Initial public version of Manchester SSEM for SIMH

Initial public version of Manchester University Small Scale Experimental
Machine (SSEM) for SIMH
This commit is contained in:
Gerardo Ospina 2013-04-29 02:49:42 -05:00
parent 02ebf6bdfc
commit b97bc9e004
3 changed files with 767 additions and 0 deletions

259
SSEM/ssem_cpu.c Normal file
View file

@ -0,0 +1,259 @@
/* ssem_cpu.c: SSEM (Small Scale Experimental Machine) CPU simulator
Based on the SIMH package written by Robert M Supnik
Copyright (c) 2006-2008, Gerardo Ospina
Permission is hereby granted, free of charge, to any person obtaining a
copy of this software and associated documentation files (the "Software"),
to deal in the Software without restriction, including without limitation
the rights to use, copy, modify, merge, publish, distribute, sublicense,
and/or sell copies of the Software, and to permit persons to whom the
Software is furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
THE AUTHOR BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
Except as contained in this notice, the name of the author shall not be
used in advertising or otherwise to promote the sale, use or other dealings
in this Software without prior written authorization from the author.
This is not a supported product, but the author welcomes bug reports and fixes.
Mail to ngospina@panix.com
cpu SSEM CPU
The system state for the SSEM is:
A[0]<0:31> accumulator
C[0]<0:31> current instruction
C[1]<0:31> present instruction
The SSEM has just one instruction format:
1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| |inst | |address |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
SSEM instructions:
<13:15> operation
000 0 C[0] <- S[n]
001 1 C[0] <- C[0] + S[n]
010 2 A[0] <- -S[n]
011 3 S[n] <- A[0]
100 4 A[0] <- A[0] - S[n]
110 6 C[0] <- C[0] + 1 if (A[0] < 0)
111 7 Stop the machine
The SSEM has 32 32b words of memory.
This routine is the instruction decode routine for the SSEM.
It is called from the simulator control program to execute
instructions in simulated memory, starting at the simulated
CI. It runs until 'reason' is set non-zero.
General notes:
1. Reasons to stop. The simulator can be stopped by:
Stop instruction
breakpoint encountered
2. Interrupts. There are no interrupts.
3. Non-existent memory. All of memory always exists.
4. Adding I/O devices. The SSEM could not support additional
I/O devices.
*/
#include "ssem_defs.h"
uint32 S[MEMSIZE] = { 0 }; /* storage (memory) */
int32 A[MEMSIZE] = { 0 }; /* A[0] accumulator */
uint32 C[MEMSIZE] = { 0, 0 }; /* C[0] current instruction */
/* C[1] present instruction */
uint32 Staticisor = 0;
extern int32 sim_interval;
extern uint32 sim_brk_types, sim_brk_dflt, sim_brk_summ; /* breakpoint info */
extern int32 sim_step;
t_stat cpu_ex (t_value *vptr, t_addr addr, UNIT *uptr, int32 sw);
t_stat cpu_dep (t_value val, t_addr addr, UNIT *uptr, int32 sw);
t_stat cpu_reset (DEVICE *dptr);
t_stat cpu_one_inst (uint32 opc, uint32 ir);
/* CPU data structures
cpu_dev CPU device descriptor
cpu_unit CPU unit descriptor
cpu_reg CPU register list
cpu_mod CPU modifiers list
*/
UNIT cpu_unit = { UDATA (NULL, UNIT_FIX, MEMSIZE) };
REG cpu_reg[] = {
{ DRDATA (CI, C[0], 5), REG_VMAD },
{ HRDATA (A, A[0], 32), REG_VMIO },
{ HRDATA (PI, C[1], 32), REG_VMIO + REG_HRO },
{ HRDATA (LF, Staticisor, 32), REG_VMIO + REG_HRO },
{ NULL }
};
MTAB cpu_mod[] = {
{ UNIT_SSEM, 0, "Manchester SSEM (Small Scale Experimental Machine)", "SSEM" },
{ 0 }
};
DEVICE cpu_dev = {
"CPU", &cpu_unit, cpu_reg, cpu_mod,
1, 10, 5, 1, 16, 32,
&cpu_ex, &cpu_dep, &cpu_reset,
NULL, NULL, NULL
};
t_stat sim_instr (void)
{
t_stat reason = 0;
sim_cancel_step (); /* defang SCP step */
/* Main instruction fetch/decode loop */
do {
if (sim_interval <= 0) { /* check clock queue */
#if !UNIX_PLATFORM
if ((reason = sim_poll_kbd()) == SCPE_STOP) { /* poll on platforms without reliable signalling */
break;
}
#endif
if (reason = sim_process_event ()) break;
}
if (sim_brk_summ && /* breakpoint? */
sim_brk_test (*C, SWMASK ('E'))) {
reason = STOP_IBKPT; /* stop simulation */
break;
}
/* Increment current instruction */
*C = (*C + 1) & AMASK;
/* Get present instruction */
C[1] = Read (*C);
Staticisor = C[1] & IMASK; /* get instruction */
sim_interval = sim_interval - 1;
if (reason = cpu_one_inst (*C, Staticisor)) { /* one instr; error? */
break;
}
if (sim_step && (--sim_step <= 0)) /* do step count */
reason = SCPE_STOP;
} while (reason == 0); /* loop until halted */
return reason;
}
t_stat cpu_reset (DEVICE *dptr)
{
sim_brk_types = sim_brk_dflt = SWMASK ('E');
return SCPE_OK;
}
/* Memory examine */
t_stat cpu_ex (t_value *vptr, t_addr addr, UNIT *uptr, int32 sw)
{
if (addr >= MEMSIZE) return SCPE_NXM;
if (vptr != NULL) *vptr = Read (addr);
return SCPE_OK;
}
/* Memory deposit */
t_stat cpu_dep (t_value val, t_addr addr, UNIT *uptr, int32 sw)
{
if (addr >= MEMSIZE) return SCPE_NXM;
Write (addr, val);
return SCPE_OK;
}
/* Execute one instruction */
t_stat cpu_one_inst (uint32 opc, uint32 ir)
{
uint32 ea, op;
t_stat reason = 0;
op = I_GETOP (ir); /* opcode */
switch (op) { /* case on opcode */
case OP_JUMP_INDIRECT: /* C[0] <- S[ea] */
ea = I_GETEA (ir); /* address */
*C = Read(ea);
break;
case OP_JUMP_INDIRECT_RELATIVE: /* C[0] <- C[0] + S[ea] */
ea = I_GETEA (ir); /* address */
*C += Read(ea);
break;
case OP_LOAD_NEGATED: /* A[0] <- -S[ea] */
ea = I_GETEA (ir); /* address */
*A = -((int32)Read(ea));
break;
case OP_STORE: /* S[ea] <- A[0] */
ea = I_GETEA (ir); /* address */
Write(ea, (uint32) *A);
break;
case OP_SUBSTRACT: /* A[0] <- A[0] - S[ea] */
case OP_UNDOCUMENTED:
ea = I_GETEA (ir); /* address */
*A -= ((int32) Read(ea));
break;
case OP_TEST: /* C[0] <- C[0] + 1 if (A[0] < 0) */
if (*A < 0){
*C += 1;
}
break;
case OP_STOP: /* Stop the machine */
reason = STOP_STOP; /* stop simulation */
break;
} /* end switch */
return reason;
}
/* Support routines */
uint32 Read (uint32 ea)
{
return S[ea] & MMASK;
}
void Write (uint32 ea, uint32 dat)
{
S[ea] = dat & MMASK;
return;
}

82
SSEM/ssem_defs.h Normal file
View file

@ -0,0 +1,82 @@
/* ssem_defs.h: SSEM (Small Scale Experimental Machine) simulator definitions
Based on the SIMH package written by Robert M Supnik
Copyright (c) 2006-2008 Gerardo Ospina
Permission is hereby granted, free of charge, to any person obtaining a
copy of this software and associated documentation files (the "Software"),
to deal in the Software without restriction, including without limitation
the rights to use, copy, modify, merge, publish, distribute, sublicense,
and/or sell copies of the Software, and to permit persons to whom the
Software is furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
THE AUTHOR BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
Except as contained in this notice, the name of the author shall not be
used in advertising or otherwise to promote the sale, use or other dealings
in this Software without prior written authorization from the author.
This is not a supported product, but the author welcomes bug reports and fixes.
Mail to ngospina@panix.com
*/
#ifndef _SSEM_DEFS_H_
#define _SSEM_DEFS_H_ 0
#include "sim_defs.h" /* simulator defns */
/* Simulator stop codes */
#define STOP_STOP 1 /* STOP */
#define STOP_IBKPT 2 /* breakpoint */
/* Memory */
#define MEMSIZE 32 /* memory size */
#define AMASK 0x1F /* addr mask */
/* Architectural constants */
#define MMASK 0xFFFFFFFF /* memory mask */
#define IMASK 0x0000E01F /* instruction mask */
#define UMASK 0xFFFF1FE0 /* unused bits mask */
#define SMASK 0x80000000 /* sign mask */
/* Instruction format */
#define I_M_OP 0x07 /* opcode */
#define I_V_OP 13
#define I_OP (I_M_OP << I_V_OP)
#define I_GETOP(x) (((x) >> I_V_OP) & I_M_OP)
#define I_M_EA AMASK /* address */
#define I_V_EA 0
#define I_EA (I_M_EA)
#define I_GETEA(x) ((x) & I_M_EA)
/* Unit flags */
#define UNIT_V_SSEM (UNIT_V_UF + 0)
#define UNIT_SSEM (1u << UNIT_V_SSEM)
/* Instructions */
enum opcodes {
OP_JUMP_INDIRECT, OP_JUMP_INDIRECT_RELATIVE, OP_LOAD_NEGATED, OP_STORE,
OP_SUBSTRACT, OP_UNDOCUMENTED, OP_TEST, OP_STOP
};
/* Prototypes */
uint32 Read (uint32 ea);
void Write (uint32 ea, uint32 dat);
#endif

426
SSEM/ssem_sys.c Normal file
View file

@ -0,0 +1,426 @@
/* ssem_sys.c: SSEM (Small Scale Experimental Machine) simulator interface
Based on the SIMH package written by Robert M Supnik
Copyright (c) 2006-2008 Gerardo Ospina
Permission is hereby granted, free of charge, to any person obtaining a
copy of this software and associated documentation files (the "Software"),
to deal in the Software without restriction, including without limitation
the rights to use, copy, modify, merge, publish, distribute, sublicense,
and/or sell copies of the Software, and to permit persons to whom the
Software is furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
THE AUTHOR BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
Except as contained in this notice, the name of the author shall not be
used in advertising or otherwise to promote the sale, use or other dealings
in this Software without prior written authorization from the author.
This is not a supported product, but the author welcomes bug reports and fixes.
Mail to ngospina@panix.com
*/
#include <ctype.h>
#include "ssem_defs.h"
extern uint32 S[];
extern uint32 C[];
extern int32 A[];
extern DEVICE cpu_dev;
extern REG cpu_reg[];
/* SCP data structures and interface routines
sim_name simulator name string
sim_PC pointer to saved PC register descriptor
sim_emax maximum number of words for examine/deposit
sim_devices array of pointers to simulated devices
sim_stop_messages array of pointers to stop messages
sim_load binary loader
fprint_sym memory examine
parser_sym memory deposit
*/
char sim_name[] = "SSEM";
REG *sim_PC = &cpu_reg[0];
int32 sim_emax = 1;
DEVICE *sim_devices[] = {
&cpu_dev,
NULL
};
const char *sim_stop_messages[] = {
"Unknown error",
"Stop",
"Breakpoint",
};
/* SSEM binary dump */
t_stat ssem_dump (FILE *fi)
{
if (sim_fwrite(A, sizeof(int32), 1, fi) != 1 ||
sim_fwrite(C, sizeof(uint32), 1, fi) != 1 ||
sim_fwrite(S, sizeof(uint32), MEMSIZE, fi) != MEMSIZE) {
return SCPE_IOERR;
}
return SCPE_OK;
}
/* SSEM binary loader */
t_stat ssem_load_dmp (FILE *fi)
{
C[1] = 0;
if (sim_fread(A, sizeof(int32), 1, fi) != 1 ||
sim_fread(C, sizeof(uint32), 1, fi) != 1 ||
sim_fread(S, sizeof(uint32), MEMSIZE, fi) != MEMSIZE) {
return SCPE_IOERR;
}
return SCPE_OK;
}
/* Loader
Inputs:
*fi = input stream
*cptr = VM-specific arguments
*fnam = file name
flag = 1 = dump, 0 = load
Outputs:
return = status code
*/
t_stat sim_load (FILE *fi, char *cptr, char *fnam, int flag)
{
size_t len;
len = strlen(fnam);
if (len <= 4 || strcmp(fnam + (len - 4), ".dmp") != 0) return SCPE_ARG;
if (flag == 1) return ssem_dump(fi);
return ssem_load_dmp(fi);
}
/* Utility routine - prints number in decimal */
t_stat ssem_fprint_decimal (FILE *of, uint32 inst)
{
if (inst & SMASK)
fprintf (of, "%d [%u]", inst, inst);
else
fprintf (of, "%d", inst);
return SCPE_OK;
}
/* Utility routine - prints number in backward binary */
t_stat ssem_fprint_binary_number (FILE *of, uint32 inst, uint8 nbits)
{
int i;
uint32 n;
n = inst;
for (i = 0; i < nbits; i++) {
fprintf(of, "%d", n & 1 ? 1 : 0);
n >>= 1;
}
return SCPE_OK;
}
/* Utility routine - prints instruction in backward binary */
t_stat ssem_fprint_binary (FILE *of, uint32 inst, int flag)
{
uint32 op, ea;
if (!flag) return ssem_fprint_binary_number(of, inst, 32);
op = I_GETOP (inst);
if (op != OP_TEST && op != OP_STOP) {
ea = I_GETEA (inst);
ssem_fprint_binary_number(of, ea, 5);
fprintf (of, " ");
}
ssem_fprint_binary_number(of, op, 3);
return SCPE_OK;
}
/* Utility routine
prints instruction in the mnemomic style used in the 1998
competition reference manual:
"The Manchester University Small Scale Experimental Machine
Programmer's Reference manual"
http://www.computer50.org/mark1/prog98/ssemref.html
*/
t_stat ssem_fprint_competition_mnemonic (FILE *of, uint32 inst)
{
uint32 op, ea;
op = I_GETOP (inst);
switch (op) {
case OP_JUMP_INDIRECT: /* JMP */
ea = I_GETEA (inst);
fprintf (of, "JMP %d", ea);
break;
case OP_JUMP_INDIRECT_RELATIVE: /* JRP */
ea = I_GETEA (inst);
fprintf (of, "JRP %d", ea);
break;
case OP_LOAD_NEGATED: /* LDN */
ea = I_GETEA (inst);
fprintf (of, "LDN %d", ea);
break;
case OP_STORE: /* STO */
ea = I_GETEA (inst);
fprintf (of, "STO %d", ea);
break;
case OP_SUBSTRACT: /* SUB */
ea = I_GETEA (inst);
fprintf (of, "SUB %d", ea);
break;
case OP_UNDOCUMENTED: /* invalid instruction */
return SCPE_ARG;
case OP_TEST: /* CMP */
fprintf (of, "CMP");
break;
case OP_STOP: /* STOP */
fprintf (of, "STOP");
break; /* end switch */
}
return SCPE_OK;
}
/* Symbolic decode
Inputs:
*of = output stream
addr = current PC
*val = pointer to data
*uptr = pointer to unit
sw = switches
Outputs:
return = status code
*/
t_stat fprint_sym (FILE *of, t_addr addr, t_value *val,
UNIT *uptr, int32 sw)
{
uint32 inst;
if (sw & SWMASK ('H')) return SCPE_ARG; /* hexadecimal? */
inst = val[0];
if (sw & SWMASK ('D')) /* decimal? */
return ssem_fprint_decimal(of, inst);
if (sw & SWMASK ('M')) { /* mnemomic? */
return ssem_fprint_competition_mnemonic(of, inst);
}
return ssem_fprint_binary(of, inst, sw & SWMASK ('I') || sw & SWMASK ('M'));
}
static const char *opcode[] = {
"JMP", "JRP", "LDN",
"STO", "SUB", "",
"CMP", "STOP",
NULL
};
/* Utility function - parses decimal number. */
t_stat parse_sym_d (char *cptr, t_value *val)
{
char *start;
int n;
start = cptr;
if (*cptr == '-') cptr++; /* skip sign */
n = 0;
while (*cptr >= '0' && *cptr <= '9') {
n = (n * 10) + (*cptr - '0');
cptr++;
}
if (*start == '-') n = -n;
if (*start) *start = 'x';
if (*cptr) return SCPE_ARG; /* junk at end? */
*val = n;
return SCPE_OK;
}
/* Utility function
Parses mnemonic instruction.
It accepts the mnemonics used in the 1998 competition reference
manual:
"The Manchester University Small Scale Experimental Machine
Programmer's Reference manual"
http://www.computer50.org/mark1/prog98/ssemref.html
*/
t_stat parse_sym_m (char *cptr, t_value *val)
{
char *start;
uint32 n,a;
char gbuf[CBUFSIZE];
start = cptr;
cptr = get_glyph(cptr, gbuf, 0);
if (*start) *start = 'x';
for (n = 0; opcode[n] != NULL && strcmp(opcode[n], gbuf) != 0; n++) ;
if (opcode[n] == NULL) return SCPE_ARG; /* invalid mnemonic? */
if (!(*cptr) && n > OP_UNDOCUMENTED && n <= OP_STOP) {
*val = n << I_V_OP; return SCPE_OK;
}
while (isspace (*cptr)) cptr++; /* absorb spaces */
if (*cptr < '0' || *cptr > '9') return SCPE_ARG; /* address expected */
a = 0;
while (*cptr >= '0' && *cptr <= '9') {
a = (a * 10) + (*cptr - '0');
cptr++;
}
if (a >= MEMSIZE) return SCPE_ARG; /* invalid address? */
if (*cptr) return SCPE_ARG; /* junk at end? */
*val = (n << I_V_OP) + a;
return SCPE_OK;
}
/* Utility function - parses binary backward number. */
t_stat parse_sym_b (char *cptr, t_value *val)
{
char *start;
int count;
t_value n;
start = cptr;
count = 0;
n = 0;
while (*cptr == '0' || *cptr == '1') {
n = n + ((*cptr - '0') << count);
count++;
cptr++;
}
if (*start) *start = 'x';
if (*cptr) return SCPE_ARG; /* junk at end? */
*val = n;
return SCPE_OK;
}
/* Utility function - parses binary backward instruccion. */
t_stat parse_sym_i (char *cptr, t_value *val)
{
char *start;
int count;
t_value a,n;
start = cptr;
count = 0;
n = 0;
while (*cptr == '0' || *cptr == '1') {
n = n + ((*cptr - '0') << count);
count++;
cptr++;
}
if (*start) *start = 'x';
if (!(*cptr) && n > OP_UNDOCUMENTED && n <= OP_STOP) {
*val = n << I_V_OP; return SCPE_OK;
}
a = n;
if (a >= MEMSIZE) return SCPE_ARG; /* invalid addresss */
while (isspace (*cptr)) cptr++; /* absorb spaces */
if (*cptr != '0' && *cptr != '1') return SCPE_ARG; /* instruction expected */
count = 0;
n = 0;
while (*cptr == '0' || *cptr == '1') {
n = n + ((*cptr - '0') << count);
count++;
cptr++;
}
if (n >= OP_UNDOCUMENTED) return SCPE_ARG; /* invalid instruction? */
if (*cptr) return SCPE_ARG; /* junk at end? */
*val = (n << I_V_OP) + a;
return SCPE_OK;
}
/* Symbolic input
Inputs:
*cptr = pointer to input string
addr = current PC
*uptr = pointer to unit
*val = pointer to output values
sw = switches
Outputs:
status = error status
*/
t_stat parse_sym (char *cptr, t_addr addr, UNIT *uptr, t_value *val, int32 sw)
{
if (sw & SWMASK ('H')) return SCPE_ARG; /* hexadecimal? */
while (isspace (*cptr)) cptr++; /* absorb spaces */
if (sw & SWMASK ('D')) { /* decimal? */
return parse_sym_d (cptr, val);
}
if (sw & SWMASK ('I')) { /* backward binary instruction? */
return parse_sym_i (cptr, val);
}
if (sw & SWMASK ('M')) { /* mnemonic? */
return parse_sym_m (cptr, val);
}
return parse_sym_b(cptr, val); /* backward binary number */
}