_MULT; /* set mux poll */ tmxr_poll = tmr_poll * TMXR_MULT; /* set mux poll */
AIO_SET_INTERRUPT_LATENCY(tmr_poll*clk_tps); /* set interrrupt latency */ AIO_SET_INTERRUPT_LATENCY(tmr_poll*clk_tps); /* set interrrupt latency */
todr_reg = todr_reg + 1; /* incr TODR */
if ((tmr_iccs & TMR_CSR_RUN) && tmr_use_100hz) /* timer on, std intvl? */ if ((tmr_iccs & TMR_CSR_RUN) && tmr_use_100hz) /* timer on, std intvl? */
tmr_incr (TMR_INC); /* do timer service */ tmr_incr (TMR_INC); /* do timer service */
return SCPE_OK; return SCPE_OK;
@ -651,9 +681,44 @@ t_stat clk_reset (DEVICE *dptr)
tmr_poll = sim_rtcn_init (clk_unit.wait, TMR_CLK); /* init 100Hz timer */ tmr_poll = sim_rtcn_init (clk_unit.wait, TMR_CLK); /* init 100Hz timer */
sim_activate_abs (&clk_unit, tmr_poll); /* activate 100Hz unit */ sim_activate_abs (&clk_unit, tmr_poll); /* activate 100Hz unit */
tmxr_poll = tmr_poll * TMXR_MULT; /* set mux poll */ tmxr_poll = tmr_poll * TMXR_MULT; /* set mux poll */
if (clk_unit.filebuf == NULL) { /* make sure the TODR is initialized */
clk_unit.filebuf = calloc(sizeof(TOY), 1);
if (clk_unit.filebuf == NULL)
return SCPE_MEM;
todr_resync ();
}
return SCPE_OK; return SCPE_OK;
} }
/* CLK attach */
t_stat clk_attach (UNIT *uptr, char *cptr)
{
t_stat r;
uptr->flags = uptr->flags | (UNIT_ATTABLE | UNIT_BUFABLE);
memset (uptr->filebuf, 0, (size_t)uptr->capac);
r = attach_unit (uptr, cptr);
if (r != SCPE_OK)
uptr->flags = uptr->flags & ~(UNIT_ATTABLE | UNIT_BUFABLE);
else
uptr->hwmark = (uint32) uptr->capac;
return r;
}
/* CLK detach */
t_stat clk_detach (UNIT *uptr)
{
t_stat r;
r = detach_unit (uptr);
if ((uptr->flags & UNIT_ATT) == 0)
uptr->flags = uptr->flags & ~(UNIT_ATTABLE | UNIT_BUFABLE);
return r;
}
/* Interval timer reset */ /* Interval timer reset */
t_stat tmr_reset (DEVICE *dptr) t_stat tmr_reset (DEVICE *dptr)
@ -668,36 +733,89 @@ todr_resync (); /* resync TODR */
return SCPE_OK; return SCPE_OK;
} }
int
timeval_subtract (result, x, y)
struct timeval *result, *x, *y;
{
/* Perform the carry for the later subtraction by updating y. */
if (x->tv_usec < y->tv_usec) {
int nsec = (y->tv_usec - x->tv_usec) / 1000000 + 1;
y->tv_usec -= 1000000 * nsec;
y->tv_sec += nsec;
}
if (x->tv_usec - y->tv_usec > 1000000) {
int nsec = (x->tv_usec - y->tv_usec) / 1000000;
y->tv_usec += 1000000 * nsec;
y->tv_sec -= nsec;
}
/* Compute the time remaining to wait.
tv_usec is certainly positive. */
result->tv_sec = x->tv_sec - y->tv_sec;
result->tv_usec = x->tv_usec - y->tv_usec;
/* Return 1 if result is negative. */
return x->tv_sec < y->tv_sec;
}
/* TODR routines */ /* TODR routines */
int32 todr_rd (void) int32 todr_rd (void)
{ {
return todr_reg; TOY *toy = (TOY *)clk_unit.filebuf;
struct timespec base, now, val;
clock_gettime(CLOCK_REALTIME, &now); /* get curr time */
base.tv_sec = toy->toy_gmtbase;
base.tv_nsec = toy->toy_gmtbasemsec * 1000000;
sim_timespec_diff (&val, &now, &base);
return (int32)(val.tv_sec*100 + val.tv_nsec/10000000); /* 100hz Clock Ticks */
} }
void todr_wr (int32 data) void todr_wr (int32 data)
{ {
todr_reg = data; TOY *toy = (TOY *)clk_unit.filebuf;
return; struct timespec now, val, base;
/* Save the GMT time when set value was 0 to record the base for future
read operations in "battery backed-up" state */
if (-1 == clock_gettime(CLOCK_REALTIME, &now)) /* get curr time */
return; /* error? */
val.tv_sec = ((uint32)data) / 100;
val.tv_nsec = (((uint32)data) % 100) * 10000000;
sim_timespec_diff (&base, &now, &val); /* base = now - data */
toy->toy_gmtbase = base.tv_sec;
toy->toy_gmtbasemsec = base.tv_nsec/1000000;
} }
t_stat todr_resync (void) t_stat todr_resync (void)
{ {
uint32 base; TOY *toy = (TOY *)clk_unit.filebuf;
time_t curr;
struct tm *ctm;
curr = time (NULL); /* get curr time */ if (clk_unit.flags & UNIT_ATT) { /* Attached means behave like real VAX780 */
if (curr == (time_t) -1) /* error? */ if (!toy->toy_gmtbase) /* Never set? */
return SCPE_NOFNC; todr_wr (0); /* Start ticking from 0 */
ctm = localtime (&curr); /* decompose */ }
if (ctm == NULL) /* error? */ else { /* Not-Attached means */
return SCPE_NOFNC; uint32 base; /* behave like simh VMS default */
base = (((((ctm->tm_yday * 24) + /* sec since 1-Jan */ time_t curr;
ctm->tm_hour) * 60) + struct tm *ctm;
ctm->tm_min) * 60) +
ctm->tm_sec; curr = time (NULL); /* get curr time */
todr_reg = (base * 100) + 0x10000000; /* cvt to VAX form */ if (curr == (time_t) -1) /* error? */
return SCPE_NOFNC;
ctm = localtime (&curr); /* decompose */
if (ctm == NULL) /* error? */
return SCPE_NOFNC;
base = (((((ctm->tm_yday * 24) + /* sec since 1-Jan */
ctm->tm_hour) * 60) +
ctm->tm_min) * 60) +
ctm->tm_sec;
todr_wr ((base * 100) + 0x10000000); /* use VMS form */
}
return SCPE_OK; return SCPE_OK;
} }

View file

@ -27,6 +27,31 @@
tto terminal output tto terminal output
clk 100Hz and TODR clock clk 100Hz and TODR clock
28-Sep-11 MP Generalized setting TODR for all OSes.
Unbound the TODR value from the 100hz clock tick
interrupt. TODR now behaves like the original
battery backed-up clock and runs with the wall
clock, not the simulated instruction clock
(except when running ROM diagnostics).
Two operational modes are available:
- Default VMS mode, which is similar to the previous
behavior in that without initializing the TODR it
would default to the value VMS would set it to if
VMS knew the correct time. This would be correct
almost all the time unless a VMS disk hadn't been
booted from for more than a year. This mode
produces strange time results for non VMS OSes on
each system boot.
- OS Agnostic mode. This mode behaves precisely like
the VAX780 TODR and works correctly for all OSes.
This mode is enabled by attaching the TODR to a
battery backup state file for the TOY clock
(i.e. sim> attach TODR TOY_CLOCK). When operating
in OS Agnostic mode, the TODR will initially start
counting from 0 and be adjusted differently when an
OS specifically writes to the TODR. VMS will prompt
to set the time on each boot unless the SYSGEN
parameter TIMEPROMPTWAIT is set to 0.
05-Jan-11 MP Added Asynch I/O support 05-Jan-11 MP Added Asynch I/O support
17-Aug-08 RMS Resync TODR on any clock reset 17-Aug-08 RMS Resync TODR on any clock reset
18-Jun-07 RMS Added UNIT_IDLE flag to console input, clock 18-Jun-07 RMS Added UNIT_IDLE flag to console input, clock
@ -70,6 +95,11 @@ int32 clk_csr = 0; /* control/status */
int32 clk_tps = 100; /* ticks/second */ int32 clk_tps = 100; /* ticks/second */
int32 todr_reg = 0; /* TODR register */ int32 todr_reg = 0; /* TODR register */
int32 todr_blow = 1; /* TODR battery low */ int32 todr_blow = 1; /* TODR battery low */
struct todr_battery_info {
uint32 toy_gmtbase; /* GMT base of set value */
uint32 toy_gmtbasemsec; /* The milliseconds of the set value */
};
typedef struct todr_battery_info TOY;
int32 tmxr_poll = CLK_DELAY * TMXR_MULT; /* term mux poll */ int32 tmxr_poll = CLK_DELAY * TMXR_MULT; /* term mux poll */
int32 tmr_poll = CLK_DELAY; /* pgm timer poll */ int32 tmr_poll = CLK_DELAY; /* pgm timer poll */
@ -79,9 +109,12 @@ t_stat clk_svc (UNIT *uptr);
t_stat tti_reset (DEVICE *dptr); t_stat tti_reset (DEVICE *dptr);
t_stat tto_reset (DEVICE *dptr); t_stat tto_reset (DEVICE *dptr);
t_stat clk_reset (DEVICE *dptr); t_stat clk_reset (DEVICE *dptr);
t_stat clk_attach (UNIT *uptr, char *cptr);
t_stat clk_detach (UNIT *uptr);
t_stat todr_resync (void); t_stat todr_resync (void);
extern int32 sysd_hlt_enb (void); extern int32 sysd_hlt_enb (void);
extern int32 fault_PC;
/* TTI data structures /* TTI data structures
@ -168,7 +201,7 @@ DEVICE tto_dev = {
DIB clk_dib = { 0, 0, NULL, NULL, 1, IVCL (CLK), SCB_INTTIM, { NULL } }; DIB clk_dib = { 0, 0, NULL, NULL, 1, IVCL (CLK), SCB_INTTIM, { NULL } };
UNIT clk_unit = { UDATA (&clk_svc, UNIT_IDLE, 0), CLK_DELAY }; UNIT clk_unit = { UDATA (&clk_svc, UNIT_IDLE+UNIT_FIX, sizeof(TOY)), CLK_DELAY };/* 100Hz */
REG clk_reg[] = { REG clk_reg[] = {
{ HRDATA (CSR, clk_csr, 16) }, { HRDATA (CSR, clk_csr, 16) },
@ -194,16 +227,15 @@ MTAB clk_mod[] = {
DEVICE clk_dev = { DEVICE clk_dev = {
"CLK", &clk_unit, clk_reg, clk_mod, "CLK", &clk_unit, clk_reg, clk_mod,
1, 0, 0, 0, 0, 0, 1, 0, 8, 1, 0, 0,
NULL, NULL, &clk_reset, NULL, NULL, &clk_reset,
NULL, NULL, NULL, NULL, &clk_attach, &clk_detach,
&clk_dib, 0 &clk_dib, 0
}; };
/* Clock and terminal MxPR routines /* Clock and terminal MxPR routines
iccs_rd/wr interval timer iccs_rd/wr interval timer
todr_rd/wr time of year clock
rxcs_rd/wr input control/status rxcs_rd/wr input control/status
rxdb_rd input buffer rxdb_rd input buffer
txcs_rd/wr output control/status txcs_rd/wr output control/status
@ -215,11 +247,6 @@ int32 iccs_rd (void)
return (clk_csr & CLKCSR_IMP); return (clk_csr & CLKCSR_IMP);
} }
int32 todr_rd (void)
{
return todr_reg;
}
int32 rxcs_rd (void) int32 rxcs_rd (void)
{ {
return (tti_csr & TTICSR_IMP); return (tti_csr & TTICSR_IMP);
@ -248,14 +275,6 @@ clk_csr = (clk_csr & ~CLKCSR_RW) | (data & CLKCSR_RW);
return; return;
} }
void todr_wr (int32 data)
{
todr_reg = data;
if (data)
todr_blow = 0;
return;
}
void rxcs_wr (int32 data) void rxcs_wr (int32 data)
{ {
if ((data & CSR_IE) == 0) if ((data & CSR_IE) == 0)
@ -358,7 +377,8 @@ return SCPE_OK;
clk_svc process event (clock tick) clk_svc process event (clock tick)
clk_reset process reset clk_reset process reset
todr_powerup powerup for TODR (get date from system) todr_rd/wr time of year clock
todr_resync powerup for TODR (get date from system)
*/ */
t_stat clk_svc (UNIT *uptr) t_stat clk_svc (UNIT *uptr)
@ -371,8 +391,8 @@ t = sim_rtcn_calb (clk_tps, TMR_CLK); /* calibrate clock */
sim_activate (&clk_unit, t); /* reactivate unit */ sim_activate (&clk_unit, t); /* reactivate unit */
tmr_poll = t; /* set tmr poll */ tmr_poll = t; /* set tmr poll */
tmxr_poll = t * TMXR_MULT; /* set mux poll */ tmxr_poll = t * TMXR_MULT; /* set mux poll */
if (!todr_blow) /* incr TODR */ if (!todr_blow && todr_reg) /* if running? */
todr_reg = todr_reg + 1; todr_reg = todr_reg + 1; /* incr TODR */
return SCPE_OK; return SCPE_OK;
} }
@ -386,26 +406,80 @@ t = sim_is_active (&clk_unit);
return (t? t - 1: wait); return (t? t - 1: wait);
} }
int32 todr_rd (void)
{
TOY *toy = (TOY *)clk_unit.filebuf;
struct timespec base, now, val;
if ((fault_PC&0xFFFE0000) == 0x20040000) /* running from ROM? */
return todr_reg; /* return counted value for ROM diags */
if (0 == todr_reg) /* clock running? */
return todr_reg;
/* Maximum number of seconds which can be represented as 10ms ticks
in the 32bit TODR. This is the 33bit value 0x100000000/100 to get seconds */
#define TOY_MAX_SECS (0x40000000/25)
clock_gettime(CLOCK_REALTIME, &now); /* get curr time */
base.tv_sec = toy->toy_gmtbase;
base.tv_nsec = toy->toy_gmtbasemsec * 1000000;
sim_timespec_diff (&val, &now, &base);
if (val.tv_sec >= TOY_MAX_SECS) /* todr overflowed? */
return todr_reg = 0; /* stop counting */
return (int32)(val.tv_sec*100 + val.tv_nsec/10000000); /* 100hz Clock Ticks */
}
void todr_wr (int32 data)
{
TOY *toy = (TOY *)clk_unit.filebuf;
struct timespec now, val, base;
/* Save the GMT time when set value was 0 to record the base for future
read operations in "battery backed-up" state */
if (-1 == clock_gettime(CLOCK_REALTIME, &now)) /* get curr time */
return; /* error? */
val.tv_sec = ((uint32)data) / 100;
val.tv_nsec = (((uint32)data) % 100) * 10000000;
sim_timespec_diff (&base, &now, &val); /* base = now - data */
toy->toy_gmtbase = base.tv_sec;
toy->toy_gmtbasemsec = base.tv_nsec/1000000;
todr_reg = data;
if (data)
todr_blow = 0;
}
/* TODR resync routine */ /* TODR resync routine */
t_stat todr_resync (void) t_stat todr_resync (void)
{ {
uint32 base; TOY *toy = (TOY *)clk_unit.filebuf;
time_t curr;
struct tm *ctm;
curr = time (NULL); /* get curr time */ if (clk_unit.flags & UNIT_ATT) { /* Attached means behave like real VAX780 */
if (curr == (time_t) -1) /* error? */ if (!toy->toy_gmtbase) /* Never set? */
return SCPE_NOFNC; todr_wr (0); /* Start ticking from 0 */
ctm = localtime (&curr); /* decompose */ }
if (ctm == NULL) /* error? */ else { /* Not-Attached means */
return SCPE_NOFNC; uint32 base; /* behave like simh VMS default */
base = (((((ctm->tm_yday * 24) + /* sec since 1-Jan */ time_t curr;
ctm->tm_hour) * 60) + struct tm *ctm;
ctm->tm_min) * 60) +
ctm->tm_sec; curr = time (NULL); /* get curr time */
todr_reg = (base * 100) + 0x10000000; /* cvt to VAX form */ if (curr == (time_t) -1) /* error? */
todr_blow = 0; return SCPE_NOFNC;
ctm = localtime (&curr); /* decompose */
if (ctm == NULL) /* error? */
return SCPE_NOFNC;
base = (((((ctm->tm_yday * 24) + /* sec since 1-Jan */
ctm->tm_hour) * 60) +
ctm->tm_min) * 60) +
ctm->tm_sec;
todr_wr ((base * 100) + 0x10000000); /* use VMS form */
}
return SCPE_OK; return SCPE_OK;
} }
@ -415,13 +489,46 @@ t_stat clk_reset (DEVICE *dptr)
{ {
int32 t; int32 t;
todr_resync (); /* resync clock */
clk_csr = 0; clk_csr = 0;
CLR_INT (CLK); CLR_INT (CLK);
t = sim_rtcn_init (clk_unit.wait, TMR_CLK); /* init timer */ t = sim_rtcn_init (clk_unit.wait, TMR_CLK); /* init timer */
sim_activate_abs (&clk_unit, t); /* activate unit */ sim_activate_abs (&clk_unit, t); /* activate unit */
tmr_poll = t; /* set tmr poll */ tmr_poll = t; /* set tmr poll */
tmxr_poll = t * TMXR_MULT; /* set mux poll */ tmxr_poll = t * TMXR_MULT; /* set mux poll */
if (clk_unit.filebuf == NULL) { /* make sure the TODR is initialized */
clk_unit.filebuf = calloc(sizeof(TOY), 1);
if (clk_unit.filebuf == NULL)
return SCPE_MEM;
todr_resync ();
}
return SCPE_OK; return SCPE_OK;
} }
/* CLK attach */
t_stat clk_attach (UNIT *uptr, char *cptr)
{
t_stat r;
uptr->flags = uptr->flags | (UNIT_ATTABLE | UNIT_BUFABLE);
memset (uptr->filebuf, 0, (size_t)uptr->capac);
r = attach_unit (uptr, cptr);
if (r != SCPE_OK)
uptr->flags = uptr->flags & ~(UNIT_ATTABLE | UNIT_BUFABLE);
else
uptr->hwmark = (uint32) uptr->capac;
return r;
}
/* CLK detach */
t_stat clk_detach (UNIT *uptr)
{
t_stat r;
r = detach_unit (uptr);
if ((uptr->flags & UNIT_ATT) == 0)
uptr->flags = uptr->flags & ~(UNIT_ATTABLE | UNIT_BUFABLE);
return r;
}

View file

@ -152,8 +152,7 @@ return sim_os_msec () - stime;
} }
#if defined(SIM_ASYNCH_IO) #if defined(SIM_ASYNCH_IO)
#ifndef CLOCK_REALTIME #ifdef NEED_CLOCK_REALTIME
#define CLOCK_REALTIME 1
int clock_gettime(int clk_id, struct timespec *tp) int clock_gettime(int clk_id, struct timespec *tp)
{ {
uint32 secs, ns, tod[2], unixbase[2] = {0xd53e8000, 0x019db1de}; uint32 secs, ns, tod[2], unixbase[2] = {0xd53e8000, 0x019db1de};
@ -225,12 +224,13 @@ Sleep (msec);
return sim_os_msec () - stime; return sim_os_msec () - stime;
} }
#if !defined(CLOCK_REALTIME) && defined (SIM_ASYNCH_IO) #if defined(NEED_CLOCK_REALTIME)
#define CLOCK_REALTIME 1
int clock_gettime(int clk_id, struct timespec *tp) int clock_gettime(int clk_id, struct timespec *tp)
{ {
t_uint64 now, unixbase; t_uint64 now, unixbase;
if (clk_id != CLOCK_REALTIME)
return -1;
unixbase = 116444736; unixbase = 116444736;
unixbase *= 1000000000; unixbase *= 1000000000;
GetSystemTimeAsFileTime((FILETIME*)&now); GetSystemTimeAsFileTime((FILETIME*)&now);
@ -315,8 +315,7 @@ treq.tv_nsec = (milliseconds % MILLIS_PER_SEC) * NANOS_PER_MILLI;
return sim_os_msec () - stime; return sim_os_msec () - stime;
} }
#if !defined(CLOCK_REALTIME) && defined (SIM_ASYNCH_IO) #if defined(NEED_CLOCK_REALTIME)
#define CLOCK_REALTIME 1
int clock_gettime(int clk_id, struct timespec *tp) int clock_gettime(int clk_id, struct timespec *tp)
{ {
struct timeval cur; struct timeval cur;
@ -377,8 +376,7 @@ if (tim > SIM_IDLE_MAX)
return tim; return tim;
} }
#if !defined(_POSIX_SOURCE) && defined(SIM_ASYNCH_IO) #if !defined(_POSIX_SOURCE) && defined(SIM_ASYNCH_IO)
#ifndef CLOCK_REALTIME #ifdef NEED_CLOCK_REALTIME
#define CLOCK_REALTIME 1
typedef int clockid_t; typedef int clockid_t;
int clock_gettime(clockid_t clk_id, struct timespec *tp) int clock_gettime(clockid_t clk_id, struct timespec *tp)
{ {
@ -408,6 +406,21 @@ return sim_os_msec () - stime;
#endif #endif
/* diff = min - sub */
void
sim_timespec_diff (struct timespec *diff, struct timespec *min, struct timespec *sub)
{
/* move the minuend value to the difference and operate there. */
*diff = *min;
/* Borrow as needed for the nsec value */
if (sub->tv_nsec > min->tv_nsec) {
--diff->tv_sec;
diff->tv_nsec += 1000000000;
}
diff->tv_nsec -= sub->tv_nsec;
diff->tv_sec -= sub->tv_sec;
}
#if defined(SIM_ASYNCH_IO) #if defined(SIM_ASYNCH_IO)
uint32 sim_idle_ms_sleep (unsigned int msec) uint32 sim_idle_ms_sleep (unsigned int msec)
{ {

View file

@ -31,6 +31,15 @@
#ifndef _SIM_TIMER_H_ #ifndef _SIM_TIMER_H_
#define _SIM_TIMER_H_ 0 #define _SIM_TIMER_H_ 0
#include <time.h>
#ifndef CLOCK_REALTIME
#define CLOCK_REALTIME 1
#define NEED_CLOCK_REALTIME 1
int clock_gettime(int clock_id, struct timespec *tp);
#endif
#define SIM_NTIMERS 8 /* # timers */ #define SIM_NTIMERS 8 /* # timers */
#define SIM_TMAX 500 /* max timer makeup */ #define SIM_TMAX 500 /* max timer makeup */
@ -51,6 +60,7 @@
#define SIM_THROT_PCT 3 #define SIM_THROT_PCT 3
t_bool sim_timer_init (void); t_bool sim_timer_init (void);
void sim_timespec_diff (struct timespec *diff, struct timespec *min, struct timespec *sub);
int32 sim_rtcn_init (int32 time, int32 tmr); int32 sim_rtcn_init (int32 time, int32 tmr);
void sim_rtcn_init_all (void); void sim_rtcn_init_all (void);
int32 sim_rtcn_calb (int32 ticksper, int32 tmr); int32 sim_rtcn_calb (int32 ticksper, int32 tmr);