VAX: Fix for unaligned memory reference to IO and Register Space (from Bob Supnik)

Design Notes for Fixing VAX Unaligned Access to IO and Register Space

Problem Statement: VAX unaligned accesses are handled by reading the
surrounding longword (or longwords) and

a) for reads, extracting the addressed addressed word or longword
b) for writes, inserting the addressed word or longword and then
   writing the surrounding longword (or longwords) back

This is correct for all memory cases. On the 11/780, the unaligned
access to register or IO space causes an error, as it should. On
CVAX, it causes incorrect behavior, by either performing too many
QBus references, or performing read-modify-writes instead of pure
writes, or accessing the wrong Qbus locations.

The problem cannot be trivially solved with address manipulation.
The core issues is that on CVAX, unaligned access is done to
exactly as many bytes as are required, using a base longword
address and a byte mask. There are five cases, corresponding to
word and longword lengths, and byte offsets 1, 2 (longword only),
and 3. Further, behavior is different for reads and writes, because
the Qbus always performs word operations on reads, leaving it to
the processor to extract a byte if needed.

Conceptual design: Changes in vax_mmu.c:

Unaligned access is done with two separate physical addresses, pa
and pa1, because if the access crosses a page boundary, pa1 may
not be contiguous with pa. It's worth noting that in an unaligned
access, the low part of the data begins at pa (complete with byte
offset), but the high parts begins at pa1 & ~03 (always in the
low-order end of the second longword).

To handle unaligned data, we will add two routines for read and
write unaligned:

	data = ReadU (pa, len);
	WriteU (pa, len, val);

Note that the length can be 1, 2, or 3 bytes. For ReadU, data is
return right-aligned and masked. For WriteU, val is expected to
be right-aligned and masked.

The read-unaligned flows are changed as follows:

if (mapen && ((off + lnt) > VA_PAGSIZE)) {              /* cross page? */
    vpn = VA_GETVPN (va + lnt);                         /* vpn 2nd page */
    tbi = VA_GETTBI (vpn);
    xpte = (va & VA_S0)? stlb[tbi]: ptlb[tbi];          /* access tlb */
    if (((xpte.pte & acc) == 0) || (xpte.tag != vpn) ||
        ((acc & TLB_WACC) && ((xpte.pte & TLB_M) == 0)))
        xpte = fill (va + lnt, lnt, acc, NULL);         /* fill if needed */
    pa1 = ((xpte.pte & TLB_PFN) | VA_GETOFF (va + 4)) & ~03;
    }
else pa1 = ((pa + 4) & PAMASK) & ~03;                   /* not cross page */
bo = pa & 3;
if (lnt >= L_LONG) {                                    /* lw unaligned? */
    sc = bo << 3;
    wl = ReadU (pa, L_LONG - bo);                       /* read both fragments */
    wh = ReadU (pa1, bo);                               /* extract */
    return ((wl | (wh << (32 - sc))) & LMASK);
    }
else if (bo == 1)                                       /* read within lw */
    return ReadU (pa, L_WORD);
else {
    wl = ReadU (pa, L_BYTE);                            /* word cross lw */
    wh = ReadU (pa1, L_BYTE);                           /* read, extract */
    return (wl | (wh << 8));
    }

These are not very different, but they do reflect that ReadU returns
right-aligned and properly masked data, rather than the encapsulating
longword.

The write-unaligned flows change rather more drastically:

if (mapen && ((off + lnt) > VA_PAGSIZE)) {
    vpn = VA_GETVPN (va + 4);
    tbi = VA_GETTBI (vpn);
    xpte = (va & VA_S0)? stlb[tbi]: ptlb[tbi];          /* access tlb */
    if (((xpte.pte & acc) == 0) || (xpte.tag != vpn) ||
        ((xpte.pte & TLB_M) == 0))
        xpte = fill (va + lnt, lnt, acc, NULL);
    pa1 = ((xpte.pte & TLB_PFN) | VA_GETOFF (va + 4)) & ~03;
    }
else pa1 = ((pa + 4) & PAMASK) & ~03;
bo = pa & 3;
if (lnt >= L_LONG) {
    sc = bo << 3;
    WriteU (pa, L_LONG - bo, val & insert[L_LONG - bo]);
    WriteU (pa, bo, (val >> (32 - sc)) & insert[bo]);
    }
else if (bo == 1)                                       /* read within lw */
    WriteU (pa, L_WORD, val & WMASK);
else {                                                  /* word cross lw */
    WriteU (pa, L_BYTE, val & BMASK);
    WriteU (pa, L_BYTE, (val >> 8) & BMASK);
    }
return;
}

Note that all the burden here has been thrown on the WriteU routine.

-------------

ReadU is the simpler of the two routines that needs to be written.
It will handle memory reads and defer register and IO space to
model-specific unaligned handlers.

int32 ReadU (uint32 pa, int32 lnt)
{
int32 dat;
int32 sc = (pa & 3) << 3;

if (ADDR_IS_MEM (pa))
    dat = M[pa >> 2];
else {
    mchk = REF_V;
    if (ADDR_IS_IO (pa))
       dat = ReadIOU (pa, lnt);
    else dat = ReadRegU (pa, lnt);
    }
return ((dat >> sc) & insert[lnt]);
}

Note that the ReadIOU and ReadRegU return a "full longword," just
like their aligned counterparts, and ReadU right-aligns the result,
just as ReadB, ReadW, and ReadL do.

WriteU must handle the memory read-modify-write sequence. However,
it defers register and IO space to model-specific unaligned handlers.

void WriteU (uint32 pa, int32 lnt, int32 val)
{
if (ADDR_IS_MEM (pa)) {
    int32 bo = pa & 3;
    int32 sc = bo << 3;
    M[pa >> 2] = (M[pa >> 2] & ~(insert[len] << sc) | (val << sc);
    }
else if ADDR_IS_IO (pa)
    WriteIOU (pa, lnt, val);
else WriteRegU (pa, lnt, val);
return;
}

--------------

For the 11/780, ReadIOU, ReadRegU, WriteIOU, and WriteRegU all do the
same thing: they throw an SBI machine check. We can write explicit
routines to do this (and remove the unaligned checks from all the
normal adapter flows), or leave things as they are and simply define
the four routines as macros that go to the normal routines. So there's
very little to do.

On CVAX, I suspect that ReadRegU and WriteRegU behave like the
normal routines. The CVAX specs don't say much, but CMCTL (the memory
controller) notes that it ignores the byte mask and treats every
access as an aligned longword access. I suspect this is true for
the other CVAX support chips, but I no longer have chip specs.

The Qbus, on the other hand... that's a fun one. Note that all of
these cases are presented to the existing aligned IO routine:

bo = 0, byte, word, or longword length
bo = 2, word
bo = 1, 2, 3, byte length

All the other cases are going to end up at ReadIOU and WriteIOU,
and they must turn the request into the exactly correct number of
Qbus accesses AND NO MORE, because Qbus reads can have side-effects,
and word read-modify-write is NOT the same as a byte write.

The read cases are:

bo = 0, byte or word - read one word
bo = 1, byte - read one word
bo = 2, byte or word - read one word
bo = 3, byte - read one word
bo = 0, triword - read two words
bo = 1, word or triword - read two words

ReadIOU is very similar to the existing ReadIO:

int32 ReadIOU (uint32 pa, int32 lnt)
{
int32 iod;

iod = ReadQb (pa);                                      /* wd from Qbus */
if ((lnt + (pa & 1)) <= 2)                              /* byte or word & even */
    iod = iod << ((pa & 2)? 16: 0);                     /* one op */
else iod = (ReadQb (pa + 2) << 16) | iod;               /* two ops, get 2nd wd */
SET_IRQL;
return iod;
}

The write cases are:

bo = x, lnt = byte - write one byte
bo = 0 or 2, lnt = word - write one word
bo = 1, lnt = word - write two bytes
bo = 0, lnt = triword - write word, byte
bo = 1, lnt = triword - write byte, word

WriteIOU is similar to the existing WriteIO:

void WriteIO (uint32 pa, int32 val, int32 lnt)
{
switch (lnt) {
case L_BYTE:                                            /* byte */
    WriteQb (pa, val & BMASK, WRITEB);
    break;
case L_WORD:                                            /* word */
    if (pa & 1) {                                       /* odd addr? */
        WriteQb (pa, val & BMASK, WRITEB);
        WriteQb (pa + 1, (val >> 8) & BMASK, WRITEB);
        }
    else WriteQb (pa, val, WRITE);
    break;
case 3:                                                 /* triword */
    if (pa & 1) {                                       /* odd addr? */
        WriteQb (pa, val & BMASK, WRITEB);
        WriteQb (pa + 1, (val >> 8) & WMASK, WRITE);
        }
    else {
        WriteQb (pa, val & WMASK, WRITE);
        WriteQb (pa + 2, (val >> 16) & BMASK, WRITEB);
        }
    break;
    }
SET_IRQL;
return;
}

-----------------

I think this handles all the cases.

/Bob Supnik

Conflicts:
	VAX/vax780_defs.h
	VAX/vax_mmu.c
	VAX/vaxmod_defs.h
This commit is contained in:
Mark Pizzolato 2013-12-22 04:10:01 -08:00
parent 7b3e508627
commit bf58edfaab
14 changed files with 527 additions and 49 deletions

View file

@ -345,6 +345,13 @@ int32 Map_ReadW (uint32 ba, int32 bc, uint16 *buf);
int32 Map_WriteB (uint32 ba, int32 bc, uint8 *buf);
int32 Map_WriteW (uint32 ba, int32 bc, uint16 *buf);
/* Function prototypes for system-specific unaligned support */
int32 ReadIOU (uint32 pa, int32 lnt);
int32 ReadRegU (uint32 pa, int32 lnt);
void WriteIOU (uint32 pa, int32 val, int32 lnt);
void WriteRegU (uint32 pa, int32 val, int32 lnt);
t_stat cpu_show_leds (FILE *st, UNIT *uptr, int32 val, void *desc);
#include "pdp11_io_lib.h"

View file

@ -124,7 +124,7 @@ MACH_CHECK (MCHK_WRITE); /* FIXME: is this correc
return;
}
/* ReadIO - read I/O space
/* ReadIO - read I/O space - aligned access
Inputs:
pa = physical address
@ -145,7 +145,49 @@ SET_IRQL;
return iod;
}
/* WriteIO - write I/O space
/* ReadIOU - read I/O space - unaligned access
Inputs:
pa = physical address
lnt = length (1, 2, 3 bytes)
Output:
data, not shifted
Note that all of these cases are presented to the existing aligned IO routine:
bo = 0, byte, word, or longword length
bo = 2, word
bo = 1, 2, 3, byte length
All the other cases are end up at ReadIOU and WriteIOU, and they must turn
the request into the exactly correct number of Qbus accesses AND NO MORE,
because Qbus reads can have side-effects, and word read-modify-write is NOT
the same as a byte write.
Note that the sum of the pa offset and the length cannot be greater than 4.
The read cases are:
bo = 0, byte or word - read one word
bo = 0, tribyte - read two words
bo = 1, byte - read one word
bo = 1, word or tribyte - read two words
bo = 2, byte or word - read one word
bo = 3, byte - read one word
*/
int32 ReadIOU (uint32 pa, int32 lnt)
{
int32 iod;
iod = ReadQb (pa); /* wd from Qbus */
if ((lnt + (pa & 1)) <= 2) /* byte or (word & even) */
iod = iod << ((pa & 2)? 16: 0); /* one op */
else iod = (ReadQb (pa + 2) << 16) | iod; /* two ops, get 2nd wd */
SET_IRQL;
return iod;
}
/* WriteIO - write I/O space - aligned access
Inputs:
pa = physical address
@ -169,6 +211,54 @@ SET_IRQL;
return;
}
/* WriteIOU - write I/O space
Inputs:
pa = physical address
val = data to write, right justified in 32b longword
lnt = length (1, 2, or 3 bytes)
Outputs:
none
The write cases are:
bo = x, lnt = byte - write one byte
bo = 0 or 2, lnt = word - write one word
bo = 1, lnt = word - write two bytes
bo = 0, lnt = tribyte - write word, byte
bo = 1, lnt = tribyte - write byte, word
*/
void WriteIOU (uint32 pa, int32 val, int32 lnt)
{
switch (lnt) {
case L_BYTE: /* byte */
WriteQb (pa, val & BMASK, WRITEB);
break;
case L_WORD: /* word */
if (pa & 1) { /* odd addr? */
WriteQb (pa, val & BMASK, WRITEB);
WriteQb (pa + 1, (val >> 8) & BMASK, WRITEB);
}
else WriteQb (pa, val & WMASK, WRITE);
break;
case 3: /* tribyte */
if (pa & 1) { /* odd addr? */
WriteQb (pa, val & BMASK, WRITEB); /* byte then word */
WriteQb (pa + 1, (val >> 8) & WMASK, WRITE);
}
else { /* even */
WriteQb (pa, val & WMASK, WRITE); /* word then byte */
WriteQb (pa + 2, (val >> 16) & BMASK, WRITEB);
}
break;
}
SET_IRQL;
return;
}
/* Find highest priority outstanding interrupt */
int32 eval_int (void)

View file

@ -60,6 +60,9 @@ extern DEVICE vc_dev, lk_dev, vs_dev;
int32 conisp, conpc, conpsl; /* console reg */
int32 sys_model = 0; /* MicroVAX or VAXstation */
char cpu_boot_cmd[CBUFSIZE] = { 0 }; /* boot command */
static const int32 insert[4] = {
0x00000000, 0x000000FF, 0x0000FFFF, 0x00FFFFFF
};
static struct boot_dev boot_tab[] = {
{ "RQ", "DUA", 0x00415544 }, /* DUAn */
@ -304,6 +307,20 @@ for (p = &regtable[0]; p->low != 0; p++) {
MACH_CHECK (MCHK_READ);
}
/* ReadRegU - read register space, unaligned
Inputs:
pa = physical address
lnt = length in bytes (1, 2, or 3)
Output:
returned data, not shifted
*/
int32 ReadRegU (uint32 pa, int32 lnt)
{
return ReadReg (pa & ~03, L_LONG);
}
/* WriteReg - write register space
Inputs:
@ -328,6 +345,26 @@ mem_err = 1;
SET_IRQL;
}
/* WriteRegU - write register space, unaligned
Inputs:
pa = physical address
val = data to write, right justified in 32b longword
lnt = length (1, 2, or 3)
Outputs:
none
*/
void WriteRegU (uint32 pa, int32 val, int32 lnt)
{
int32 sc = (pa & 03) << 3;
int32 dat = ReadReg (pa & ~03, L_LONG);
dat = (dat & ~(insert[lnt] << sc)) | ((val & insert[lnt]) << sc);
WriteReg (pa & ~03, dat, L_LONG);
return;
}
/* Special boot command - linked into SCP by initial reset
Syntax: BOOT <device>{/R5:val}

View file

@ -397,7 +397,12 @@ int32 Map_ReadW (uint32 ba, int32 bc, uint16 *buf);
int32 Map_WriteB (uint32 ba, int32 bc, uint8 *buf);
int32 Map_WriteW (uint32 ba, int32 bc, uint16 *buf);
#include "pdp11_io_lib.h"
/* Function prototypes for system-specific unaligned support */
int32 ReadIOU (uint32 pa, int32 lnt);
int32 ReadRegU (uint32 pa, int32 lnt);
void WriteIOU (uint32 pa, int32 val, int32 lnt);
void WriteRegU (uint32 pa, int32 val, int32 lnt);
extern t_stat sysd_set_diag (UNIT *uptr, int32 val, char *cptr, void *desc);
extern t_stat sysd_show_diag (FILE *st, UNIT *uptr, int32 val, void *desc);
@ -405,5 +410,6 @@ extern t_stat sysd_set_halt (UNIT *uptr, int32 val, char *cptr, void *desc);
extern t_stat sysd_show_halt (FILE *st, UNIT *uptr, int32 val, void *desc);
extern t_stat sysd_show_leds (FILE *st, UNIT *uptr, int32 val, void *desc);
#include "pdp11_io_lib.h"
#endif

View file

@ -195,7 +195,7 @@ MACH_CHECK (MCHK_WRITE);
return;
}
/* ReadIO - read I/O space
/* ReadIO - read I/O space - aligned access
Inputs:
pa = physical address
@ -216,7 +216,49 @@ SET_IRQL;
return iod;
}
/* WriteIO - write I/O space
/* ReadIOU - read I/O space - unaligned access
Inputs:
pa = physical address
lnt = length (1, 2, 3 bytes)
Output:
data, not shifted
Note that all of these cases are presented to the existing aligned IO routine:
bo = 0, byte, word, or longword length
bo = 2, word
bo = 1, 2, 3, byte length
All the other cases are end up at ReadIOU and WriteIOU, and they must turn
the request into the exactly correct number of Qbus accesses AND NO MORE,
because Qbus reads can have side-effects, and word read-modify-write is NOT
the same as a byte write.
Note that the sum of the pa offset and the length cannot be greater than 4.
The read cases are:
bo = 0, byte or word - read one word
bo = 0, tribyte - read two words
bo = 1, byte - read one word
bo = 1, word or tribyte - read two words
bo = 2, byte or word - read one word
bo = 3, byte - read one word
*/
int32 ReadIOU (uint32 pa, int32 lnt)
{
int32 iod;
iod = ReadQb (pa); /* wd from Qbus */
if ((lnt + (pa & 1)) <= 2) /* byte or (word & even) */
iod = iod << ((pa & 2)? 16: 0); /* one op */
else iod = (ReadQb (pa + 2) << 16) | iod; /* two ops, get 2nd wd */
SET_IRQL;
return iod;
}
/* WriteIO - write I/O space - aligned access
Inputs:
pa = physical address
@ -240,6 +282,54 @@ SET_IRQL;
return;
}
/* WriteIOU - write I/O space
Inputs:
pa = physical address
val = data to write, right justified in 32b longword
lnt = length (1, 2, or 3 bytes)
Outputs:
none
The write cases are:
bo = x, lnt = byte - write one byte
bo = 0 or 2, lnt = word - write one word
bo = 1, lnt = word - write two bytes
bo = 0, lnt = tribyte - write word, byte
bo = 1, lnt = tribyte - write byte, word
*/
void WriteIOU (uint32 pa, int32 val, int32 lnt)
{
switch (lnt) {
case L_BYTE: /* byte */
WriteQb (pa, val & BMASK, WRITEB);
break;
case L_WORD: /* word */
if (pa & 1) { /* odd addr? */
WriteQb (pa, val & BMASK, WRITEB);
WriteQb (pa + 1, (val >> 8) & BMASK, WRITEB);
}
else WriteQb (pa, val & WMASK, WRITE);
break;
case 3: /* tribyte */
if (pa & 1) { /* odd addr? */
WriteQb (pa, val & BMASK, WRITEB); /* byte then word */
WriteQb (pa + 1, (val >> 8) & WMASK, WRITE);
}
else { /* even */
WriteQb (pa, val & WMASK, WRITE); /* word then byte */
WriteQb (pa + 2, (val >> 16) & BMASK, WRITEB);
}
break;
}
SET_IRQL;
return;
}
/* Find highest priority outstanding interrupt */
int32 eval_int (void)

View file

@ -149,6 +149,9 @@ int32 ka_mser = 0; /* KA630 mem sys err */
int32 ka_cear = 0; /* KA630 cpu err */
int32 ka_dear = 0; /* KA630 dma err */
static uint32 rom_delay = 0;
static const int32 insert[4] = {
0x00000000, 0x000000FF, 0x0000FFFF, 0x00FFFFFF
};
t_bool ka_diag_full = FALSE;
t_bool ka_hltenab = TRUE; /* Halt Enable / Autoboot flag */
@ -778,6 +781,20 @@ for (p = &regtable[0]; p->low != 0; p++) {
MACH_CHECK (MCHK_READ);
}
/* ReadRegU - read register space, unaligned
Inputs:
pa = physical address
lnt = length in bytes (1, 2, or 3)
Output:
returned data, not shifted
*/
int32 ReadRegU (uint32 pa, int32 lnt)
{
return ReadReg (pa & ~03, L_LONG);
}
/* WriteReg - write register space
Inputs:
@ -802,6 +819,26 @@ for (p = &regtable[0]; p->low != 0; p++) {
MACH_CHECK (MCHK_WRITE);
}
/* WriteRegU - write register space, unaligned
Inputs:
pa = physical address
val = data to write, right justified in 32b longword
lnt = length (1, 2, or 3)
Outputs:
none
*/
void WriteRegU (uint32 pa, int32 val, int32 lnt)
{
int32 sc = (pa & 03) << 3;
int32 dat = ReadReg (pa & ~03, L_LONG);
dat = (dat & ~(insert[lnt] << sc)) | ((val & insert[lnt]) << sc);
WriteReg (pa & ~03, dat, L_LONG);
return;
}
/* KA630 registers */
int32 ka_rd (int32 pa)

View file

@ -369,6 +369,14 @@ t_stat show_nexus (FILE *st, UNIT *uptr, int32 val, void *desc);
void sbi_set_errcnf (void);
/* Function prototypes for system-specific unaligned support
11/730 treats unaligned like aligned */
#define ReadIOU(p,l) ReadIO (p,l)
#define ReadRegU(p,l) ReadReg (p,l)
#define WriteIOU(p,v,l) WriteIO (p, v, l)
#define WriteRegU(p,v,l) WriteReg (p, v, l)
#include "pdp11_io_lib.h"
#endif

View file

@ -425,6 +425,14 @@ t_stat show_nexus (FILE *st, UNIT *uptr, int32 val, void *desc);
void sbi_set_errcnf (void);
/* Function prototypes for system-specific unaligned support
11/750 treats unaligned like aligned */
#define ReadIOU(p,l) ReadIO (p,l)
#define ReadRegU(p,l) ReadReg (p,l)
#define WriteIOU(p,v,l) WriteIO (p, v, l)
#define WriteRegU(p,v,l) WriteReg (p, v, l)
#include "pdp11_io_lib.h"
#endif

View file

@ -1,6 +1,6 @@
/* vax780_defs.h: VAX 780 model-specific definitions file
Copyright (c) 2004-2011, Robert M Supnik
Copyright (c) 2004-2013, Robert M Supnik
Permission is hereby granted, free of charge, to any person obtaining a
copy of this software and associated documentation files (the "Software"),
@ -23,7 +23,9 @@
used in advertising or otherwise to promote the sale, use or other dealings
in this Software without prior written authorization from Robert M Supnik.
05-Nov-11 RMS Added VEC_QBUS definition
29-Nov-13 RMS Added system-specific unaligned routines
12-Dec-12 RMS Fixed IO base address for RQB, RQC, RQD
05-Nov-11 RMS Added VEC_QMODE definition
19-Nov-08 RMS Moved I/O support routines to I/O library
29-Apr-07 RMS Modified model-specific reserved operand check macros
to reflect 780 microcode patches (found by Naoki Hamada)
@ -436,6 +438,14 @@ t_stat show_nexus (FILE *st, UNIT *uptr, int32 val, void *desc);
void sbi_set_errcnf (void);
/* Function prototypes for system-specific unaligned support
11/780 treats unaligned like aligned */
#define ReadIOU(p,l) ReadIO (p,l)
#define ReadRegU(p,l) ReadReg (p,l)
#define WriteIOU(p,v,l) WriteIO (p, v, l)
#define WriteRegU(p,v,l) WriteReg (p, v, l)
#include "pdp11_io_lib.h"
#endif

View file

@ -471,6 +471,14 @@ t_stat show_nexus (FILE *st, UNIT *uptr, int32 val, void *desc);
void sbi_set_errcnf (void);
/* Function prototypes for system-specific unaligned support
8600 treats unaligned like aligned */
#define ReadIOU(p,l) ReadIO (p,l)
#define ReadRegU(p,l) ReadReg (p,l)
#define WriteIOU(p,v,l) WriteIO (p, v, l)
#define WriteRegU(p,v,l) WriteReg (p, v, l)
#include "pdp11_io_lib.h"
#endif

View file

@ -1,6 +1,6 @@
/* vax_io.c: VAX 3900 Qbus IO simulator
Copyright (c) 1998-2012, Robert M Supnik
Copyright (c) 1998-2013, Robert M Supnik
Permission is hereby granted, free of charge, to any person obtaining a
copy of this software and associated documentation files (the "Software"),
@ -25,6 +25,7 @@
qba Qbus adapter
20-Dec-13 RMS Added unaligned access routines
25-Mar-12 RMS Added parameter to int_ack prototype (Mark Pizzolata)
28-May-08 RMS Inlined physical memory routines
25-Jan-08 RMS Fixed declarations (Mark Pizzolato)
@ -231,7 +232,7 @@ mem_err = 1;
return;
}
/* ReadIO - read I/O space
/* ReadIO - read I/O space - aligned access
Inputs:
pa = physical address
@ -252,7 +253,49 @@ SET_IRQL;
return iod;
}
/* WriteIO - write I/O space
/* ReadIOU - read I/O space - unaligned access
Inputs:
pa = physical address
lnt = length (1, 2, 3 bytes)
Output:
data, not shifted
Note that all of these cases are presented to the existing aligned IO routine:
bo = 0, byte, word, or longword length
bo = 2, word
bo = 1, 2, 3, byte length
All the other cases are end up at ReadIOU and WriteIOU, and they must turn
the request into the exactly correct number of Qbus accesses AND NO MORE,
because Qbus reads can have side-effects, and word read-modify-write is NOT
the same as a byte write.
Note that the sum of the pa offset and the length cannot be greater than 4.
The read cases are:
bo = 0, byte or word - read one word
bo = 0, tribyte - read two words
bo = 1, byte - read one word
bo = 1, word or tribyte - read two words
bo = 2, byte or word - read one word
bo = 3, byte - read one word
*/
int32 ReadIOU (uint32 pa, int32 lnt)
{
int32 iod;
iod = ReadQb (pa); /* wd from Qbus */
if ((lnt + (pa & 1)) <= 2) /* byte or (word & even) */
iod = iod << ((pa & 2)? 16: 0); /* one op */
else iod = (ReadQb (pa + 2) << 16) | iod; /* two ops, get 2nd wd */
SET_IRQL;
return iod;
}
/* WriteIO - write I/O space - aligned access
Inputs:
pa = physical address
@ -276,6 +319,54 @@ SET_IRQL;
return;
}
/* WriteIOU - write I/O space
Inputs:
pa = physical address
val = data to write, right justified in 32b longword
lnt = length (1, 2, or 3 bytes)
Outputs:
none
The write cases are:
bo = x, lnt = byte - write one byte
bo = 0 or 2, lnt = word - write one word
bo = 1, lnt = word - write two bytes
bo = 0, lnt = tribyte - write word, byte
bo = 1, lnt = tribyte - write byte, word
*/
void WriteIOU (uint32 pa, int32 val, int32 lnt)
{
switch (lnt) {
case L_BYTE: /* byte */
WriteQb (pa, val & BMASK, WRITEB);
break;
case L_WORD: /* word */
if (pa & 1) { /* odd addr? */
WriteQb (pa, val & BMASK, WRITEB);
WriteQb (pa + 1, (val >> 8) & BMASK, WRITEB);
}
else WriteQb (pa, val & WMASK, WRITE);
break;
case 3: /* tribyte */
if (pa & 1) { /* odd addr? */
WriteQb (pa, val & BMASK, WRITEB); /* byte then word */
WriteQb (pa + 1, (val >> 8) & WMASK, WRITE);
}
else { /* even */
WriteQb (pa, val & WMASK, WRITE); /* word then byte */
WriteQb (pa + 2, (val >> 16) & BMASK, WRITEB);
}
break;
}
SET_IRQL;
return;
}
/* Find highest priority outstanding interrupt */
int32 eval_int (void)

View file

@ -1,6 +1,6 @@
/* vax_mmu.c - VAX memory management
Copyright (c) 1998-2008, Robert M Supnik
Copyright (c) 1998-2013, Robert M Supnik
Permission is hereby granted, free of charge, to any person obtaining a
copy of this software and associated documentation files (the "Software"),
@ -23,7 +23,7 @@
used in advertising or otherwise to promote the sale, use or other dealings
in this Software without prior written authorization from Robert M Supnik.
09-Nov-13 MB Fixed reading/writing of unaligned data
29-Nov-13 RMS Reworked unaligned flows
24-Oct-12 MB Added support for KA620 virtual addressing
21-Jul-08 RMS Removed inlining support
28-May-08 RMS Inlined physical memory routines
@ -58,7 +58,6 @@ typedef struct {
} TLBENT;
extern uint32 *M;
extern const uint32 align[4];
extern int32 PSL;
extern int32 mapen;
extern int32 p1, p2;
@ -110,6 +109,8 @@ extern int32 ReadIO (uint32 pa, int32 lnt);
extern void WriteIO (uint32 pa, int32 val, int32 lnt);
extern int32 ReadReg (uint32 pa, int32 lnt);
extern void WriteReg (uint32 pa, int32 val, int32 lnt);
int32 ReadU (uint32 pa, int32 lnt);
void WriteU (uint32 pa, int32 val, int32 lnt);
/* TLB data structures
@ -199,24 +200,22 @@ if (mapen && ((uint32)(off + lnt) > VA_PAGSIZE)) { /* cross page? */
if (((xpte.pte & acc) == 0) || (xpte.tag != vpn) ||
((acc & TLB_WACC) && ((xpte.pte & TLB_M) == 0)))
xpte = fill (va + lnt, lnt, acc, NULL); /* fill if needed */
pa1 = (xpte.pte & TLB_PFN) | VA_GETOFF (va + 4);
pa1 = ((xpte.pte & TLB_PFN) | VA_GETOFF (va + 4)) & ~03;
}
else pa1 = (pa + 4) & PAMASK; /* not cross page */
else pa1 = ((pa + 4) & PAMASK) & ~03; /* not cross page */
bo = pa & 3;
pa = pa & ~3; /* convert to aligned */
pa1 = pa1 & ~3;
if (lnt >= L_LONG) { /* lw unaligned? */
sc = bo << 3;
wl = ReadL (pa); /* read both lw */
wh = ReadL (pa1); /* extract */
return ((((wl >> sc) & align[bo]) | (wh << (32 - sc))) & LMASK);
wl = ReadU (pa, L_LONG - bo); /* read both fragments */
wh = ReadU (pa1, bo); /* extract */
return ((wl | (wh << (32 - sc))) & LMASK);
}
else if (bo == 1)
return ((ReadL (pa) >> 8) & WMASK);
else if (bo == 1) /* read within lw */
return ReadU (pa, L_WORD);
else {
wl = ReadL (pa); /* word cross lw */
wh = ReadL (pa1); /* read, extract */
return (((wl >> 24) & 0xFF) | ((wh & 0xFF) << 8));
wl = ReadU (pa, L_BYTE); /* word cross lw */
wh = ReadU (pa1, L_BYTE); /* read, extract */
return (wl | (wh << 8));
}
}
@ -234,7 +233,7 @@ else {
void Write (uint32 va, int32 val, int32 lnt, int32 acc)
{
int32 vpn, off, tbi, pa;
int32 pa1, bo, sc, wl, wh;
int32 pa1, bo, sc;
TLBENT xpte;
mchk_va = va;
@ -267,31 +266,20 @@ if (mapen && ((uint32)(off + lnt) > VA_PAGSIZE)) {
if (((xpte.pte & acc) == 0) || (xpte.tag != vpn) ||
((xpte.pte & TLB_M) == 0))
xpte = fill (va + lnt, lnt, acc, NULL);
pa1 = (xpte.pte & TLB_PFN) | VA_GETOFF (va + 4);
pa1 = ((xpte.pte & TLB_PFN) | VA_GETOFF (va + 4)) & ~03;
}
else pa1 = (pa + 4) & PAMASK;
else pa1 = ((pa + 4) & PAMASK) & ~03;
bo = pa & 3;
pa = pa & ~3; /* convert to aligned */
pa1 = pa1 & ~3;
wl = ReadL (pa);
if (lnt >= L_LONG) {
sc = bo << 3;
wh = ReadL (pa1);
wl = (wl & insert[bo]) | ((val << sc) & LMASK);
wh = (wh & ~insert[bo]) | ((val >> (32 - sc)) & insert[bo]);
WriteL (pa, wl);
WriteL (pa1, wh);
WriteU (pa, val & insert[L_LONG - bo], L_LONG - bo);
WriteU (pa1, (val >> (32 - sc)) & insert[bo], bo);
}
else if (bo == 1) {
wl = (wl & 0xFF0000FF) | (val << 8);
WriteL (pa, wl);
}
else {
wh = ReadL (pa1);
wl = (wl & 0x00FFFFFF) | ((val & 0xFF) << 24);
wh = (wh & 0xFFFFFF00) | ((val >> 8) & 0xFF);
WriteL (pa, wl);
WriteL (pa1, wh);
else if (bo == 1) /* read within lw */
WriteU (pa, val & WMASK, L_WORD);
else { /* word cross lw */
WriteU (pa, val & BMASK, L_BYTE);
WriteU (pa1, (val >> 8) & BMASK, L_BYTE);
}
return;
}
@ -362,7 +350,8 @@ SIM_INLINE int32 ReadL (uint32 pa)
if (ADDR_IS_MEM (pa))
return M[pa >> 2];
mchk_ref = REF_V;
if (ADDR_IS_IO (pa)) return ReadIO (pa, L_LONG);
if (ADDR_IS_IO (pa))
return ReadIO (pa, L_LONG);
return ReadReg (pa, L_LONG);
}
@ -377,6 +366,30 @@ if (ADDR_IS_IO (pa))
return ReadReg (pa, L_LONG);
}
/* Read unaligned physical (in virtual context)
Inputs:
pa = physical address
lnt = length in bytes (1, 2, or 3)
Output:
returned data
*/
int32 ReadU (uint32 pa, int32 lnt)
{
int32 dat;
int32 sc = (pa & 3) << 3;
if (ADDR_IS_MEM (pa))
dat = M[pa >> 2];
else {
mchk_ref = REF_V;
if (ADDR_IS_IO (pa))
dat = ReadIOU (pa, lnt);
else dat = ReadRegU (pa, lnt);
}
return ((dat >> sc) & insert[lnt]);
}
/* Write aligned physical (in virtual context, unless indicated)
Inputs:
@ -446,6 +459,33 @@ else {
return;
}
/* Write unaligned physical (in virtual context)
Inputs:
pa = physical address
val = data to be written, right justified in 32b longword
lnt = length (1, 2, or 3 bytes)
Output:
none
*/
void WriteU (uint32 pa, int32 val, int32 lnt)
{
if (ADDR_IS_MEM (pa)) {
int32 bo = pa & 3;
int32 sc = bo << 3;
M[pa >> 2] = (M[pa >> 2] & ~(insert[lnt] << sc)) | ((val & insert[lnt]) << sc);
}
else {
mchk_ref = REF_V;
if ADDR_IS_IO (pa)
WriteIOU (pa, val, lnt);
else WriteRegU (pa, val, lnt);
}
return;
}
/* TLB fill
This routine fills the TLB after a tag or access mismatch, or

View file

@ -1,6 +1,6 @@
/* vax_sysdev.c: VAX 3900 system-specific logic
Copyright (c) 1998-2011, Robert M Supnik
Copyright (c) 1998-2013, Robert M Supnik
Permission is hereby granted, free of charge, to any person obtaining a
copy of this software and associated documentation files (the "Software"),
@ -33,6 +33,7 @@
cmctl memory controller
sysd system devices (SSC miscellany)
20-Dec-13 RMS Added unaligned register space access routines
23-Dec-10 RMS Added power clear call to boot routine (Mark Pizzolato)
25-Oct-05 RMS Automated CMCTL extended memory
16-Aug-05 RMS Fixed C++ declaration and cast problems
@ -232,6 +233,9 @@ int32 ssc_adsm[2] = { 0 }; /* addr strobes */
int32 ssc_adsk[2] = { 0 };
int32 cdg_dat[CDASIZE >> 2]; /* cache data */
static uint32 rom_delay = 0;
static const int32 insert[4] = {
0x00000000, 0x000000FF, 0x0000FFFF, 0x00FFFFFF
};
t_stat rom_ex (t_value *vptr, t_addr exta, UNIT *uptr, int32 sw);
t_stat rom_dep (t_value val, t_addr exta, UNIT *uptr, int32 sw);
@ -1045,6 +1049,20 @@ MACH_CHECK (MCHK_READ);
return 0;
}
/* ReadRegU - read register space, unaligned
Inputs:
pa = physical address
lnt = length in bytes (1, 2, or 3)
Output:
returned data, not shifted
*/
int32 ReadRegU (uint32 pa, int32 lnt)
{
return ReadReg (pa & ~03, L_LONG);
}
/* WriteReg - write register space
Inputs:
@ -1070,6 +1088,26 @@ MACH_CHECK (MCHK_WRITE);
return;
}
/* WriteRegU - write register space, unaligned
Inputs:
pa = physical address
val = data to write, right justified in 32b longword
lnt = length (1, 2, or 3)
Outputs:
none
*/
void WriteRegU (uint32 pa, int32 val, int32 lnt)
{
int32 sc = (pa & 03) << 3;
int32 dat = ReadReg (pa & ~03, L_LONG);
dat = (dat & ~(insert[lnt] << sc)) | ((val & insert[lnt]) << sc);
WriteReg (pa & ~03, dat, L_LONG);
return;
}
/* CMCTL registers
CMCTL00 - 15 configure memory banks 00 - 15. Note that they are

View file

@ -1,6 +1,6 @@
/* vaxmod_defs.h: VAX model-specific definitions file
Copyright (c) 1998-2011, Robert M Supnik
Copyright (c) 1998-2013, Robert M Supnik
Permission is hereby granted, free of charge, to any person obtaining a
copy of this software and associated documentation files (the "Software"),
@ -23,6 +23,7 @@
used in advertising or otherwise to promote the sale, use or other dealings
in this Software without prior written authorization from Robert M Supnik.
20-Dec-13 RMS Added prototypes for unaligned IO and register handling
11-Dec-11 RMS Moved all Qbus devices to BR4; deleted RP definitions
25-Nov-11 RMS Added VEC_QBUS definition
29-Apr-07 RMS Separated checks for PxBR and SBR
@ -437,4 +438,11 @@ int32 Map_WriteW (uint32 ba, int32 bc, uint16 *buf);
extern t_stat sysd_set_halt (UNIT *uptr, int32 val, char *cptr, void *desc);
extern t_stat sysd_show_halt (FILE *st, UNIT *uptr, int32 val, void *desc);
/* Function prototypes for system-specific unaligned support */
int32 ReadIOU (uint32 pa, int32 lnt);
int32 ReadRegU (uint32 pa, int32 lnt);
void WriteIOU (uint32 pa, int32 val, int32 lnt);
void WriteRegU (uint32 pa, int32 val, int32 lnt);
#endif