/* pdp11_dup.c: PDP-11 DUP11/DPV11 bit synchronous interface Copyright (c) 2013, Mark Pizzolato Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL ROBERT M SUPNIK BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. Except as contained in this notice, the name of Robert M Supnik shall not be used in advertising or otherwise to promote the sale, use or other dealings in this Software without prior written authorization from Robert M Supnik. dup DUP11 Unibus/DPV11 Qbus bit synchronous interface This module implements a bit synchronous interface to support DDCMP. Other synchronous protocols which may have been supported on the DUP11/DPV11 bit synchronous interface are explicitly not supported. Connections are modeled with a tcp session with connection management and I/O provided by the tmxr library. The wire protocol implemented is native DDCMP WITHOUT the DDCMP SYNC characters both initially and between DDCMP packets. 15-May-13 MP Initial implementation */ #if defined (VM_PDP10) /* PDP10 version */ #include "pdp10_defs.h" #elif defined (VM_VAX) /* VAX version */ #include "vax_defs.h" #else /* PDP-11 version */ #include "pdp11_defs.h" #endif #include "sim_tmxr.h" #include #if !defined(DUP_LINES) #define DUP_LINES 8 #endif #define INITIAL_DUP_LINES 1 #define DUP_RX_WAIT 100 #define DUP_TX_WAIT 100 #define DUP_CONNECT_POLL 2 /* Seconds */ extern int32 IREQ (HLVL); extern int32 tmxr_poll; /* calibrated delay */ uint16 dup_rxcsr[DUP_LINES]; uint16 dup_rxdbuf[DUP_LINES]; uint16 dup_parcsr[DUP_LINES]; uint16 dup_txcsr[DUP_LINES]; uint16 dup_txdbuf[DUP_LINES]; uint32 dup_rxi = 0; /* rcv interrupts */ uint32 dup_txi = 0; /* xmt interrupts */ uint32 dup_rx_wait = DUP_RX_WAIT; /* rcv character delay */ uint32 dup_tx_wait = DUP_TX_WAIT; /* xmt character delay */ uint8 *dup_rcvpacket[DUP_LINES]; /* rcv buffer */ uint16 dup_rcvpksize[DUP_LINES]; /* rcv buffer size */ uint16 dup_rcvpkoffset[DUP_LINES]; /* rcv buffer offset */ uint16 dup_rcvpkinoff[DUP_LINES]; /* rcv packet in offset */ uint8 *dup_xmtpacket[DUP_LINES]; /* xmt buffer */ uint16 dup_xmtpksize[DUP_LINES]; /* xmt buffer size */ uint16 dup_xmtpkoffset[DUP_LINES]; /* xmt buffer offset */ uint16 dup_xmtpkoutoff[DUP_LINES]; /* xmt packet out offset */ t_bool dup_xmtpkrdy[DUP_LINES]; /* xmt packet ready */ t_stat dup_rd (int32 *data, int32 PA, int32 access); t_stat dup_wr (int32 data, int32 PA, int32 access); t_stat dup_set_modem (int32 dup, int32 rxcsr_bits); t_stat dup_get_modem (int32 dup); t_stat dup_svc (UNIT *uptr); t_stat dup_poll_svc (UNIT *uptr); t_stat dup_rcv_byte (int32 dup); t_stat dup_reset (DEVICE *dptr); t_stat dup_attach (UNIT *uptr, char *ptr); t_stat dup_detach (UNIT *uptr); t_stat dup_clear (int32 dup, t_bool flag); void ddcmp_packet_trace (DEVICE *dptr, const char *txt, const uint8 *msg, int32 len, t_bool detail); int32 dup_rxinta (void); int32 dup_txinta (void); void dup_update_rcvi (void); void dup_update_xmti (void); void dup_clr_rxint (int32 dup); void dup_set_rxint (int32 dup); void dup_clr_txint (int32 dup); void dup_set_txint (int32 dup); t_stat dup_setnl (UNIT *uptr, int32 val, char *cptr, void *desc); t_stat dup_help (FILE *st, DEVICE *dptr, UNIT *uptr, int32 flag, char *cptr); t_stat dup_help_attach (FILE *st, DEVICE *dptr, UNIT *uptr, int32 flag, char *cptr); char *dup_description (DEVICE *dptr); static uint16 dup_crc16(uint16 crc, const void* vbuf, size_t len); /* DDCMP packet types */ #define DDCMP_SOH 0201u /* Numbered Data Message Identifier */ #define DDCMP_ENQ 0005u /* Control Message Identifier */ #define DDCMP_DLE 0220u /* Maintenance Message Identifier */ /* RXCSR - 16XXX0 - receiver control/status register */ BITFIELD dup_rxcsr_bits[] = { BIT(BDATSET), /* Data Set Change B */ #define RXCSR_V_BDATSET 0 #define RXCSR_M_BDATSET (1<> TXCSR_V_MAISEL) BIT(MAISSCLK), /* Maintenance Single Step Clock */ #define TXCSR_V_MAISSCLK 13 #define TXCSR_M_MAISSCLK (1<> 3); /* get line num */ TMLN *lp = &dup_desc.ldsc[dup]; int32 orig_val; if (dup >= dup_desc.lines) /* validate line number */ return SCPE_IERR; orig_val = regs[(PA >> 1) & 03][dup]; switch ((PA >> 1) & 03) { /* case on PA<2:1> */ case 00: /* RXCSR */ dup_get_modem (dup); *data = dup_rxcsr[dup]; break; case 01: /* RXDBUF */ *data = dup_rxdbuf[dup]; dup_rxcsr[dup] &= ~RXCSR_M_RXDONE; if (dup_rxcsr[dup] & RXCSR_M_RXACT) sim_activate (dup_units+dup, dup_rx_wait); break; case 02: /* TXCSR */ *data = dup_txcsr[dup]; break; case 03: /* TXDBUF */ *data = dup_txdbuf[dup]; break; } sim_debug(DBG_REG, DUPDPTR, "dup_rd(PA=0x%08X [%s], data=0x%X) ", PA, dup_rd_regs[(PA >> 1) & 03], *data); sim_debug_bits(DBG_REG, DUPDPTR, bitdefs[(PA >> 1) & 03], (uint32)(orig_val), (uint32)(regs[(PA >> 1) & 03][dup]), TRUE); return SCPE_OK; } t_stat dup_wr (int32 data, int32 PA, int32 access) { static BITFIELD* bitdefs[] = {dup_rxcsr_bits, dup_parcsr_bits, dup_txcsr_bits, dup_txdbuf_bits}; static uint16 *regs[] = {dup_rxcsr, dup_parcsr, dup_txcsr, dup_txdbuf}; int32 dup = ((PA - dup_dib.ba) >> 3); /* get line num */ int32 orig_val; if (dup >= dup_desc.lines) /* validate line number */ return SCPE_IERR; orig_val = regs[(PA >> 1) & 03][dup]; switch ((PA >> 1) & 03) { /* case on PA<2:1> */ case 00: /* RXCSR */ dup_set_modem (dup, data); dup_rxcsr[dup] &= ~RXCSR_WRITEABLE; dup_rxcsr[dup] |= (data & RXCSR_WRITEABLE); if ((dup_rxcsr[dup] & RXCSR_M_RTS) && /* Upward transition of RTS */ (!(orig_val & RXCSR_M_RTS))) /* Enables Receive on the line */ dup_desc.ldsc[dup].rcve = TRUE; if ((dup_rxcsr[dup] & RXCSR_M_RTS) && /* Upward transition of RTS */ (!(orig_val & RXCSR_M_RTS)) && /* while receiver is enabled and */ (dup_rxcsr[dup] & RXCSR_M_RCVEN) && /* not stripping sync characters */ (!(dup_rxcsr[dup] & RXCSR_M_STRSYN)) ) { /* Receive a SYNC character */ dup_rxcsr[dup] |= RXCSR_M_RXDONE; dup_rxdbuf[dup] &= ~RXDBUF_M_RXDBUF; dup_rxdbuf[dup] |= (dup_parcsr[dup] & PARCSR_M_ADSYNC); if (dup_rxcsr[dup] & RXCSR_M_RXIE) dup_set_rxint (dup); } if ((dup_rxcsr[dup] & RXCSR_M_RCVEN) && (!(orig_val & RXCSR_M_RCVEN))) { /* Upward transition of receiver enable */ dup_rcv_byte (dup); /* start any pending receive */ } if ((!(dup_rxcsr[dup] & RXCSR_M_RCVEN)) && (orig_val & RXCSR_M_RCVEN)) { /* Downward transition of receiver enable */ dup_rxcsr[dup] &= ~RXCSR_M_RXDONE; dup_rcvpkinoff[dup] = dup_rcvpkoffset[dup] = 0; } break; case 01: /* PARCSR */ dup_parcsr[dup] &= ~PARCSR_WRITEABLE; dup_parcsr[dup] |= (data & PARCSR_WRITEABLE); break; case 02: /* TXCSR */ dup_txcsr[dup] &= ~TXCSR_WRITEABLE; dup_txcsr[dup] |= (data & TXCSR_WRITEABLE); if ((!(dup_txcsr[dup] & TXCSR_M_SEND)) && (orig_val & TXCSR_M_SEND)) dup_txcsr[dup] &= ~TXCSR_M_TXACT; if (dup_txcsr[dup] & TXCSR_M_DRESET) { dup_clear(dup, FALSE); break; } break; case 03: /* TXDBUF */ dup_txdbuf[dup] &= ~TXDBUF_WRITEABLE; dup_txdbuf[dup] |= (data & TXDBUF_WRITEABLE); dup_txcsr[dup] &= ~TXCSR_M_TXDONE; if (dup_txcsr[dup] & TXCSR_M_SEND) { dup_txcsr[dup] |= TXCSR_M_TXACT; sim_activate (dup_units+dup, dup_tx_wait); } break; } sim_debug(DBG_REG, DUPDPTR, "dup_wr(PA=0x%08X [%s], data=0x%X) ", PA, dup_wr_regs[(PA >> 1) & 03], data); sim_debug_bits(DBG_REG, DUPDPTR, bitdefs[(PA >> 1) & 03], (uint32)orig_val, (uint32)regs[(PA >> 1) & 03][dup], TRUE); return SCPE_OK; } t_stat dup_set_modem (int32 dup, int32 rxcsr_bits) { int32 bits_to_set, bits_to_clear; if ((rxcsr_bits & (RXCSR_M_DTR | RXCSR_M_RTS)) == (dup_rxcsr[dup] & (RXCSR_M_DTR | RXCSR_M_RTS))) return SCPE_OK; bits_to_set = ((rxcsr_bits & RXCSR_M_DTR) ? TMXR_MDM_DTR : 0) | ((rxcsr_bits & RXCSR_M_RTS) ? TMXR_MDM_RTS : 0); bits_to_clear = (~bits_to_set) & (TMXR_MDM_DTR | TMXR_MDM_RTS); tmxr_set_get_modem_bits (dup_desc.ldsc+dup, bits_to_set, bits_to_clear, NULL); return SCPE_OK; } t_stat dup_get_modem (int32 dup) { int32 modem_bits; int32 old_rxcsr_a_modem_bits, new_rxcsr_a_modem_bits, old_rxcsr_b_modem_bits, new_rxcsr_b_modem_bits; TMLN *lp = &dup_desc.ldsc[dup]; old_rxcsr_a_modem_bits = dup_rxcsr[dup] & RXCSR_A_MODEM_BITS; old_rxcsr_b_modem_bits = dup_rxcsr[dup] & RXCSR_B_MODEM_BITS; tmxr_set_get_modem_bits (lp, 0, 0, &modem_bits); new_rxcsr_a_modem_bits = (((modem_bits & TMXR_MDM_RNG) ? RXCSR_M_RING : 0) | ((modem_bits & TMXR_MDM_DCD) ? RXCSR_M_DCD : 0) | ((modem_bits & TMXR_MDM_CTS) ? RXCSR_M_CTS : 0)); new_rxcsr_b_modem_bits = ((modem_bits & TMXR_MDM_DSR) ? RXCSR_M_DSR : 0); dup_rxcsr[dup] &= ~(RXCSR_A_MODEM_BITS | RXCSR_B_MODEM_BITS); dup_rxcsr[dup] |= new_rxcsr_a_modem_bits | new_rxcsr_b_modem_bits; if (old_rxcsr_a_modem_bits != new_rxcsr_a_modem_bits) dup_rxcsr[dup] |= RXCSR_M_DSCHNG; else dup_rxcsr[dup] &= ~RXCSR_M_DSCHNG; if (old_rxcsr_b_modem_bits != new_rxcsr_b_modem_bits) dup_rxcsr[dup] |= RXCSR_M_BDATSET; else dup_rxcsr[dup] &= ~RXCSR_M_BDATSET; if ((dup_rxcsr[dup] & RXCSR_M_DSCHNG) && (dup_rxcsr[dup] & RXCSR_M_DSCIE)) dup_set_rxint (dup); return SCPE_OK; } t_stat dup_rcv_byte (int32 dup) { sim_debug (DBG_TRC, DUPDPTR, "dup_rcv_byte(dup=%d) - %s, byte %d of %d\n", dup, (dup_rxcsr[dup] & RXCSR_M_RCVEN) ? "enabled" : "disabled", dup_rcvpkinoff[dup], dup_rcvpkoffset[dup]); if (!(dup_rxcsr[dup] & RXCSR_M_RCVEN) || (dup_rcvpkoffset[dup] == 0)) return SCPE_OK; dup_rxcsr[dup] |= RXCSR_M_RXACT; dup_rxdbuf[dup] &= ~RXDBUF_M_RCRCER; dup_rxdbuf[dup] &= ~RXDBUF_M_RXDBUF; dup_rxdbuf[dup] |= dup_rcvpacket[dup][dup_rcvpkinoff[dup]++]; dup_rxcsr[dup] |= RXCSR_M_RXDONE; if (((dup_rcvpkinoff[dup] == 8) || (dup_rcvpkinoff[dup] >= dup_rcvpkoffset[dup])) && (0 == dup_crc16 (0, dup_rcvpacket[dup], dup_rcvpkinoff[dup]))) dup_rxdbuf[dup] |= RXDBUF_M_RCRCER; else dup_rxdbuf[dup] &= ~RXDBUF_M_RCRCER; if (dup_rcvpkinoff[dup] >= dup_rcvpkoffset[dup]) { dup_rcvpkoffset[dup] = 0; dup_rxcsr[dup] &= ~RXCSR_M_RXACT; } if (dup_rxcsr[dup] & RXCSR_M_RXIE) dup_set_rxint (dup); return SCPE_OK; } /* service routine to delay device activity */ t_stat dup_svc (UNIT *uptr) { DEVICE *dptr = DUPDPTR; int32 dup = (int32)(uptr-dptr->units); TMLN *lp = &dup_desc.ldsc[dup]; sim_debug(DBG_TRC, DUPDPTR, "dup_svc(dup=%d)\n", dup); if (!(dup_txcsr[dup] & TXCSR_M_TXDONE)) { if (dup_txdbuf[dup] & TXDBUF_M_TSOM) { dup_xmtpkoffset[dup] = 0; } else { if ((dup_xmtpkoffset[dup] != 0) || ((dup_txdbuf[dup] & TXDBUF_M_TXDBUF) != (dup_parcsr[dup] & PARCSR_M_ADSYNC))) { if (!(dup_txdbuf[dup] & TXDBUF_M_TEOM)) { if (dup_xmtpkoffset[dup] + 1 > dup_xmtpksize[dup]) { dup_xmtpksize[dup] += 512; dup_xmtpacket[dup] = realloc (dup_xmtpacket[dup], dup_xmtpksize[dup]); } dup_xmtpacket[dup][dup_xmtpkoffset[dup]] = dup_txdbuf[dup] & TXDBUF_M_TXDBUF; dup_xmtpkoffset[dup] += 1; } } } dup_txcsr[dup] |= TXCSR_M_TXDONE; if (dup_txcsr[dup] & TXCSR_M_TXIE) dup_set_txint (dup); if (dup_txdbuf[dup] & TXDBUF_M_TEOM) { /* Packet ready to send? */ uint16 crc16 = dup_crc16 (0, dup_xmtpacket[dup], dup_xmtpkoffset[dup]); if (dup_xmtpkoffset[dup] + 2 > dup_xmtpksize[dup]) { dup_xmtpksize[dup] += 512; dup_xmtpacket[dup] = realloc (dup_xmtpacket[dup], dup_xmtpksize[dup]); } dup_xmtpacket[dup][dup_xmtpkoffset[dup]++] = crc16 & 0xFF; dup_xmtpacket[dup][dup_xmtpkoffset[dup]++] = crc16 >> 8; sim_debug(DBG_TRC, DUPDPTR, "dup_svc(dup=%d) - Packet Done %d bytes\n", dup, dup_xmtpkoffset[dup]); ddcmp_packet_trace (DUPDPTR, "XMT Packet", dup_xmtpacket[dup], dup_xmtpkoffset[dup], TRUE); dup_xmtpkoutoff[dup] = 0; dup_xmtpkrdy[dup] = TRUE; } } if (dup_xmtpkrdy[dup]) { t_stat st = SCPE_OK; while ((st == SCPE_OK) && (dup_xmtpkoutoff[dup] < dup_xmtpkoffset[dup])) { st = tmxr_putc_ln (lp, dup_xmtpacket[dup][dup_xmtpkoutoff[dup]]); if (st == SCPE_OK) ++dup_xmtpkoutoff[dup]; } tmxr_send_buffered_data (lp); /* send any buffered data */ if (st == SCPE_LOST) { /* line state transition? */ dup_get_modem (dup); dup_xmtpkrdy[dup] = FALSE; } else if (st == SCPE_OK) dup_xmtpkrdy[dup] = FALSE; if (!dup_xmtpkrdy[dup]) dup_txcsr[dup] &= ~TXCSR_M_TXACT; } if (dup_rxcsr[dup] & RXCSR_M_RXACT) dup_rcv_byte (dup); return SCPE_OK; } t_stat dup_poll_svc (UNIT *uptr) { int32 dup, active, attached, c; sim_debug(DBG_TRC, DUPDPTR, "dup_poll_svc()\n"); dup = tmxr_poll_conn(&dup_desc); if (dup >= 0) { /* new connection? */ dup_rxcsr[dup] |= RXCSR_M_RING | ((dup_rxcsr[dup] & RXCSR_M_DTR) ? (RXCSR_M_DCD | RXCSR_M_CTS | RXCSR_M_DSR) : 0); dup_rxcsr[dup] |= RXCSR_M_DSCHNG; if (dup_rxcsr[dup] & RXCSR_M_DSCIE) dup_set_rxint (dup); /* Interrupt */ } tmxr_poll_rx (&dup_desc); tmxr_poll_tx (&dup_desc); for (dup=active=attached=0; dup < dup_desc.lines; dup++) { TMLN *lp = &dup_desc.ldsc[dup]; if (dup_units[dup].flags & UNIT_ATT) ++attached; if (dup_ldsc[dup].conn) ++active; dup_get_modem (dup); if (lp->xmte && dup_xmtpkrdy[dup]) dup_svc (&dup_units[dup]); /* Flush pending output */ if (!(dup_rxcsr[dup] & RXCSR_M_RXACT)) { while (TMXR_VALID & (c = tmxr_getc_ln (lp))) { if (dup_rcvpkoffset[dup] + 1 > dup_rcvpksize[dup]) { dup_rcvpksize[dup] += 512; dup_rcvpacket[dup] = realloc (dup_rcvpacket[dup], dup_rcvpksize[dup]); } dup_rcvpacket[dup][dup_rcvpkoffset[dup]] = c; dup_rcvpkoffset[dup] += 1; if (dup_rcvpkoffset[dup] == 1) { /* Validate first byte in packet */ if ((dup_rxcsr[dup] & RXCSR_M_STRSYN) && (dup_rcvpacket[dup][0] == (dup_parcsr[dup] & PARCSR_M_ADSYNC))) { dup_rcvpkoffset[dup] = 0; continue; } if (dup_parcsr[dup] & PARCSR_M_DECMODE) { switch (dup_rcvpacket[dup][0]) { default: sim_debug (DBG_PKT, DUPDPTR, "Ignoring unexpected byte 0%o in DDCMP mode\n", dup_rcvpacket[dup][0]); dup_rcvpkoffset[dup] = 0; case DDCMP_SOH: case DDCMP_ENQ: case DDCMP_DLE: continue; } } } if (dup_rcvpkoffset[dup] >= 8) { if (dup_rcvpacket[dup][0] == DDCMP_ENQ) { /* Control Message? */ ddcmp_packet_trace (DUPDPTR, "RCV Packet", dup_rcvpacket[dup], dup_rcvpkoffset[dup], TRUE); dup_rcvpkinoff[dup] = 0; dup_rcv_byte (dup); break; } else { int32 count = ((dup_rcvpacket[dup][2] & 0x3F) << 8)| dup_rcvpacket[dup][1]; if (dup_rcvpkoffset[dup] >= 10 + count) { ddcmp_packet_trace (DUPDPTR, "RCV Packet", dup_rcvpacket[dup], dup_rcvpkoffset[dup], TRUE); dup_rcvpkinoff[dup] = 0; dup_rcv_byte (dup); break; } } } } } } if (active) sim_clock_coschedule (uptr, tmxr_poll); /* reactivate */ else if (attached) sim_activate_after (uptr, DUP_CONNECT_POLL*1000000);/* periodic check for connections */ return SCPE_OK; } /* Debug routines */ void ddcmp_packet_trace (DEVICE *dptr, const char *txt, const uint8 *msg, int32 len, t_bool detail) { if (sim_deb && dptr && (DBG_PKT & dptr->dctrl)) { sim_debug(DBG_PKT, dptr, "%s len: %d\n", txt, len); if (detail) { int i, same, group, sidx, oidx; char outbuf[80], strbuf[18]; static char hex[] = "0123456789ABCDEF"; switch (msg[0]) { case DDCMP_SOH: /* Data Message */ sim_debug (DBG_PKT, dptr, "Data Message, Link: %d, Count: %d, Resp: %d, Num: %d, HDRCRC: %s, DATACRC: %s\n", msg[2]>>6, ((msg[2] & 0x3F) << 8)|msg[1], msg[3], msg[4], (0 == dup_crc16 (0, msg, 8)) ? "OK" : "BAD", (0 == dup_crc16 (0, msg+8, 2+(((msg[2] & 0x3F) << 8)|msg[1]))) ? "OK" : "BAD"); break; case DDCMP_ENQ: /* Control Message */ sim_debug (DBG_PKT, dptr, "Control: Type: %d ", msg[1]); switch (msg[1]) { case 1: /* ACK */ sim_debug (DBG_PKT, dptr, "(ACK) Link: %d, Resp: %d\n", msg[2]>>6, msg[3]); break; case 2: /* NAK */ sim_debug (DBG_PKT, dptr, "(NAK) Reason: %d, Link: %d, Resp: %d\n", msg[2] & 0x3F, msg[2]>>6, msg[3]); break; case 3: /* REP */ sim_debug (DBG_PKT, dptr, "(REP) Link: %d, Num: %d\n", msg[2]>>6, msg[4]); break; case 6: /* STRT */ sim_debug (DBG_PKT, dptr, "(STRT) Link: %d\n", msg[2]>>6); break; case 7: /* STACK */ sim_debug (DBG_PKT, dptr, "(STACK) Link: %d\n", msg[2]>>6); break; default: /* Unknown */ sim_debug (DBG_PKT, dptr, "(Unknown=0%o)\n", msg[1]); break; } if (len != 8) sim_debug (DBG_PKT, dptr, "Unexpected Control Message Length: %d expected 8\n", len); if (0 != dup_crc16 (0, msg, len)) sim_debug (DBG_PKT, dptr, "Unexpected Message CRC\n"); break; case DDCMP_DLE: /* Maintenance Message */ sim_debug (DBG_PKT, dptr, "Maintenance Message, Link: %d, Count: %d, HDRCRC: %s, DATACRC: %s\n", msg[1], msg[2]>>6, ((msg[2] & 0x3F) << 8)| msg[3], (0 == dup_crc16 (0, msg, 8)) ? "OK" : "BAD", (0 == dup_crc16 (0, msg+8, 2+(((msg[2] & 0x3F) << 8)| msg[3]))) ? "OK" : "BAD"); break; } for (i=same=0; i 0) && (0 == memcmp(&msg[i], &msg[i-16], 16))) { ++same; continue; } if (same > 0) { sim_debug(DBG_PKT, dptr, "%04X thru %04X same as above\n", i-(16*same), i-1); same = 0; } group = (((len - i) > 16) ? 16 : (len - i)); for (sidx=oidx=0; sidx>4)&0xf]; outbuf[oidx++] = hex[msg[i+sidx]&0xf]; if (isprint(msg[i+sidx])) strbuf[sidx] = msg[i+sidx]; else strbuf[sidx] = '.'; } outbuf[oidx] = '\0'; strbuf[sidx] = '\0'; sim_debug(DBG_PKT, dptr, "%04X%-48s %s\n", i, outbuf, strbuf); } if (same > 0) { sim_debug(DBG_PKT, dptr, "%04X thru %04X same as above\n", i-(16*same), len-1); } } } } /* Interrupt routines */ void dup_clr_rxint (int32 dup) { dup_rxi = dup_rxi & ~(1 << dup); /* clr mux rcv int */ if (dup_rxi == 0) /* all clr? */ CLR_INT (DUPRX); else SET_INT (DUPRX); /* no, set intr */ return; } void dup_set_rxint (int32 dup) { dup_rxi = dup_rxi | (1 << dup); /* set mux rcv int */ SET_INT (DUPRX); /* set master intr */ sim_debug(DBG_INT, DUPDPTR, "dup_set_rxint(dup=%d)\n", dup); return; } int32 dup_rxinta (void) { int32 dup; for (dup = 0; dup < dup_desc.lines; dup++) { /* find 1st mux */ if (dup_rxi & (1 << dup)) { sim_debug(DBG_INT, DUPDPTR, "dup_rxinta(dup=%d)\n", dup); dup_clr_rxint (dup); /* clear intr */ return (dup_dib.vec + (dup * 010)); /* return vector */ } } return 0; } void dup_clr_txint (int32 dup) { dup_txi = dup_txi & ~(1 << dup); /* clr mux xmt int */ if (dup_txi == 0) /* all clr? */ CLR_INT (DUPTX); else SET_INT (DUPTX); /* no, set intr */ return; } void dup_set_txint (int32 dup) { dup_txi = dup_txi | (1 << dup); /* set mux xmt int */ SET_INT (DUPTX); /* set master intr */ sim_debug(DBG_INT, DUPDPTR, "dup_set_txint(dup=%d)\n", dup); return; } int32 dup_txinta (void) { int32 dup; for (dup = 0; dup < dup_desc.lines; dup++) { /* find 1st mux */ if (dup_txi & (1 << dup)) { sim_debug(DBG_INT, DUPDPTR, "dup_txinta(dup=%d)\n", dup); dup_clr_txint (dup); /* clear intr */ return (dup_dib.vec + 4 + (dup * 010)); /* return vector */ } } return 0; } /* Device reset */ t_stat dup_clear (int32 dup, t_bool flag) { sim_debug(DBG_TRC, DUPDPTR, "dup_clear(dup=%d,flag=%d)\n", dup, flag); dup_rxdbuf[dup] = 0; /* silo empty */ dup_txdbuf[dup] = 0; dup_parcsr[dup] = 0; /* no params */ dup_txcsr[dup] = TXCSR_M_TXDONE; /* clear CSR */ if (flag) /* INIT? clr all */ dup_rxcsr[dup] = 0; else dup_rxcsr[dup] &= ~(RXCSR_M_DTR|RXCSR_M_RTS); /* else save dtr */ dup_clr_rxint (dup); /* clear int */ dup_clr_txint (dup); if (!dup_ldsc[dup].conn) /* set xmt enb */ dup_ldsc[dup].xmte = 1; dup_ldsc[dup].rcve = 0; /* clr rcv enb */ return SCPE_OK; } t_stat dup_reset (DEVICE *dptr) { int32 i, ndev; sim_debug(DBG_TRC, dptr, "dup_reset()\n"); if ((UNIBUS) && (dptr == &dpv_dev)) { if (!(dptr->flags & DEV_DIS)) { printf ("Can't enable Qbus device on Unibus system\n"); dptr->flags |= DEV_DIS; return SCPE_ARG; } return SCPE_OK; } if ((!UNIBUS) && (dptr == &dup_dev)) { if (!(dptr->flags & DEV_DIS)) { printf ("Can't enable Unibus device on Qbus system\n"); dptr->flags |= DEV_DIS; return SCPE_ARG; } return SCPE_OK; } if (dup_ldsc == NULL) { /* First time startup */ dup_desc.ldsc = dup_ldsc = calloc (dup_desc.lines, sizeof(*dup_ldsc)); for (i = 0; i < dup_desc.lines; i++) /* init each line */ dup_units[i] = dup_unit_template; dup_units[dup_desc.lines] = dup_poll_unit_template; } for (i = 0; i < dup_desc.lines; i++) /* init each line */ dup_clear (i, TRUE); dup_rxi = dup_txi = 0; /* clr master int */ CLR_INT (DUPRX); CLR_INT (DUPTX); tmxr_set_modem_control_passthru (&dup_desc); /* We always want Modem Control */ dup_desc.notelnet = TRUE; /* We always want raw tcp socket */ dup_desc.dptr = DUPDPTR; /* Connect appropriate device */ dup_desc.uptr = dup_units+dup_desc.lines; /* Identify polling unit */ sim_cancel (dup_units+dup_desc.lines); /* stop poll */ ndev = ((dptr->flags & DEV_DIS)? 0: dup_desc.lines ); if (ndev) sim_activate_after (dup_units+dup_desc.lines, DUP_CONNECT_POLL*1000000); return auto_config (dptr->name, ndev); /* auto config */ } t_stat dup_attach (UNIT *uptr, char *cptr) { t_stat r; DEVICE *dptr = DUPDPTR; int32 dup = (int32)(uptr-dptr->units); char attach_string[512]; if (!cptr || !*cptr) return SCPE_ARG; sprintf (attach_string, "Line=%d,Buffered=16384,%s", dup, cptr); r = tmxr_open_master (&dup_desc, attach_string); /* open master socket */ free (uptr->filename); uptr->filename = tmxr_line_attach_string(&dup_desc.ldsc[dup]); if (r != SCPE_OK) /* error? */ return r; uptr->flags |= UNIT_ATT; sim_activate_after (dup_units+dup_desc.lines, 2000000); /* start poll */ return r; } t_stat dup_detach (UNIT *uptr) { DEVICE *dptr = DUPDPTR; int32 dup = (int32)(uptr-dptr->units); TMLN *lp = &dup_ldsc[dup]; if (!(uptr->flags & UNIT_ATT)) /* attached? */ return SCPE_OK; uptr->flags &= ~UNIT_ATT; free (uptr->filename); uptr->filename = NULL; free (dup_rcvpacket[dup]); dup_rcvpacket[dup] = NULL; dup_rcvpksize[dup] = 0; dup_rcvpkoffset[dup] = 0; free (dup_xmtpacket[dup]); dup_xmtpacket[dup] = NULL; dup_xmtpksize[dup] = 0; dup_xmtpkoffset[dup] = 0; dup_xmtpkrdy[dup] = FALSE; dup_xmtpkoutoff[dup] = 0; return tmxr_detach_ln (lp); } /* SET LINES processor */ t_stat dup_setnl (UNIT *uptr, int32 val, char *cptr, void *desc) { int32 newln, l; uint32 i; t_stat r; DEVICE *dptr = DUPDPTR; for (i=0; inumunits; i++) if (dptr->units[i].flags&UNIT_ATT) return SCPE_ALATT; if (cptr == NULL) return SCPE_ARG; newln = (int32) get_uint (cptr, 10, DUP_LINES, &r); if ((r != SCPE_OK) || (newln == dup_desc.lines)) return r; if (newln == 0) return SCPE_ARG; sim_cancel (dup_units + dup_desc.lines); dup_dib.lnt = newln * IOLN_DUP; /* set length */ dup_desc.ldsc = dup_ldsc = realloc(dup_ldsc, newln*sizeof(*dup_ldsc)); for (l=dup_desc.lines; l < newln; l++) { memset (&dup_ldsc[l], 0, sizeof(*dup_ldsc)); dup_units[l] = dup_unit_template; } dup_units[newln] = dup_poll_unit_template; dup_desc.lines = newln; dptr->numunits = newln + 1; return dup_reset (dptr); /* setup lines and auto config */ } t_stat dup_help (FILE *st, DEVICE *dptr, UNIT *uptr, int32 flag, char *cptr) { fprintf (st, "Bit Serial Synchronous interface (%s)\n\n", dptr->name); fprintf (st, "The %s connects two systems to provide a network connection.\n", dptr->name); fprintf (st, "A maximum of %d %s devices/lines can be configured in the system.\n", DUP_LINES, dptr->name); fprintf (st, "The number of configured devices can be changed with:\n\n"); fprintf (st, " sim> SET %s LINES=n\n\n", dptr->name); fprint_set_help (st, dptr); fprint_show_help (st, dptr); fprint_reg_help (st, dptr); return SCPE_OK; } t_stat dup_help_attach (FILE *st, DEVICE *dptr, UNIT *uptr, int32 flag, char *cptr) { tmxr_attach_help (st, dptr, uptr, flag, cptr); fprintf (st, "The communication line performs input and output through a TCP session\n"); fprintf (st, "connected to a user-specified port. The ATTACH command specifies the"); fprintf (st, "port to be used as well as the peer address:\n\n"); fprintf (st, " sim> ATTACH %sn {interface:}port,Connect=peerhost:port\n\n", dptr->name); fprintf (st, "where port is a decimal number between 1 and 65535 that is not being used for\n"); fprintf (st, "other TCP/IP activities.\n\n"); fprintf (st, "Specifying symmetric attach configuration (with both a listen port and\n"); fprintf (st, "a connection destination) will cause the side receiving an incoming\n"); fprintf (st, "connection to validate that the connection actually comes from the\n"); fprintf (st, "connecction destination system.\n\n"); return SCPE_OK; } char *dup_description (DEVICE *dptr) { return (UNIBUS) ? "DUP11 bit synchronous interface" : "DPV11 bit synchronous interface"; } /* crc16 polynomial x^16 + x^15 + x^2 + 1 (0xA001) CCITT LSB */ static uint16 crc16_nibble[16] = { 0x0000, 0xCC01, 0xD801, 0x1400, 0xF001, 0x3C00, 0x2800, 0xE401, 0xA001, 0x6C00, 0x7800, 0xB401, 0x5000, 0x9C01, 0x8801, 0x4400, }; static uint16 dup_crc16(uint16 crc, const void* vbuf, size_t len) { const unsigned char* buf = (const unsigned char*)vbuf; while(0 != len--) { crc = (crc>>4) ^ crc16_nibble[(*buf ^ crc) & 0xF]; crc = (crc>>4) ^ crc16_nibble[((*buf++)>>4 ^ crc) & 0xF]; }; return(crc); }