/* ka10_cpu.c: PDP-10 CPU simulator Copyright (c) 2011-2017, Richard Cornwell Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL RICHARD CORNWELL BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. Except as contained in this notice, the name of Richard Cornwell shall not be used in advertising or otherwise to promote the sale, use or other dealings in this Software without prior written authorization from Richard Cornwell cpu KA10/KL10 central processor The 36b system family had six different implementions: PDP-6, KA10, KI10, KL10, KL10 extended, and KS10. The register state for the KA10 is: AC[16] accumulators PC program counter flags<0:11> state flags pi_enb<1:7> enabled PI levels pi_act<1:7> active PI levels pi_prq<1:7> program PI requests apr_enb<0:7> enabled system flags apr_flg<0:7> system flags The PDP-10 had just two instruction formats: memory reference and I/O. 000000000 0111 1 1111 112222222222333333 012345678 9012 3 4567 890123456789012345 +---------+----+-+----+------------------+ | opcode | ac |i| idx| address | memory reference +---------+----+-+----+------------------+ 000 0000000 111 1 1111 112222222222333333 012 3456789 012 3 4567 890123456789012345 +---+-------+---+-+----+------------------+ |111|device |iop|i| idx| address | I/O +---+-------+---+-+----+------------------+ This routine is the instruction decode routine for the PDP-10. It is called from the simulator control program to execute instructions in simulated memory, starting at the simulated PC. It runs until an abort occurs. General notes: 1. Reasons to stop. The simulator can be stopped by: HALT instruction MUUO instruction in executive mode pager error in interrupt sequence invalid vector table in interrupt sequence illegal instruction in interrupt sequence breakpoint encountered nested indirects exceeding limit nested XCT's exceeding limit I/O error in I/O simulator 2. Interrupts. PDP-10's have a seven level priority interrupt system. Interrupt requests can come from internal sources, such as APR program requests, or external sources, such as I/O devices. The requests are stored in pi_prq for program requests, pi_apr for other internal flags, and pi_ioq for I/O device flags. Internal and device (but not program) interrupts must be enabled on a level by level basis. When an interrupt is granted on a level, interrupts at that level and below are masked until the interrupt is dismissed. 3. Arithmetic. The PDP-10 is a 2's complement system. 4. Adding I/O devices. These modules must be modified: ka10_defs.h add device address and interrupt definitions ka10_sys.c add sim_devices table entry */ #include "kx10_defs.h" #include "sim_timer.h" #include #define HIST_PC 0x40000000 #define HIST_PC2 0x80000000 #define HIST_MIN 64 #define HIST_MAX 500000 #define TMR_RTC 0 #define TMR_QUA 1 uint64 M[MAXMEMSIZE]; /* Memory */ #if KI uint64 FM[64]; /* Fast memory register */ #else uint64 FM[16]; /* Fast memory register */ #endif uint64 AR; /* Primary work register */ uint64 MQ; /* Extension to AR */ uint64 BR; /* Secondary operand */ uint64 AD; /* Address Data */ uint64 MB; /* Memory Bufer Register */ uint32 AB; /* Memory address buffer */ uint32 PC; /* Program counter */ uint32 IR; /* Instruction register */ uint64 MI; /* Monitor lights */ uint32 FLAGS; /* Flags */ uint32 AC; /* Operand accumulator */ uint64 SW; /* Switch register */ int BYF5; /* Flag for second half of LDB/DPB instruction */ int uuo_cycle; /* Uuo cycle in progress */ int sac_inh; /* Don't store AR in AC */ int SC; /* Shift count */ int SCAD; /* Shift count extension */ int FE; /* Exponent */ #if KA | PDP6 int Pl, Ph, Rl, Rh, Pflag; /* Protection registers */ int push_ovf; /* Push stack overflow */ int mem_prot; /* Memory protection flag */ #endif int nxm_flag; /* Non-existant memory flag */ int clk_flg; /* Clock flag */ int ov_irq; /* Trap overflow */ int fov_irq; /* Trap floating overflow */ #if PDP6 int pcchg_irq; /* PC Change flag */ int ill_op; /* Illegal opcode */ int user_io; /* User IO flag */ int ex_uuo_sync; /* Execute a UUO op */ #endif uint8 PIR; /* Current priority level */ uint8 PIH; /* Highest priority */ uint8 PIE; /* Priority enable mask */ int pi_enable; /* Interrupts enabled */ int parity_irq; /* Parity interupt */ int pi_pending; /* Interrupt pending. */ int pi_enc; /* Flag for pi */ int apr_irq; /* Apr Irq level */ int clk_en; /* Enable clock interrupts */ int clk_irq; /* Clock interrupt */ int pi_restore; /* Restore previous level */ int pi_hold; /* Hold onto interrupt */ int modify; /* Modify cycle */ int xct_flag; /* XCT flags */ #if KI uint64 ARX; /* Extension to AR */ uint64 BRX; /* Extension to BR */ uint64 ADX; /* Extension to AD */ uint32 ub_ptr; /* User base pointer */ uint32 eb_ptr; /* Executive base pointer */ uint8 fm_sel; /* User fast memory block */ int32 apr_serial = -1; /* CPU Serial number */ int inout_fail; /* In out fail flag */ int small_user; /* Small user flag */ int user_addr_cmp; /* User address compare flag */ #endif #if KI | ITS | BBN uint32 e_tlb[512]; /* Executive TLB */ uint32 u_tlb[546]; /* User TLB */ int page_enable; /* Enable paging */ int page_fault; /* Page fail */ uint32 ac_stack; /* Register stack pointer */ uint32 pag_reload; /* Page reload pointer */ uint64 fault_data; /* Fault data from last fault */ int trap_flag; /* In trap cycle */ int last_page; /* Last page mapped */ #endif #if BBN int exec_map; /* Enable executive mapping */ int next_write; /* Clear next write mapping */ int mon_base_reg; /* Monitor base register */ int user_base_reg; /* User base register */ int user_limit; /* User limit register */ uint64 pur; /* Process use register */ #endif #if MPX_DEV int mpx_enable; /* Enable MPX device */ #endif #if ITS uint32 dbr1; /* User Low Page Table Address */ uint32 dbr2; /* User High Page Table Address */ uint32 dbr3; /* Exec High Page Table Address */ uint32 jpc; /* Jump program counter */ uint8 age; /* Age word */ uint32 fault_addr; /* Fault address */ uint64 opc; /* Saved PC and Flags */ uint64 mar; /* Memory address compare */ uint32 qua_time; /* Quantum clock value */ #endif int watch_stop; /* Stop at memory watch point */ int maoff = 0; /* Offset for traps */ uint16 dev_irq[128]; /* Pending irq by device */ t_stat (*dev_tab[128])(uint32 dev, uint64 *data); int (*dev_irqv[128])(uint32 dev, int addr); t_stat rtc_srv(UNIT * uptr); int32 rtc_tps = 60; #if ITS t_stat qua_srv(UNIT * uptr); int32 qua_tps = 125000; #endif int32 tmxr_poll = 10000; /* Physical address range for Rubin 10-11 interface. */ #define T11RANGE(addr) ((addr) >= 03040000) /* Physical address range for auxiliary PDP-6. */ extern int auxcpu_base; #define AUXCPURANGE(addr) ((addr) >= auxcpu_base && (addr) < (auxcpu_base + 040000)) DEVICE *rh_devs[] = { #if (NUM_DEVS_RS > 0) &rsa_dev, #endif #if (NUM_DEVS_RP > 0) &rpa_dev, #if (NUM_DEVS_RP > 1) &rpb_dev, #if (NUM_DEVS_RP > 2) &rpc_dev, #if (NUM_DEVS_RP > 3) &rpd_dev, #endif #endif #endif #endif #if (NUM_DEVS_TU > 0) &tua_dev, #endif NULL, }; struct rh_dev rh[] = { { 0270, NULL, }, { 0274, NULL, }, { 0360, NULL, }, { 0364, NULL, }, { 0370, NULL, }, { 0374, NULL, }, { 0, NULL, }, }; typedef struct { uint32 pc; uint32 ea; uint64 ir; uint64 ac; uint32 flags; uint64 mb; uint64 fmb; } InstHistory; int32 hst_p = 0; /* history pointer */ int32 hst_lnt = 0; /* history length */ InstHistory *hst = NULL; /* instruction history */ /* Forward and external declarations */ t_stat cpu_ex (t_value *vptr, t_addr addr, UNIT *uptr, int32 sw); t_stat cpu_dep (t_value val, t_addr addr, UNIT *uptr, int32 sw); t_stat cpu_reset (DEVICE *dptr); t_stat cpu_set_size (UNIT *uptr, int32 val, CONST char *cptr, void *desc); t_stat cpu_set_hist (UNIT *uptr, int32 val, CONST char *cptr, void *desc); t_stat cpu_show_hist (FILE *st, UNIT *uptr, int32 val, CONST void *desc); #if KI t_stat cpu_set_serial (UNIT *uptr, int32 val, CONST char *cptr, void *desc); t_stat cpu_show_serial (FILE *st, UNIT *uptr, int32 val, CONST void *desc); #endif t_stat cpu_help (FILE *st, DEVICE *dptr, UNIT *uptr, int32 flag, const char *cptr); const char *cpu_description (DEVICE *dptr); void set_ac_display (uint64 *acbase); t_bool build_dev_tab (void); /* CPU data structures cpu_dev CPU device descriptor cpu_unit CPU unit cpu_reg CPU register list cpu_mod CPU modifier list */ UNIT cpu_unit[] = { { UDATA (&rtc_srv, UNIT_IDLE|UNIT_FIX|UNIT_BINK|UNIT_TWOSEG, 256 * 1024) }, #if ITS { UDATA (&qua_srv, UNIT_IDLE|UNIT_DIS, 0) } #endif }; REG cpu_reg[] = { { ORDATAD (PC, PC, 18, "Program Counter") }, { ORDATAD (FLAGS, FLAGS, 18, "Flags") }, { ORDATAD (FM0, FM[00], 36, "Fast Memory") }, /* addr in memory */ { ORDATA (FM1, FM[01], 36) }, /* modified at exit */ { ORDATA (FM2, FM[02], 36) }, /* to SCP */ { ORDATA (FM3, FM[03], 36) }, { ORDATA (FM4, FM[04], 36) }, { ORDATA (FM5, FM[05], 36) }, { ORDATA (FM6, FM[06], 36) }, { ORDATA (FM7, FM[07], 36) }, { ORDATA (FM10, FM[010], 36) }, { ORDATA (FM11, FM[011], 36) }, { ORDATA (FM12, FM[012], 36) }, { ORDATA (FM13, FM[013], 36) }, { ORDATA (FM14, FM[014], 36) }, { ORDATA (FM15, FM[015], 36) }, { ORDATA (FM16, FM[016], 36) }, { ORDATA (FM17, FM[017], 36) }, #if KI { BRDATA (FM, &FM[0], 8, 36, 64)}, #else { BRDATA (FM, &FM[0], 8, 36, 16)}, #endif { ORDATAD (PIR, PIR, 8, "Priority Interrupt Request") }, { ORDATAD (PIH, PIH, 8, "Priority Interrupt Hold") }, { ORDATAD (PIE, PIE, 8, "Priority Interrupt Enable") }, { ORDATAD (PIENB, pi_enable, 7, "Enable Priority System") }, { ORDATAD (SW, SW, 36, "Console SW Register"), REG_FIT}, { ORDATAD (MI, MI, 36, "Monitor Display"), REG_FIT}, { FLDATAD (BYF5, BYF5, 0, "Byte Flag") }, { FLDATAD (UUO, uuo_cycle, 0, "UUO Cycle") }, #if KA | PDP6 { ORDATAD (PL, Pl, 18, "Program Limit Low") }, { ORDATAD (PH, Ph, 18, "Program Limit High") }, { ORDATAD (RL, Rl, 18, "Program Relation Low") }, { ORDATAD (RH, Rh, 18, "Program Relation High") }, { FLDATAD (PFLAG, Pflag, 0, "Relocation enable") }, { FLDATAD (PUSHOVER, push_ovf, 0, "Push overflow flag") }, { FLDATAD (MEMPROT, mem_prot, 0, "Memory protection flag") }, #endif { FLDATAD (NXM, nxm_flag, 0, "Non-existing memory access") }, { FLDATAD (CLK, clk_flg, 0, "Clock interrupt") }, { FLDATAD (OV, ov_irq, 0, "Overflow enable") }, #if PDP6 { FLDATAD (PCCHG, pcchg_irq, 0, "PC Change interrupt") }, { FLDATAD (USERIO, user_io, 0, "User I/O") }, { FLDATAD (UUOSYNC, ex_uuo_sync, 0, "UUO Op") }, #else { FLDATAD (FOV, fov_irq, 0, "Floating overflow enable") }, #endif { FLDATA (PI_PEND, pi_pending, 0), REG_HRO}, { FLDATA (PARITY, parity_irq, 0) }, { ORDATAD (APRIRQ, apr_irq, 0, "APR Interrupt number") }, { ORDATAD (CLKIRQ, clk_irq, 0, "CLK Interrupt number") }, { FLDATA (CLKEN, clk_en, 0), REG_HRO}, { FLDATA (XCT, xct_flag, 0), REG_HRO}, #if MPX_DEV { FLDATA (MPX, mpx_enable, 0), REG_HRO}, #endif { FLDATA (PIHOLD, pi_hold, 0), REG_HRO}, { FLDATA (PIREST, pi_restore, 0), REG_HRO}, #if KI { ORDATAD (UB, ub_ptr, 18, "User Base Pointer") }, { ORDATAD (EB, eb_ptr, 18, "Executive Base Pointer") }, { ORDATAD (FMSEL, fm_sel, 8, "Register set select") }, { ORDATAD (SERIAL, apr_serial, 10, "System Serial Number") }, { FLDATA (INOUT, inout_fail, 0), REG_RO}, { FLDATA (SMALL, small_user, 0), REG_RO}, { FLDATA (ADRCMP, user_addr_cmp, 0), REG_HRO}, #endif #if KI | ITS | BBN { FLDATAD (PAGE_ENABLE, page_enable, 0, "Paging enabled")}, { FLDATAD (PAGE_FAULT, page_fault, 0, "Page fault"), REG_RO}, { ORDATAD (AC_STACK, ac_stack, 18, "AC Stack"), REG_RO}, { ORDATAD (PAGE_RELOAD, pag_reload, 18, "Page reload"), REG_HRO}, { ORDATAD (FAULT_DATA, fault_data, 36, "Page fault data"), REG_RO}, { FLDATAD (TRP_FLG, trap_flag, 0, "Trap flag"), REG_HRO}, { ORDATAD (LST_PAGE, last_page, 9, "Last page"), REG_HRO}, #endif #if BBN { FLDATAD (EXEC_MAP, exec_map, 0, "Executive mapping"), REG_RO}, { FLDATAD (NXT_WR, next_write, 0, "Map next write"), REG_RO}, { ORDATAD (MON_BASE, mon_base_reg, 8, "Monitor base"), REG_RO}, { ORDATAD (USER_BASE, user_base_reg, 8, "User base"), REG_RO}, { ORDATAD (USER_LIMIT, user_limit, 3, "User limit"), REG_RO}, { ORDATAD (PER_USER, pur, 36, "Per user data"), REG_RO}, #endif #if ITS { ORDATAD (DBR1, dbr1, 18, "DB register 1")}, { ORDATAD (DBR2, dbr2, 18, "DB register 2")}, { ORDATAD (DBR3, dbr3, 18, "DB register 3")}, { ORDATAD (JPC, jpc, 18, "Last Jump PC")}, { ORDATAD (AGE, age, 4, "Age")}, { ORDATAD (FAULT_ADDR, fault_addr, 18, "Fault address"), REG_RO}, { ORDATAD (OPC, opc, 36, "Saved PC and flags")}, { ORDATAD (MAR, mar, 18, "Memory address register")}, { ORDATAD (QUA_TIME, qua_time, 32, "Quantum timer"), REG_RO}, #endif { NULL } }; MTAB cpu_mod[] = { { MTAB_XTD|MTAB_VDV, 0, "IDLE", "IDLE", &sim_set_idle, &sim_show_idle }, { MTAB_XTD|MTAB_VDV, 0, NULL, "NOIDLE", &sim_clr_idle, NULL }, { UNIT_MSIZE, 1, "16K", "16K", &cpu_set_size }, { UNIT_MSIZE, 2, "32K", "32K", &cpu_set_size }, { UNIT_MSIZE, 3, "48K", "48K", &cpu_set_size }, { UNIT_MSIZE, 4, "64K", "64K", &cpu_set_size }, { UNIT_MSIZE, 6, "96K", "96K", &cpu_set_size }, { UNIT_MSIZE, 8, "128K", "128K", &cpu_set_size }, { UNIT_MSIZE, 12, "196K", "196K", &cpu_set_size }, { UNIT_MSIZE, 16, "256K", "256K", &cpu_set_size }, #if KI_22BIT|KI|ITS { UNIT_MSIZE, 32, "512K", "512K", &cpu_set_size }, { UNIT_MSIZE, 48, "768K", "768K", &cpu_set_size }, { UNIT_MSIZE, 64, "1024K", "1024K", &cpu_set_size }, #endif #if KI_22BIT|KI|KL { UNIT_MSIZE, 128, "2048K", "2048K", &cpu_set_size }, { UNIT_MSIZE, 256, "4096K", "4096K", &cpu_set_size }, #endif #if KI|KL { MTAB_XTD|MTAB_VDV|MTAB_VALR, 0, "SERIAL", "SERIAL", &cpu_set_serial, &cpu_show_serial, NULL, "CPU Serial Number" }, #endif #if KA { UNIT_M_PAGE, 0, "ONESEG", "ONESEG", NULL, NULL, NULL, "One Relocation Register"}, { UNIT_M_PAGE, UNIT_TWOSEG, "TWOSEG", "TWOSEG", NULL, NULL, NULL, "Two Relocation Registers"}, #if ITS { UNIT_M_PAGE, UNIT_ITSPAGE, "ITS", "ITS", NULL, NULL, NULL, "Paging hardware for ITS"}, #endif #if BBN { UNIT_M_PAGE, UNIT_BBNPAGE, "BBN", "BBN", NULL, NULL, NULL, "Paging hardware for TENEX"}, #endif #if WAITS { UNIT_M_WAITS, UNIT_WAITS, "WAITS", "WAITS", NULL, NULL, NULL, "Support for WAITS XCTR"}, { UNIT_M_WAITS, 0, NULL, "NOWAITS", NULL, NULL, NULL, "No support for WAITS XCTR"}, #endif #if MPX_DEV { UNIT_M_MPX, UNIT_MPX, "MPX", "MPX", NULL, NULL, NULL, "MPX Device for ITS"}, { UNIT_M_MPX, 0, NULL, "NOMPX", NULL, NULL, NULL, "Disables the MPX device"}, #endif { UNIT_MAOFF, UNIT_MAOFF, "MAOFF", "MAOFF", NULL, NULL, NULL, "Interrupts relocated to 140"}, { UNIT_MAOFF, 0, NULL, "NOMAOFF", NULL, NULL, NULL, "No interrupt relocation"}, #endif { MTAB_XTD|MTAB_VDV|MTAB_NMO|MTAB_SHP, 0, "HISTORY", "HISTORY", &cpu_set_hist, &cpu_show_hist }, { 0 } }; /* Simulator debug controls */ DEBTAB cpu_debug[] = { {"IRQ", DEBUG_IRQ, "Debug IRQ requests"}, {"CONI", DEBUG_CONI, "Show coni instructions"}, {"CONO", DEBUG_CONO, "Show coni instructions"}, {"DATAIO", DEBUG_DATAIO, "Show datai and datao instructions"}, {0, 0} }; DEVICE cpu_dev = { "CPU", &cpu_unit[0], cpu_reg, cpu_mod, 1, 8, 22, 1, 8, 36, &cpu_ex, &cpu_dep, &cpu_reset, NULL, NULL, NULL, NULL, DEV_DEBUG, 0, cpu_debug, NULL, NULL, &cpu_help, NULL, NULL, &cpu_description }; /* Data arrays */ #define FCE 000001 /* Fetch memory into AR */ #define FCEPSE 000002 /* Fetch and store memory into AR */ #define SCE 000004 /* Save AR into memory */ #define FAC 000010 /* Copy AR to BR, then Fetch AC into AR */ #define FAC2 000020 /* Fetch AC+1 into MQ */ #define SAC 000040 /* Save AC into AR */ #define SACZ 000100 /* Save AC into AR if AC not 0 */ #define SAC2 000200 /* Save MQ into AC+1 */ #define SWAR 000400 /* Swap AR */ #define FBR 001000 /* Load AC into BR */ #if PDP6 #define P6(x) x #define P10(x) 0 #else #define P6(x) 0 #define P10(x) x #endif int opflags[] = { /* UUO Opcodes */ /* UUO00 */ /* LUUO01 */ /* LUUO02 */ /* LUUO03 */ 0, 0, 0, 0, /* LUUO04 */ /* LUUO05 */ /* LUUO06 */ /* LUUO07 */ 0, 0, 0, 0, /* LUUO10 */ /* LUUO11 */ /* LUUO12 */ /* LUUO13 */ 0, 0, 0, 0, /* LUUO14 */ /* LUUO15 */ /* LUUO16 */ /* LUUO17 */ 0, 0, 0, 0, /* LUUO20 */ /* LUUO21 */ /* LUUO22 */ /* LUUO23 */ 0, 0, 0, 0, /* LUUO24 */ /* LUUO25 */ /* LUUO26 */ /* LUUO27 */ 0, 0, 0, 0, /* LUUO30 */ /* LUUO31 */ /* LUUO32 */ /* LUUO33 */ 0, 0, 0, 0, /* LUUO34 */ /* LUUO35 */ /* LUUO36 */ /* LUUO37 */ 0, 0, 0, 0, /* MUUO40 */ /* MUUO41 */ /* MUUO42 */ /* MUUO43 */ 0, 0, 0, 0, /* MUUO44 */ /* MUUO45 */ /* MUUO46 */ /* MUUO47 */ 0, 0, 0, 0, /* MUUO50 */ /* MUUO51 */ /* MUUO52 */ /* MUUO53 */ 0, 0, 0, 0, /* MUUO54 */ /* MUUO55 */ /* MUUO56 */ /* MUUO57 */ 0, 0, 0, 0, /* MUUO60 */ /* MUUO61 */ /* MUUO62 */ /* MUUO63 */ 0, 0, 0, 0, /* MUUO64 */ /* MUUO65 */ /* MUUO66 */ /* MUUO67 */ 0, 0, 0, 0, /* MUUO70 */ /* MUUO71 */ /* MUUO72 */ /* MUUO73 */ 0, 0, 0, 0, /* MUUO74 */ /* MUUO75 */ /* MUUO76 */ /* MUUO77 */ 0, 0, 0, 0, /* Double precsision math */ /* UJEN */ /* UUO101 */ /* GFAD */ /* GFSB */ 0, 0, 0, 0, /* JSYS */ /* ADJSP */ /* GFMP */ /*GFDV */ 0, 0, 0, 0, /* DFAD */ /* DFSB */ /* DFMP */ /* DFDV */ 0, 0, 0, 0, /* DADD */ /* DSUB */ /* DMUL */ /* DDIV */ 0, 0, 0, 0, /* DMOVE */ /* DMOVN */ /* FIX */ /* EXTEND */ 0, 0, 0, 0, /* DMOVEM */ /* DMOVNM */ /* FIXR */ /* FLTR */ 0, 0, 0, 0, /* UFA */ /* DFN */ /* FSC */ /* IBP */ P10(FCE|FBR), P10(FCE|FAC), FAC|SAC, 0, /* ILDB */ /* LDB */ /* IDPB */ /* DPB */ 0, 0, 0, 0, /* Floating point */ /* FAD */ /* FADL */ /* FADM */ /* FADB */ SAC|FCE|FBR, SAC|SAC2|FCE|FBR, FCEPSE|FBR, SAC|FBR|FCEPSE, /* FADR */ /* FADRI */ /* FADRM */ /* FADRB */ SAC|FCE|FBR, SAC|P6(SAC2|FCE)|P10(SWAR)|FBR, FCEPSE|FBR, SAC|FBR|FCEPSE, /* FSB */ /* FSBL */ /* FSBM */ /* FSBB */ SAC|FCE|FBR, SAC|SAC2|FCE|FBR, FCEPSE|FBR, SAC|FBR|FCEPSE, /* FSBR */ /* FSBRL */ /* FSBRM */ /* FSBRB */ SAC|FCE|FBR, SAC|P6(SAC2|FCE)|P10(SWAR)|FBR, FCEPSE|FBR, SAC|FBR|FCEPSE, /* FMP */ /* FMPL */ /* FMPM */ /* FMPB */ SAC|FCE|FBR, SAC|SAC2|FCE|FBR, FCEPSE|FBR, SAC|FBR|FCEPSE, /* FMPR */ /* FMPRI */ /* FMPRM */ /* FMPRB */ SAC|FCE|FBR, SAC|P6(SAC2|FCE)|P10(SWAR)|FBR, FCEPSE|FBR, SAC|FBR|FCEPSE, /* FDV */ /* FDVL */ /* FDVM */ /* FDVB */ SAC|FCE|FBR, SAC|FAC2|SAC2|FCE|FBR, FCEPSE|FBR, SAC|FBR|FCEPSE, /* FDVR */ /* FDVRL */ /* FDVRM */ /* FDVRB */ SAC|FCE|FBR, SAC|P6(FAC2|SAC2|FCE)|P10(SWAR)|FBR, FCEPSE|FBR, SAC|FBR|FCEPSE, /* Full word operators */ /* MOVE */ /* MOVEI */ /* MOVEM */ /* MOVES */ SAC|FCE, SAC, FAC|SCE, SACZ|FCEPSE, /* MOVS */ /* MOVSI */ /* MOVSM */ /* MOVSS */ SWAR|SAC|FCE, SWAR|SAC, SWAR|FAC|SCE, SWAR|SACZ|FCEPSE, /* MOVN */ /* MOVNI */ /* MOVNM */ /* MOVNS */ SAC|FCE, SAC, FAC|SCE, SACZ|FCEPSE, /* MOVM */ /* MOVMI */ /* MOVMM */ /* MOVMS */ SAC|FCE, SAC, FAC|SCE, SACZ|FCEPSE, /* IMUL */ /* IMULI */ /* IMULM */ /* IMULB */ SAC|FCE|FBR, SAC|FBR, FCEPSE|FBR, SAC|FCEPSE|FBR, /* MUL */ /* MULI */ /* MULM */ /* MULB */ SAC2|SAC|FCE|FBR, SAC2|SAC|FBR, FCEPSE|FBR, SAC2|SAC|FCEPSE|FBR, /* IDIV */ /* IDIVI */ /* IDIVM */ /* IDIVB */ SAC2|SAC|FCE|FAC, SAC2|SAC|FAC, FCEPSE|FAC, SAC2|SAC|FCEPSE|FAC, /* DIV */ /* DIVI */ /* DIVM */ /* DIVB */ SAC2|SAC|FCE|FAC|FAC2, SAC2|SAC|FAC|FAC2, FCEPSE|FAC|FAC2, SAC2|SAC|FCEPSE|FAC\ |FAC2, /* Shift operators */ /* ASH */ /* ROT */ /* LSH */ /* JFFO */ FAC|SAC, FAC|SAC, FAC|SAC, FAC, /* ASHC */ /* ROTC */ /* LSHC */ /* UUO247 */ FAC|SAC|SAC2|FAC2, FAC|SAC|SAC2|FAC2, FAC|SAC|SAC2|FAC2, 0, /* Branch operators */ /* EXCH */ /* BLT */ /* AOBJP */ /* AOBJN */ FAC|FCE, FAC, FAC|SAC, FAC|SAC, /* JRST */ /* JFCL */ /* XCT */ /* MAP */ 0, 0, 0, 0, /* PUSHJ */ /* PUSH */ /* POP */ /* POPJ */ FAC|SAC, FAC|FCE|SAC, FAC|SAC, FAC|SAC, /* JSR */ /* JSP */ /* JSA */ /* JRA */ 0, SAC, FBR|SCE, 0, /* ADD */ /* ADDI */ /* ADDM */ /* ADDB */ FBR|SAC|FCE, FBR|SAC, FBR|FCEPSE, FBR|SAC|FCEPSE, /* SUB */ /* SUBI */ /* SUBM */ /* SUBB */ FBR|SAC|FCE, FBR|SAC, FBR|FCEPSE, FBR|SAC|FCEPSE, /* Compare operators */ /* CAI */ /* CAIL */ /* CAIE */ /* CAILE */ FBR, FBR, FBR, FBR, /* CAIA */ /* CAIGE */ /* CAIN */ /* CAIG */ FBR, FBR, FBR, FBR, /* CAM */ /* CAML */ /* CAME */ /* CAMLE */ FBR|FCE, FBR|FCE, FBR|FCE, FBR|FCE, /* CAMA */ /* CAMGE */ /* CAMN */ /* CAMG */ FBR|FCE, FBR|FCE, FBR|FCE, FBR|FCE, /* Jump and skip operators */ /* JUMP */ /* JUMPL */ /* JUMPE */ /* JUMPLE */ FAC, FAC, FAC, FAC, /* JUMPA */ /* JUMPGE */ /* JUMPN */ /* JUMPG */ FAC, FAC, FAC, FAC, /* SKIP */ /* SKIPL */ /* SKIPE */ /* SKIPLE */ SACZ|FCE, SACZ|FCE, SACZ|FCE, SACZ|FCE, /* SKIPA */ /* SKIPGE */ /* SKIPN */ /* SKIPG */ SACZ|FCE, SACZ|FCE, SACZ|FCE, SACZ|FCE, /* AOJ */ /* AOJL */ /* AOJE */ /* AOJLE */ SAC|FAC, SAC|FAC, SAC|FAC, SAC|FAC, /* AOJA */ /* AOJGE */ /* AOJN */ /* AOJG */ SAC|FAC, SAC|FAC, SAC|FAC, SAC|FAC, /* AOS */ /* AOSL */ /* AOSE */ /* AOSLE */ SACZ|FCEPSE, SACZ|FCEPSE, SACZ|FCEPSE, SACZ|FCEPSE, /* AOSA */ /* AOSGE */ /* AOSN */ /* AOSG */ SACZ|FCEPSE, SACZ|FCEPSE, SACZ|FCEPSE, SACZ|FCEPSE, /* SOJ */ /* SOJL */ /* SOJE */ /* SOJLE */ SAC|FAC, SAC|FAC, SAC|FAC, SAC|FAC, /* SOJA */ /* SOJGE */ /* SOJN */ /* SOJG */ SAC|FAC, SAC|FAC, SAC|FAC, SAC|FAC, /* SOS */ /* SOSL */ /* SOSE */ /* SOSLE */ SACZ|FCEPSE, SACZ|FCEPSE, SACZ|FCEPSE, SACZ|FCEPSE, /* SOSA */ /* SOSGE */ /* SOSN */ /* SOSG */ SACZ|FCEPSE, SACZ|FCEPSE, SACZ|FCEPSE, SACZ|FCEPSE, /* Boolean operators */ /* SETZ */ /* SETZI */ /* SETZM */ /* SETZB */ SAC, SAC, SCE, SAC|SCE, /* AND */ /* ANDI */ /* ANDM */ /* ANDB */ FBR|SAC|FCE, FBR|SAC, FBR|FCEPSE, FBR|SAC|FCEPSE, /* ANDCA */ /* ANDCAI */ /* ANDCAM */ /* ANDCAB */ FBR|SAC|FCE, FBR|SAC, FBR|FCEPSE, FBR|SAC|FCEPSE, /* SETM */ /* SETMI */ /* SETMM */ /* SETMB */ SAC|FCE, SAC, 0, SAC|FCE, /* ANDCM */ /* ANDCMI */ /* ANDCMM */ /* ANDCMB */ FBR|SAC|FCE, FBR|SAC, FBR|FCEPSE, FBR|SAC|FCEPSE, /* SETA */ /* SETAI */ /* SETAM */ /* SETAB */ FBR|SAC, FBR|SAC, FBR|SCE, FBR|SAC|SCE, /* XOR */ /* XORI */ /* XORM */ /* XORB */ FBR|SAC|FCE, FBR|SAC, FBR|FCEPSE, FBR|SAC|FCEPSE, /* IOR */ /* IORI */ /* IORM */ /* IORB */ FBR|SAC|FCE, FBR|SAC, FBR|FCEPSE, FBR|SAC|FCEPSE, /* ANDCB */ /* ANDCBI */ /* ANDCBM */ /* ANDCBB */ FBR|SAC|FCE, FBR|SAC, FBR|FCEPSE, FBR|SAC|FCEPSE, /* EQV */ /* EQVI */ /* EQVM */ /* EQVB */ FBR|SAC|FCE, FBR|SAC, FBR|FCEPSE, FBR|SAC|FCEPSE, /* SETCA */ /* SETCAI */ /* SETCAM */ /* SETCAB */ FBR|SAC, FBR|SAC, FBR|SCE, FBR|SAC|SCE, /* ORCA */ /* ORCAI */ /* ORCAM */ /* ORCAB */ FBR|SAC|FCE, FBR|SAC, FBR|FCEPSE, FBR|SAC|FCEPSE, /* SETCM */ /* SETCMI */ /* SETCMM */ /* SETCMB */ SAC|FCE, SAC, FCEPSE, SAC|FCEPSE, /* ORCM */ /* ORCMI */ /* ORCMM */ /* ORCMB */ FBR|SAC|FCE, FBR|SAC, FBR|FCEPSE, FBR|SAC|FCEPSE, /* ORCB */ /* ORCBI */ /* ORCBM */ /* ORCBB */ FBR|SAC|FCE, FBR|SAC, FBR|FCEPSE, FBR|SAC|FCEPSE, /* SETO */ /* SETOI */ /* SETOM */ /* SETOB */ SAC, SAC, SCE, SAC|SCE, /* Half word operators */ /* HLL */ /* HLLI */ /* HLLM */ /* HLLS */ FBR|SAC|FCE, FBR|SAC, FAC|FCEPSE, SACZ|FCEPSE, /* HRL */ /* HRLI */ /* HRLM */ /* HRLS */ SWAR|FBR|SAC|FCE, SWAR|FBR|SAC, FAC|SWAR|FCEPSE,SACZ|FCEPSE, /* HLLZ */ /* HLLZI */ /* HLLZM */ /* HLLZS */ SAC|FCE, SAC, FAC|SCE, SACZ|FCEPSE, /* HRLZ */ /* HRLZI */ /* HRLZM */ /* HRLZS */ SWAR|SAC|FCE, SWAR|SAC, FAC|SWAR|SCE, SWAR|SACZ|FCEPSE, /* HLLO */ /* HLLOI */ /* HLLOM */ /* HLLOS */ SAC|FCE, SAC, FAC|SCE, SACZ|FCEPSE, /* HRLO */ /* HRLOI */ /* HRLOM */ /* HRLOS */ SWAR|SAC|FCE, SWAR|SAC, FAC|SWAR|SCE, SWAR|SACZ|FCEPSE, /* HLLE */ /* HLLEI */ /* HLLEM */ /* HLLES */ SAC|FCE, SAC, FAC|SCE, SACZ|FCEPSE, /* HRLE */ /* HRLEI */ /* HRLEM */ /* HRLES */ SWAR|SAC|FCE, SWAR|SAC, FAC|SWAR|SCE, SWAR|SACZ|FCEPSE, /* HRR */ /* HRRI */ /* HRRM */ /* HRRS */ FBR|SAC|FCE, FBR|SAC, FAC|FCEPSE, SACZ|FCEPSE, /* HLR */ /* HLRI */ /* HLRM */ /* HLRS */ SWAR|FBR|SAC|FCE, SWAR|FBR|SAC, FAC|SWAR|FCEPSE,SACZ|FCEPSE, /* HRRZ */ /* HRRZI */ /* HRRZM */ /* HRRZS */ SAC|FCE, SAC, FAC|SCE, SACZ|FCEPSE, /* HLRZ */ /* HLRZI */ /* HLRZM */ /* HLRZS */ SWAR|SAC|FCE, SWAR|SAC, FAC|SWAR|SCE, SWAR|SACZ|FCEPSE, /* HRRO */ /* HRROI */ /* HRROM */ /* HRROS */ SAC|FCE, SAC, FAC|SCE, SACZ|FCEPSE, /* HLRO */ /* HLROI */ /* HLROM */ /* HLROS */ SWAR|SAC|FCE, SWAR|SAC, FAC|SWAR|SCE, SWAR|SACZ|FCEPSE, /* HRRE */ /* HRREI */ /* HRREM */ /* HRRES */ SAC|FCE, SAC, FAC|SCE, SACZ|FCEPSE, /* HLRE */ /* HLREI */ /* HLREM */ /* HLRES */ SWAR|SAC|FCE, SWAR|SAC, FAC|SWAR|SCE, SWAR|SACZ|FCEPSE, /* Test operators */ /* TRN */ /* TLN */ /* TRNE */ /* TLNE */ FBR, FBR|SWAR, FBR, FBR|SWAR, /* TRNA */ /* TLNA */ /* TRNN */ /* TLNN */ FBR, FBR|SWAR, FBR, FBR|SWAR, /* TDN */ /* TSN */ /* TDNE */ /* TSNE */ FBR|FCE, FBR|SWAR|FCE, FBR|FCE, FBR|SWAR|FCE, /* TDNA */ /* TSNA */ /* TDNN */ /* TSNN */ FBR|FCE, FBR|SWAR|FCE, FBR|FCE, FBR|SWAR|FCE, /* TRZ */ /* TLZ */ /* TRZE */ /* TLZE */ FBR|SAC, FBR|SWAR|SAC, FBR|SAC, FBR|SWAR|SAC, /* TRZA */ /* TLZA */ /* TRZN */ /* TLZN */ FBR|SAC, FBR|SWAR|SAC, FBR|SAC, FBR|SWAR|SAC, /* TDZ */ /* TSZ */ /* TDZE */ /* TSZE */ FBR|SAC|FCE, FBR|SWAR|SAC|FCE, FBR|SAC|FCE, FBR|SWAR|SAC|FCE, /* TDZA */ /* TSZA */ /* TDZN */ /* TSZN */ FBR|SAC|FCE, FBR|SWAR|SAC|FCE, FBR|SAC|FCE, FBR|SWAR|SAC|FCE, /* TRC */ /* TLC */ /* TRCE */ /* TLCE */ FBR|SAC, FBR|SWAR|SAC, FBR|SAC, FBR|SWAR|SAC, /* TRCA */ /* TLCA */ /* TRCN */ /* TLCN */ FBR|SAC, FBR|SWAR|SAC, FBR|SAC, FBR|SWAR|SAC, /* TDC */ /* TSC */ /* TDCE */ /* TSCE */ FBR|SAC|FCE, FBR|SWAR|SAC|FCE, FBR|SAC|FCE, FBR|SWAR|SAC|FCE, /* TDCA */ /* TSCA */ /* TDCN */ /* TSCN */ FBR|SAC|FCE, FBR|SWAR|SAC|FCE, FBR|SAC|FCE, FBR|SWAR|SAC|FCE, /* TRO */ /* TLO */ /* TROE */ /* TLOE */ FBR|SAC, FBR|SWAR|SAC, FBR|SAC, FBR|SWAR|SAC, /* TROA */ /* TLOA */ /* TRON */ /* TLON */ FBR|SAC, FBR|SWAR|SAC, FBR|SAC, FBR|SWAR|SAC, /* TDO */ /* TSO */ /* TDOE */ /* TSOE */ FBR|SAC|FCE, FBR|SWAR|SAC|FCE, FBR|SAC|FCE, FBR|SWAR|SAC|FCE, /* TDOA */ /* TSOA */ /* TDON */ /* TSON */ FBR|SAC|FCE, FBR|SWAR|SAC|FCE, FBR|SAC|FCE, FBR|SWAR|SAC|FCE, /* IOT Instructions */ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, }; #if PDP6 #define PC_CHANGE FLAGS |= PCHNG; check_apr_irq(); #else #define PC_CHANGE #endif #define SWAP_AR ((RMASK & AR) << 18) | ((AR >> 18) & RMASK) #define SMEAR_SIGN(x) x = ((x) & SMASK) ? (x) | EXPO : (x) & MANT #define GET_EXPO(x) ((((x) & SMASK) ? 0377 : 0 ) \ ^ (((x) >> 27) & 0377)) #if KI #define AOB(x) ((x + 1) & RMASK) | ((x + 01000000LL) & (C1|LMASK)) #define SOB(x) ((x + RMASK) & RMASK) | ((x + LMASK) & (C1|LMASK)); #else #define AOB(x) (x + 01000001LL) #define SOB(x) (x + 0777776777777LL) #endif #if ITS #define QITS (cpu_unit[0].flags & UNIT_ITSPAGE) #define QTEN11 (ten11_unit[0].flags & UNIT_ATT) #define QAUXCPU (auxcpu_unit[0].flags & UNIT_ATT) #else #define QITS 0 #endif #if BBN #define QBBN (cpu_unit[0].flags & UNIT_BBNPAGE) #else #define QBBN 0 #endif #if WAITS #define QWAITS (cpu_unit[0].flags & UNIT_WAITS) #else #define QWAITS 0 #endif #if ITS /* * Set quantum clock to qua_time. */ void set_quantum() { double us; sim_cancel(&cpu_unit[1]); if (qua_time & BIT17) return; us = (double)(BIT17 - qua_time); (void)sim_activate_after_d(&cpu_unit[1], us); } /* * Update the qua_time variable. */ void load_quantum() { if (sim_is_active(&cpu_unit[1])) { double us; us = sim_activate_time_usecs (&cpu_unit[1]); if ((uint32)us > BIT17) qua_time = BIT17; else qua_time = (BIT17 - (uint32)us) & RMASK; sim_cancel(&cpu_unit[1]); } } /* * Get the current quantum time. */ uint32 get_quantum() { uint32 t = qua_time; if (sim_is_active(&cpu_unit[1])) { double us; us = sim_activate_time_usecs (&cpu_unit[1]); t = (BIT17 - (uint32)us) & RMASK; } return t; } #endif /* * Set device to interrupt on a given level 1-7 * Level 0 means that device interrupt is not enabled */ void set_interrupt(int dev, int lvl) { lvl &= 07; if (lvl) { dev_irq[dev>>2] = 0200 >> lvl; pi_pending = 1; sim_debug(DEBUG_IRQ, &cpu_dev, "set irq %o %o %03o %03o %03o\n", dev & 0774, lvl, PIE, PIR, PIH); } } #if MPX_DEV void set_interrupt_mpx(int dev, int lvl, int mpx) { lvl &= 07; if (lvl) { dev_irq[dev>>2] = 0200 >> lvl; if (lvl == 1 && mpx != 0) dev_irq[dev>>2] |= mpx << 8; pi_pending = 1; sim_debug(DEBUG_IRQ, &cpu_dev, "set mpx irq %o %o %o %03o %03o %03o\n", dev & 0774, lvl, mpx, PIE, PIR, PIH); } } #endif /* * Clear the interrupt flag for a device */ void clr_interrupt(int dev) { dev_irq[dev>>2] = 0; if (dev > 4) sim_debug(DEBUG_IRQ, &cpu_dev, "clear irq %o\n", dev & 0774); } /* * Check if there is any pending interrupts return 0 if none, * else set pi_enc to highest level and return 1. */ int check_irq_level() { int i, lvl; int pi_req; /* If PXCT don't check for interrupts */ if (xct_flag != 0) return 0; check_apr_irq(); /* If not enabled, check if any pending Processor IRQ */ if (pi_enable == 0) { #if !PDP6 if (PIR != 0) { pi_enc = 1; for(lvl = 0100; lvl != 0; lvl >>= 1) { if (lvl & PIH) break; if (PIR & lvl) return 1; pi_enc++; } } #endif return 0; } /* Scan all devices */ for(i = lvl = 0; i < 128; i++) lvl |= dev_irq[i]; if (lvl == 0) pi_pending = 0; pi_req = (lvl & PIE) | PIR; #if MPX_DEV /* Check if interrupt on PI channel 1 */ if (mpx_enable && cpu_unit[0].flags & UNIT_MPX && (pi_req & 0100) && (PIH & 0100) == 0) { pi_enc = 010; for(i = lvl = 0; i < 128; i++) { int l = dev_irq[i] >> 8; if (dev_irq[i] & 0100 && l != 0 && l < pi_enc) pi_enc = l; } if (pi_enc != 010) { pi_enc += 010; return 1; } } #endif /* Handle held interrupt requests */ i = 1; for(lvl = 0100; lvl != 0; lvl >>= 1, i++) { if (lvl & PIH) break; if (pi_req & lvl) { pi_enc = i; return 1; } } return 0; } /* * Recover from held interrupt. */ void restore_pi_hold() { int lvl; if (!pi_enable) return; /* Clear HOLD flag for highest interrupt */ for(lvl = 0100; lvl != 0; lvl >>= 1) { if (lvl & PIH) { PIR &= ~lvl; sim_debug(DEBUG_IRQ, &cpu_dev, "restore irq %o %03o\n", lvl, PIH); PIH &= ~lvl; break; } } pi_pending = 1; } /* * Hold interrupts at the current level. */ void set_pi_hold() { int pi = pi_enc; #if MPX_DEV if (mpx_enable && cpu_unit[0].flags & UNIT_MPX && pi > 07) pi = 1; #endif PIR &= ~(0200 >> pi); if (pi_enable) PIH |= (0200 >> pi); } /* * PI device for KA and KI */ t_stat dev_pi(uint32 dev, uint64 *data) { uint64 res = 0; switch(dev & 3) { case CONO: /* Set PI flags */ res = *data; if (res & 010000) { /* Bit 23 */ PIR = PIH = PIE = 0; pi_enable = 0; #if MPX_DEV mpx_enable = 0; #endif parity_irq = 0; } if (res & 0200) { /* Bit 28 */ pi_enable = 1; } if (res & 0400) /* Bit 27 */ pi_enable = 0; if (res & 01000) /* Bit 26 */ PIE &= ~(*data & 0177); if (res & 02000) /* Bit 25 */ PIE |= (*data & 0177); if (res & 04000) { /* Bit 24 */ PIR |= (*data & 0177); pi_pending = 1; } #if MPX_DEV if (res & 020000 && cpu_unit[0].flags & UNIT_MPX) mpx_enable = 1; #endif #if KI if (res & 020000) { /* Bit 22 */ PIR &= ~(*data & 0177); } #endif if (res & 040000) /* Bit 21 */ parity_irq = 1; if (res & 0100000) /* Bit 20 */ parity_irq = 0; check_apr_irq(); sim_debug(DEBUG_CONO, &cpu_dev, "CONO PI %012llo\n", *data); break; case CONI: res = PIE; res |= (pi_enable << 7); res |= (PIH << 8); #if KI res |= ((uint64)(PIR) << 18); #endif res |= (parity_irq << 15); *data = res; sim_debug(DEBUG_CONI, &cpu_dev, "CONI PI %012llo\n", *data); break; case DATAO: MI = *data; #ifdef PANDA_LIGHTS /* Set lights */ ka10_lights_main (*data); #endif break; case DATAI: break; } return SCPE_OK; } /* * Non existent device */ t_stat null_dev(uint32 dev, uint64 *data) { switch(dev & 3) { case CONI: case DATAI: *data = 0; break; case CONO: case DATAO: break; } return SCPE_OK; } #if KI static int timer_irq, timer_flg; /* * Page device for KI10. */ t_stat dev_pag(uint32 dev, uint64 *data) { uint64 res = 0; int i; switch(dev & 03) { case CONI: /* Complement of vpn */ *data = (uint64)(pag_reload ^ 040); *data |= ((uint64)last_page) << 8; *data |= (uint64)((apr_serial == -1) ? DEF_SERIAL : apr_serial) << 26; sim_debug(DEBUG_CONI, &cpu_dev, "CONI PAG %012llo\n", *data); break; case CONO: /* Set Stack AC and Page Table Reload Counter */ ac_stack = (*data >> 9) & 0760; pag_reload = (*data & 037) | (pag_reload & 040); sim_debug(DEBUG_CONO, &cpu_dev, "CONI PAG %012llo\n", *data); break; case DATAO: res = *data; if (res & RSIGN) { eb_ptr = (res & 017777) << 9; for (i = 0; i < 512; i++) e_tlb[i] = u_tlb[i] = 0; for (;i < 546; i++) u_tlb[i] = 0; page_enable = (res & 020000) != 0; } if (res & SMASK) { ub_ptr = ((res >> 18) & 017777) << 9; for (i = 0; i < 512; i++) e_tlb[i] = u_tlb[i] = 0; for (;i < 546; i++) u_tlb[i] = 0; user_addr_cmp = (res & 00020000000000LL) != 0; small_user = (res & 00040000000000LL) != 0; fm_sel = (uint8)(res >> 29) & 060; } pag_reload = 0; sim_debug(DEBUG_DATAIO, &cpu_dev, "DATAO PAG %012llo ebr=%06o ubr=%06o\n", *data, eb_ptr, ub_ptr); break; case DATAI: res = (eb_ptr >> 9); if (page_enable) res |= 020000; res |= ((uint64)(ub_ptr)) << 9; if (user_addr_cmp) res |= 00020000000000LL; if (small_user) res |= 00040000000000LL; res |= ((uint64)(fm_sel)) << 29; *data = res; sim_debug(DEBUG_DATAIO, &cpu_dev, "DATAI PAG %012llo\n", *data); break; } return SCPE_OK; } /* * Check if the last operation caused a APR IRQ to be generated. */ void check_apr_irq() { if (pi_enable && apr_irq) { int flg = 0; clr_interrupt(0); flg |= inout_fail | nxm_flag; if (flg) set_interrupt(0, apr_irq); } if (pi_enable && clk_en && clk_flg) set_interrupt(4, clk_irq); } /* * APR device for KI10. */ t_stat dev_apr(uint32 dev, uint64 *data) { uint64 res = 0; switch(dev & 03) { case CONI: /* Read trap conditions */ res = clk_irq | (apr_irq << 3) | (nxm_flag << 6); res |= (inout_fail << 7) | (clk_flg << 9) | (clk_en << 10); res |= (timer_irq << 14) | (parity_irq << 15) | (timer_flg << 17); *data = res; sim_debug(DEBUG_CONI, &cpu_dev, "CONI APR %012llo\n", *data); break; case CONO: /* Set trap conditions */ res = *data; clk_irq = res & 07; apr_irq = (res >> 3) & 07; if (res & 0000100) nxm_flag = 0; if (res & 0000200) inout_fail = 0; if (res & 0001000) { clk_flg = 0; clr_interrupt(4); } if (res & 0002000) { clk_en = 1; if (clk_flg) set_interrupt(4, clk_irq); } if (res & 0004000) { clk_en = 0; clr_interrupt(4); } if (res & 0040000) timer_irq = 1; if (res & 0100000) timer_irq = 0; if (res & 0200000) reset_all(1); if (res & 0400000) timer_flg = 0; check_apr_irq(); sim_debug(DEBUG_CONO, &cpu_dev, "CONO APR %012llo\n", *data); break; case DATAO: sim_debug(DEBUG_DATAIO, &cpu_dev, "DATAO APR %012llo\n", *data); break; case DATAI: /* Read switches */ *data = SW; sim_debug(DEBUG_DATAIO, &cpu_dev, "DATAI APR %012llo\n", *data); break; } return SCPE_OK; } #endif #if KA #if BBN t_stat dev_pag(uint32 dev, uint64 *data) { uint64 res = 0; int i; int page_limit[] = { 01000, 0040, 0100, 0140, 0200, 0240, 0300, 0340}; switch(dev & 03) { case CONI: break; case CONO: switch (*data & 07) { case 0: /* Clear page tables, reload from 71 & 72 */ for (i = 0; i < 512; i++) e_tlb[i] = u_tlb[i] = 0; res = M[071]; mon_base_reg = (res & 03777) << 9; ac_stack = (res >> 9) & 0760; user_base_reg = (res >> 9) & 03777000; user_limit = page_limit[(res >> 30) & 07]; pur = M[072]; break; case 1: /* Clear exec mapping */ for (i = 0; i < 512; i++) e_tlb[i] = 0; break; case 2: /* Clear mapping for next write */ next_write = 1; break; case 3: /* Clear user mapping */ for (i = 0; i < 512; i++) u_tlb[i] = 0; break; case 4: /* Turn off pager */ case 5: /* same as 4 */ page_enable = 0; break; case 6: /* Pager on, no resident mapping */ page_enable = 1; exec_map = 0; break; case 7: /* Pager on, resident mapping */ page_enable = 1; exec_map = 1; break; } sim_debug(DEBUG_CONO, &cpu_dev, "CONO PAG %012llo\n", *data); break; case DATAO: break; case DATAI: break; } return SCPE_OK; } #endif /* * Check if the last operation caused a APR IRQ to be generated. */ void check_apr_irq() { if (pi_enable && apr_irq) { int flg = 0; clr_interrupt(0); flg |= ((FLAGS & OVR) != 0) & ov_irq; flg |= ((FLAGS & FLTOVR) != 0) & fov_irq; flg |= nxm_flag | mem_prot | push_ovf; if (flg) set_interrupt(0, apr_irq); } } /* * APR Device for KA10. */ t_stat dev_apr(uint32 dev, uint64 *data) { uint64 res = 0; switch(dev & 03) { case CONI: /* Read trap conditions */ /* 000007 33-35 PIA */ /* 000010 32 Overflow * */ /* 000020 31 Overflow enable */ /* 000040 30 Trap offset */ /* 000100 29 Floating overflow * */ /* 000200 28 Floating overflow enable */ /* 000400 27 */ /* 001000 26 Clock * */ /* 002000 25 Clock enable */ /* 004000 24 */ /* 010000 23 NXM * */ /* 020000 22 Memory protection * */ /* 040000 21 Address break * */ /* 100000 20 User In-Out */ /* 200000 19 Push overflow * */ /* 400000 18 */ res = apr_irq | (((FLAGS & OVR) != 0) << 3) | (ov_irq << 4) ; res |= (((FLAGS & FLTOVR) != 0) << 6) | (fov_irq << 7) ; res |= (clk_flg << 9) | (((uint64)clk_en) << 10) | (nxm_flag << 12); res |= (mem_prot << 13) | (((FLAGS & USERIO) != 0) << 15); res |= (push_ovf << 16) | (maoff >> 1); *data = res; sim_debug(DEBUG_CONI, &cpu_dev, "CONI APR %012llo\n", *data); break; case CONO: /* Set trap conditions */ res = *data; clk_irq = apr_irq = res & 07; clr_interrupt(0); if (res & 010) FLAGS &= ~OVR; if (res & 020) ov_irq = 1; if (res & 040) ov_irq = 0; if (res & 0100) FLAGS &= ~FLTOVR; if (res & 0200) fov_irq = 1; if (res & 0400) fov_irq = 0; if (res & 0001000) { clk_flg = 0; clr_interrupt(4); } if (res & 0002000) { clk_en = 1; if (clk_flg) set_interrupt(4, clk_irq); } if (res & 0004000) { clk_en = 0; clr_interrupt(4); } if (res & 010000) nxm_flag = 0; if (res & 020000) mem_prot = 0; if (res & 0200000) { #if MPX_DEV mpx_enable = 0; #endif #if BBN if (QBBN) exec_map = 0; #endif reset_all(1); } if (res & 0400000) push_ovf = 0; check_apr_irq(); sim_debug(DEBUG_CONO, &cpu_dev, "CONO APR %012llo\n", *data); break; case DATAO: /* Set protection registers */ Rh = (0377 & (*data >> 1)) << 10; Rl = (0377 & (*data >> 10)) << 10; Pflag = 01 & (*data >> 18); Ph = ((0377 & (*data >> 19)) << 10) + 01777; Pl = ((0377 & (*data >> 28)) << 10) + 01777; sim_debug(DEBUG_DATAIO, &cpu_dev, "DATAO APR %012llo\n", *data); sim_debug(DEBUG_DATAIO, &cpu_dev, "Rl=%06o Pl=%06o, Rh=%06o, Ph=%06o\n", Rl, Pl, Rh, Ph); break; case DATAI: /* Read switches */ *data = SW; sim_debug(DEBUG_DATAIO, &cpu_dev, "DATAI APR %012llo\n", *data); break; } return SCPE_OK; } #endif #if KI /* * Handle page lookup on KI10 * * addr is address to look up. * flag is set for pi cycle and user overide. * loc is final address. * wr indicates whether cycle is read or write. * cur_context is set when access should ignore xct_flag * fetch is set for instruction fetches. */ int page_lookup(int addr, int flag, int *loc, int wr, int cur_context, int fetch) { uint64 data; int base = 0; int page = (RMASK & addr) >> 9; int uf = (FLAGS & USER) != 0; int upmp = 0; if (page_fault) return 0; /* If paging is not enabled, address is direct */ if (!page_enable) { *loc = addr; return 1; } /* If fetching byte data, use write access */ if (BYF5 && (IR & 06) == 6) wr = 1; /* If this is modify instruction use write access */ wr |= modify; /* Figure out if this is a user space access */ if (flag) uf = 0; else if (xct_flag != 0 && !cur_context && !uf) { if (((xct_flag & 2) != 0 && wr != 0) || ((xct_flag & 1) != 0 && (wr == 0 || modify))) { uf = (FLAGS & USERIO) != 0; } } /* If user, check if small user enabled */ if (uf) { if (small_user && (page & 0340) != 0) { fault_data = (((uint64)(page))<<18) | ((uint64)(uf) << 27) | 020LL; page_fault = 1; return 0; } } else { /* Handle system mapping */ /* Pages 340-377 via UBR */ if ((page & 0740) == 0340) { page += 01000 - 0340; upmp = 1; /* Pages 400-777 via EBR */ } else if (page & 0400) { base = 1; /* Pages 000-037 direct map */ } else { /* Check if supervisory mode */ *loc = addr; /* If PUBLIC and private page, make sure we are fetching a Portal */ if (!flag && ((FLAGS & PUBLIC) != 0) && (!fetch || (M[addr] & 00777040000000LL) != 0254040000000LL)) { /* Handle public violation */ fault_data = (((uint64)(page))<<18) | ((uint64)(uf) << 27) | 021LL; page_fault = 1; return !wr; } return 1; } } /* Map the page */ if (base) { data = e_tlb[page]; if (data == 0) { data = M[eb_ptr + (page >> 1)]; e_tlb[page & 0776] = RMASK & (data >> 18); e_tlb[page | 1] = RMASK & data; data = e_tlb[page]; pag_reload = ((pag_reload + 1) & 037) | 040; } last_page = ((page ^ 0777) << 1)|1; } else { data = u_tlb[page]; if (data == 0) { data = M[ub_ptr + (page >> 1)]; u_tlb[page & 01776] = RMASK & (data >> 18); u_tlb[page | 1] = RMASK & data; data = u_tlb[page]; pag_reload = ((pag_reload + 1) & 037) | 040; } if (upmp) last_page = (((page-0440) ^ 0777) << 1) | 1; else last_page = ((page ^ 0777) << 1); } *loc = ((data & 017777) << 9) + (addr & 0777); /* Check for access error */ if ((data & RSIGN) == 0 || (wr & ((data & 0100000) == 0))) { page = (RMASK & addr) >> 9; fault_data = ((((uint64)(page))<<18) | ((uint64)(uf) << 27)) & LMASK; fault_data |= (data & 0400000) ? 010LL : 0LL; /* A */ fault_data |= (data & 0100000) ? 004LL : 0LL; /* W */ fault_data |= (data & 0040000) ? 002LL : 0LL; /* S */ fault_data |= wr; page_fault = 1; return 0; } /* If PUBLIC and private page, make sure we are fetching a Portal */ if (!flag && ((FLAGS & PUBLIC) != 0) && ((data & 0200000) == 0) && (!fetch || (M[*loc] & 00777040000000LL) != 0254040000000LL)) { /* Handle public violation */ fault_data = (((uint64)(page))<<18) | ((uint64)(uf) << 27) | 021LL; page_fault = 1; return 0; } /* If fetching from public page, set public flag */ if (fetch && ((data & 0200000) != 0)) FLAGS |= PUBLIC; return 1; } /* * Register access on KI 10 */ uint64 get_reg(int reg) { if (FLAGS & USER) return FM[fm_sel|(reg & 017)]; else return FM[reg & 017]; } void set_reg(int reg, uint64 value) { if (FLAGS & USER) FM[fm_sel|(reg & 017)] = value; else FM[reg & 017] = value; } /* * Read a location directly from memory. * * Return of 0 if successful, 1 if there was an error. */ int Mem_read_nopage() { if (AB < 020) { MB = FM[AB]; } else { sim_interval--; if (AB >= (int)MEMSIZE) { nxm_flag = 1; return 1; } MB = M[AB]; } return 0; } /* * Write a directly to a location in memory. * * Return of 0 if successful, 1 if there was an error. */ int Mem_write_nopage() { if (AB < 020) { FM[AB] = MB; } else { sim_interval--; if (AB >= (int)MEMSIZE) { nxm_flag = 1; return 1; } M[AB] = MB; } return 0; } int Mem_read(int flag, int cur_context, int fetch) { int addr; if (AB < 020) { if (FLAGS & USER) { MB = get_reg(AB); return 0; } else { if (!cur_context && ((xct_flag & 1) != 0)) { if (FLAGS & USERIO) { if (fm_sel == 0) goto read; MB = FM[fm_sel|AB]; return 0; } MB = M[ub_ptr + ac_stack + AB]; return 0; } } MB = get_reg(AB); } else { read: sim_interval--; if (!page_lookup(AB, flag, &addr, 0, cur_context, fetch)) return 1; if (addr >= (int)MEMSIZE) { nxm_flag = 1; return 1; } if (sim_brk_summ && sim_brk_test(AB, SWMASK('R'))) watch_stop = 1; MB = M[addr]; } return 0; } int Mem_write(int flag, int cur_context) { int addr; if (AB < 020) { if (FLAGS & USER) { set_reg(AB, MB); return 0; } else { if (!cur_context && (((xct_flag & 1) != 0 && modify) || (xct_flag & 2) != 0)) { if (FLAGS & USERIO) { if (fm_sel == 0) goto write; else FM[fm_sel|AB] = MB; } else { M[ub_ptr + ac_stack + AB] = MB; } return 0; } } set_reg(AB, MB); } else { write: sim_interval--; if (!page_lookup(AB, flag, &addr, 1, cur_context, 0)) return 1; if (addr >= (int)MEMSIZE) { nxm_flag = 1; return 1; } if (sim_brk_summ && sim_brk_test(AB, SWMASK('W'))) watch_stop = 1; M[addr] = MB; } return 0; } #endif #if KA #define get_reg(reg) FM[(reg) & 017] #define set_reg(reg, value) FM[(reg) & 017] = value #if ITS /* * Load TBL entry for ITS. */ int its_load_tlb(uint32 reg, int page, uint32 *tlb) { uint64 data; int len = (reg >> 19) & 0177; int entry = (reg & 01777777) + ((page & 0377) >> 1); if ((page >> 1) > len) { fault_data |= 0200; return 1; } if (entry > (int)MEMSIZE) { nxm_flag = 1; fault_data |= 0400; return 1; } data = M[entry]; if (page & 1) { data &= ~036000LL; data |= ((uint64)(age & 017)) << 10; } else { data &= ~(036000LL << 18); data |= ((uint64)(age & 017)) << (10+18); } M[entry] = data; if ((page & 1) == 0) data >>= 18; data &= RMASK; *tlb = (uint32)data; pag_reload = ((pag_reload + 1) & 017); return 0; } /* * Translation logic for KA10 */ int page_lookup_its(int addr, int flag, int *loc, int wr, int cur_context, int fetch) { uint64 data; int base = 0; int page = (RMASK & addr) >> 10; int acc; int uf = (FLAGS & USER) != 0; int ofd = (int)fault_data; /* If paging is not enabled, address is direct */ if (!page_enable) { *loc = addr; return 1; } /* If fetching byte data, use write access */ if (BYF5 && (IR & 06) == 6) wr = 1; /* If this is modify instruction use write access */ wr |= modify; /* Figure out if this is a user space access */ if (flag) uf = 0; else if (xct_flag != 0 && !cur_context && !uf) { if (((xct_flag & 2) != 0 && wr != 0) || ((xct_flag & 1) != 0 && (wr == 0 || modify))) { uf = 1; } } /* AC & 1 = ??? */ /* AC & 2 = Read User */ /* AC & 4 = Write User */ /* AC & 8 = Inhibit mem protect, skip */ /* Add in MAR checking */ if (addr == (mar & RMASK)) { switch((mar >> 18) & 03) { case 0: break; case 1: if (fetch) { mem_prot = 1; fault_data |= 2; } break; case 2: if (!wr) break; /* Fall through */ case 3: mem_prot = 1; fault_data |= 2; break; } } /* Map the page */ if (!uf) { /* Handle system mapping */ if ((page & 0200) == 0 || (fault_data & 04) == 0) { /* Direct map 0-377 or all if bit 2 off */ *loc = addr; return 1; } data = e_tlb[page - 0200]; if (data == 0) { if (its_load_tlb(dbr3, page - 0200, &e_tlb[page - 0200])) goto fault; data = e_tlb[page - 0200]; } } else { data = u_tlb[page]; if (data == 0) { if (page & 0200) { if (its_load_tlb(dbr2, page - 0200, &u_tlb[page])) goto fault; } else { if (its_load_tlb(dbr1, page, &u_tlb[page])) goto fault; } data = u_tlb[page]; } } *loc = ((data & 01777) << 10) + (addr & 01777); acc = (data >> 16) & 03; /* Access check logic */ switch(acc) { case 0: /* No access */ fault_data |= 0010; break; case 1: /* Read Only Access */ if (!wr) return 1; if ((fault_data & 00770) == 0) fault_data |= 0100; break; case 2: /* Read write first */ if (fetch && (FLAGS & PURE)) { fault_data |= 0020; break; } if (!wr) /* Read is OK */ return 1; if ((fault_data & 00770) == 0) fault_data |= 040; break; case 3: /* All access */ if (fetch && (FLAGS & PURE)) { fault_data |= 0020; break; } return 1; } fault: /* Update fault data, fault address only if new fault */ if ((ofd & 00770) == 0) fault_addr = (page) | ((uf)? 0400 : 0) | ((data & 01777) << 9); if ((xct_flag & 04) == 0) { mem_prot = 1; fault_data |= 01000; } else { PC = (PC + 1) & RMASK; } return 0; } /* * Read a location in memory. * * Return of 0 if successful, 1 if there was an error. */ int Mem_read_its(int flag, int cur_context, int fetch) { int addr; if (AB < 020) { if ((xct_flag & 1) != 0 && !cur_context && (FLAGS & USER) == 0) { MB = M[(ac_stack & 01777777) + AB]; return 0; } MB = get_reg(AB); } else { sim_interval--; if (!page_lookup_its(AB, flag, &addr, 0, cur_context, fetch)) return 1; #if NUM_DEVS_TEN11 > 0 if (T11RANGE(addr) && QTEN11) { if (ten11_read (addr, &MB)) { nxm_flag = 1; return 1; } return 0; } #endif #if NUM_DEVS_AUXCPU > 0 if (AUXCPURANGE(addr) && QAUXCPU) { if (auxcpu_read (addr, &MB)) { nxm_flag = 1; return 1; } return 0; } #endif if (addr >= (int)MEMSIZE) { nxm_flag = 1; return 1; } if (sim_brk_summ && sim_brk_test(AB, SWMASK('R'))) watch_stop = 1; MB = M[addr]; } return 0; } /* * Write a location in memory. * * Return of 0 if successful, 1 if there was an error. */ int Mem_write_its(int flag, int cur_context) { int addr; if (AB < 020) { if ((xct_flag & 2) != 0 && !cur_context && (FLAGS & USER) == 0) { M[(ac_stack & 01777777) + AB] = MB; return 0; } set_reg(AB, MB); } else { sim_interval--; if (!page_lookup_its(AB, flag, &addr, 1, cur_context, 0)) return 1; #if NUM_DEVS_TEN11 > 0 if (T11RANGE(addr) && QTEN11) { if (ten11_write (addr, MB)) { nxm_flag = 1; return 1; } return 0; } #endif #if NUM_DEVS_AUXCPU > 0 if (AUXCPURANGE(addr) && QAUXCPU) { if (auxcpu_write (addr, MB)) { nxm_flag = 1; return 1; } return 0; } #endif if (addr >= (int)MEMSIZE) { nxm_flag = 1; return 1; } if (sim_brk_summ && sim_brk_test(AB, SWMASK('W'))) watch_stop = 1; M[addr] = MB; } return 0; } #endif #if BBN int page_lookup_bbn(int addr, int flag, int *loc, int wr, int cur_context, int fetch) { /* Group 0, 01 = 00 bit 2 = Age 00x 0100000 bit 3 = Age 02x 0040000 bit 4 = Age 04x 0020000 bit 5 = Age 06x 0010000 bit 6 = Monitor after loading AR trap 0004000 */ /* Group 1, 01 = 01 0200000 bit 3 = Shared page not in core 0040000 bit 4 = page table not in core (p.t.2) 0020000 bit 5 = 2nd indirect, private not in core (p.t.3) 0010000 bit 6 = Indirect shared not in core (p.t.2 || p.t.3) 0004000 bit 7 = Indirect page table not in core (p.t.3) 0002000 bit 8 = Excessive indirect pointers (>2) 0001000 */ /* Group 2, 01 = 10 0400000 bit 2 = Private not in core bit 3 = Write copy trap (bit 9 in p.t.) bit 4 = user trap (bit 8 in p.t.) bit 5 = access trap (p.t. bit 12 = 0 or bits 10-11=3) bit 6 = illegal read or execute bit 7 = illegal write bit 8 = address limit register violation or p.t. bits 0,1 = 3 (illegal format) */ /* Group 3, 01 = 11 (in 2nd or 3rd p.t.) 060000 bit 2 = private not in core bit 3 = write copy trap (bit 9 in p.t.) bit 4 = user trap (bit 8 in p.t.) bit 5 = access trap (p.t. bit 12 = 0 or bits 10-11=3) bit 6 = illegal read or execute bit 7 = illegal write bit 8 = address limit register violation or p.t. bits 0,1 = 3 (illegal format */ uint64 data; uint32 tlb_data; uint64 traps; int base = 0; int trap = 0; int lvl = 0; int page = (RMASK & addr) >> 9; int uf = (FLAGS & USER) != 0; int map = page; int match; if (page_fault) return 0; /* If paging is not enabled, address is direct */ if (!page_enable) { *loc = addr; return 1; } /* If this is modify instruction use write access */ wr |= modify; /* Umove instructions handled here */ if ((IR & 0774) == 0100 && (FLAGS & EXJSYS) == 0) uf = 1; /* Figure out if this is a user space access */ if (flag) uf = 0; else { if (QWAITS && xct_flag != 0 && !fetch && !uf) { if (xct_flag & 010 && cur_context) /* Indirect */ uf = 1; if (xct_flag & 004 && wr == 0) /* XR */ uf = 1; if (xct_flag & 001 && (wr == 1 || BYF5)) /* XW or XLB or XDB */ uf = 1; } if (!QWAITS && (FLAGS & EXJSYS) == 0 && uf == 0 && !fetch && xct_flag != 0) { if (xct_flag & 010 && cur_context) uf = 1; if (xct_flag & 004 && wr == 0) uf = 1; if (xct_flag & 002 && BYF5) uf = 1; if (xct_flag & 001 && wr == 1) uf = 1; } } /* If not really user mode and register access */ if (addr < 020 && uf && (FLAGS & USER) == 0) { if (QWAITS) goto lookup; addr |= 0775000 | ac_stack; uf = 0; } /* If still access register, just return */ if (addr < 020) { *loc = addr; return 1; } lookup: if (uf) { if (page > user_limit) { /* over limit violation */ fault_data = 0401000; goto fault_bbn; } base = user_base_reg; tlb_data = u_tlb[page]; } else { /* 000 - 077 resident map */ /* 100 - 177 per processor map */ /* 200 - 577 monitor map */ /* 600 - 777 per process map */ if ((page & 0700) == 0 && exec_map == 0) { *loc = addr; return 1; } if ((page & 0600) == 0600) base = mon_base_reg; else base = 03000; tlb_data = e_tlb[page]; } if (tlb_data != 0) { access: *loc = ((tlb_data & 03777) << 9) + (addr & 0777); /* Check access */ if (wr && (tlb_data & 0200000) == 0) { fault_data = 0402000; goto fault_bbn; } else if (fetch && (tlb_data & 0100000) == 0) { fault_data = 0404000; goto fault_bbn; } else if ((tlb_data & 0400000) == 0) { fault_data = 0404000; goto fault_bbn; } return 1; } traps = FMASK; /* Map the page */ match = 0; while (!match) { data = M[base + map]; switch ((data >> 34) & 03) { case 0: /* Direct page */ /* Bit 4 = execute */ /* Bit 3 = Write */ /* Bit 2 = Read */ traps &= data & (BBN_MERGE|BBN_TRPPG); tlb_data = (uint32)(((data & (BBN_EXEC|BBN_WRITE|BBN_READ)) >> 16) | (data & 03777)); match = 1; break; case 1: /* Shared page */ /* Check trap */ base = 020000; map = (data & BBN_SPT) >> 9; traps &= data & (BBN_MERGE|BBN_PAGE); data = 0; lvl ++; break; case 2: /* Indirect page */ if (lvl == 2) { /* Trap */ fault_data = 0201000; goto fault_bbn; } map = data & BBN_PN; base = 020000 + ((data & BBN_SPT) >> 9); traps &= data & (BBN_MERGE|BBN_PAGE); data = 0; lvl ++; break; case 3: /* Invalid page */ /* Trap all */ fault_data = ((lvl != 0)? 0200000: 0) | 0401000; goto fault_bbn; } if ((traps & (BBN_TRP|BBN_TRP1)) == (BBN_TRP|BBN_TRP1)) { fault_data = 04000; goto fault_bbn; } } if (uf) { u_tlb[page] = tlb_data; } else { e_tlb[page] = tlb_data; } /* Handle traps */ if (wr && (traps & BBN_TRPMOD)) { fault_data = ((lvl != 0)? 0200000: 0) | 0440000; goto fault_bbn; } if ((traps & BBN_TRPUSR)) { fault_data = ((lvl != 0)? 0200000: 0) | 0420000; goto fault_bbn; } if ((traps & BBN_ACC) == 0 || (traps & BBN_TRP)) { fault_data = ((lvl != 0)? 0200000: 0) | 0410000; goto fault_bbn; } /* Update CST */ data = M[04000 + (tlb_data & 03777)]; if ((data & 00700000000000LL) == 0) { fault_data = 0100000 >> ((data >> 31) & 03); goto fault_bbn; } data &= ~00777000000000LL; /* Clear age */ if (wr) data |= 00000400000000LL; /* Set modify */ data |= pur; M[04000 + (tlb_data & 03777)] = data; goto access; /* Handle fault */ fault_bbn: /* Write location of trap to PSB 571 */ /* If write write MB to PSB 752 */ /* Force APR to execute at location 70 */ /* Status word */ /* RH = Effective address */ /* Bit 17 = Exec Mode 0000001 */ /* Bit 16 = Execute request 0000002 */ /* Bit 15 = Write 0000004 */ /* Bit 14 = Read 0000010 */ /* Bit 13 = Ind 0000020 */ /* Bit 12 = PI in progress 0000040 */ /* Bit 11 = Key in progress 0000100 */ /* Bit 10 = non-ex-mem 0000200 */ /* Bit 9 = Parity 0000400 */ /* Bit 0-8 = status */ if ((FLAGS & USER) == 0) fault_data |= 01; if (fetch) fault_data |= 02; if (wr) fault_data |= 04; else fault_data |= 010; if (cur_context) fault_data |= 020; if (uuo_cycle) fault_data |= 040; page_fault = 1; M[mon_base_reg | 0571] = ((uint64)fault_data) << 18 | addr; if (wr) M[mon_base_reg | 0572] = MB; return 0; } /* * Read a location in memory. * * Return of 0 if successful, 1 if there was an error. */ int Mem_read_bbn(int flag, int cur_context, int fetch) { int addr; /* If not doing any special access, just access register */ if (AB < 020 && ((xct_flag == 0 || fetch || cur_context || (FLAGS & USER) != 0))) { MB = get_reg(AB); return 0; } sim_interval--; if (!page_lookup_bbn(AB, flag, &addr, 0, cur_context, fetch)) return 1; if (addr < 020) { MB = get_reg(AB); return 0; } if (addr >= (int)MEMSIZE) { nxm_flag = 1; return 1; } if (sim_brk_summ && sim_brk_test(AB, SWMASK('R'))) watch_stop = 1; MB = M[addr]; return 0; } /* * Write a location in memory. * * Return of 0 if successful, 1 if there was an error. */ int Mem_write_bbn(int flag, int cur_context) { int addr; /* If not doing any special access, just access register */ if (AB < 020 && ((xct_flag == 0 || cur_context || (FLAGS & USER) != 0))) { set_reg(AB, MB); return 0; } sim_interval--; if (!page_lookup_bbn(AB, flag, &addr, 1, cur_context, 0)) return 1; if (addr < 020) { set_reg(AB, MB); return 0; } if (addr >= (int)MEMSIZE) { nxm_flag = 1; return 1; } if (sim_brk_summ && sim_brk_test(AB, SWMASK('W'))) watch_stop = 1; M[addr] = MB; return 0; } #endif #if WAITS int page_lookup_waits(int addr, int flag, int *loc, int wr, int cur_context, int fetch) { int uf = (FLAGS & USER) != 0; /* If this is modify instruction use write access */ wr |= modify; /* Figure out if this is a user space access */ if (flag) uf = 0; else if (xct_flag != 0 && !fetch && !uf) { if (xct_flag & 010 && cur_context) /* Indirect */ uf = 1; if (xct_flag & 004 && wr == 0) /* XR */ uf = 1; if (xct_flag & 001 && (wr == 1 || BYF5)) /* XW or XLB or XDB */ uf = 1; } if (uf) { if (addr <= Pl) { *loc = (addr + Rl) & RMASK; return 1; } if ((addr & 0400000) != 0 && (addr <= Ph)) { if ((Pflag == 0) || (Pflag == 1 && wr == 0)) { *loc = (addr + Rh) & RMASK; return 1; } } mem_prot = 1; return 0; } else { *loc = addr; } return 1; } int Mem_read_waits(int flag, int cur_context, int fetch) { int addr; if (AB < 020 && ((xct_flag == 0 || fetch || cur_context || (FLAGS & USER) != 0))) { MB = get_reg(AB); return 0; } sim_interval--; if (!page_lookup_waits(AB, flag, &addr, 0, cur_context, fetch)) return 1; if (addr >= (int)MEMSIZE) { nxm_flag = 1; return 1; } if (sim_brk_summ && sim_brk_test(AB, SWMASK('R'))) watch_stop = 1; MB = M[addr]; return 0; } /* * Write a location in memory. * * Return of 0 if successful, 1 if there was an error. */ int Mem_write_waits(int flag, int cur_context) { int addr; /* If not doing any special access, just access register */ if (AB < 020 && ((xct_flag == 0 || cur_context || (FLAGS & USER) != 0))) { set_reg(AB, MB); return 0; } sim_interval--; if (!page_lookup_waits(AB, flag, &addr, 1, cur_context, 0)) return 1; if (addr >= (int)MEMSIZE) { nxm_flag = 1; return 1; } if (sim_brk_summ && sim_brk_test(AB, SWMASK('W'))) watch_stop = 1; M[addr] = MB; return 0; } #endif int page_lookup_ka(int addr, int flag, int *loc, int wr, int cur_context, int fetch) { if (!flag && (FLAGS & USER) != 0) { if (addr <= Pl) { *loc = (addr + Rl) & RMASK; return 1; } if (cpu_unit[0].flags & UNIT_TWOSEG && (addr & 0400000) != 0 && (addr <= Ph)) { if ((Pflag == 0) || (Pflag == 1 && wr == 0)) { *loc = (addr + Rh) & RMASK; return 1; } } mem_prot = 1; return 0; } else { *loc = addr; } return 1; } int Mem_read_ka(int flag, int cur_context, int fetch) { int addr; if (AB < 020) { MB = get_reg(AB); } else { sim_interval--; if (!page_lookup_ka(AB, flag, &addr, 0, cur_context, fetch)) return 1; if (addr >= (int)MEMSIZE) { nxm_flag = 1; return 1; } if (sim_brk_summ && sim_brk_test(AB, SWMASK('R'))) watch_stop = 1; MB = M[addr]; } return 0; } /* * Write a location in memory. * * Return of 0 if successful, 1 if there was an error. */ int Mem_write_ka(int flag, int cur_context) { int addr; if (AB < 020) { set_reg(AB, MB); } else { sim_interval--; if (!page_lookup_ka(AB, flag, &addr, 1, cur_context, 0)) return 1; if (addr >= (int)MEMSIZE) { nxm_flag = 1; return 1; } if (sim_brk_summ && sim_brk_test(AB, SWMASK('W'))) watch_stop = 1; M[addr] = MB; } return 0; } int (*Mem_read)(int flag, int cur_context, int fetch); int (*Mem_write)(int flag, int cur_context); #endif #if PDP6 /* * Check if the last operation caused a APR IRQ to be generated. */ void check_apr_irq() { if (pi_enable && apr_irq) { int flg = 0; clr_interrupt(0); flg |= ((FLAGS & OVR) != 0) & ov_irq; flg |= ((FLAGS & PCHNG) != 0) & pcchg_irq; flg |= nxm_flag | mem_prot | push_ovf; if (flg) set_interrupt(0, apr_irq); } } /* * APR Device for PDP6. */ t_stat dev_apr(uint32 dev, uint64 *data) { uint64 res = 0; switch(dev & 03) { case CONI: /* Read trap conditions */ res = apr_irq | (((FLAGS & OVR) != 0) << 3) | (ov_irq << 4) ; res |= (((FLAGS & PCHNG) != 0) << 6) | (pcchg_irq << 7) ; res |= (clk_flg << 9) | (((uint64)clk_en) << 10) | (nxm_flag << 12); res |= (mem_prot << 13) | (((FLAGS & USER) != 0) << 14) | (user_io << 15); res |= (push_ovf << 16); *data = res; sim_debug(DEBUG_CONI, &cpu_dev, "CONI APR %012llo\n", *data); break; case CONO: /* Set trap conditions */ res = *data; clk_irq = apr_irq = res & 07; clr_interrupt(0); if (res & 010) /* Bit 32 */ FLAGS &= ~OVR; if (res & 020) /* Bit 31 */ ov_irq = 1; if (res & 040) /* Bit 30 */ ov_irq = 0; if (res & 0100) /* Bit 29 */ FLAGS &= ~PCHNG; if (res & 0200) /* Bit 28 */ pcchg_irq = 1; if (res & 0400) /* Bit 27 */ pcchg_irq = 0; if (res & 0001000) { /* Bit 26 */ clk_flg = 0; clr_interrupt(4); } if (res & 0002000) { /* Bit 25 */ clk_en = 1; if (clk_flg) set_interrupt(4, clk_irq); } if (res & 0004000) { /* Bit 24 */ clk_en = 0; clr_interrupt(4); } if (res & 010000) /* Bit 23 */ nxm_flag = 0; if (res & 020000) /* Bit 22 */ mem_prot = 0; if (res & 040000) /* Bit 21 */ user_io = 0; if (res & 0100000) /* Bit 20 */ user_io = 1; if (res & 0200000) { /* Bit 19 */ reset_all(1); mem_prot = 0; user_io = 0; FLAGS &= ~(USERIO); } if (res & 0400000) /* Bit 18 */ push_ovf = 0; check_apr_irq(); sim_debug(DEBUG_CONO, &cpu_dev, "CONO APR %012llo\n", *data); break; case DATAO: /* Set protection registers */ Rl = 0776000 & *data; Pl = (0776000 & (*data >> 18)) + 01777; sim_debug(DEBUG_DATAIO, &cpu_dev, "DATAO APR %012llo\n", *data); break; case DATAI: /* Read switches */ *data = SW; sim_debug(DEBUG_DATAIO, &cpu_dev, "DATAI APR %012llo\n", *data); break; } return SCPE_OK; } #define get_reg(reg) FM[(reg) & 017] #define set_reg(reg, value) FM[(reg) & 017] = value int page_lookup(int addr, int flag, int *loc, int wr, int cur_context, int fetch) { if (!flag && (FLAGS & USER) != 0) { if (addr <= Pl) { *loc = (addr + Rl) & RMASK; return 1; } mem_prot = 1; return 0; } else { *loc = addr; } return 1; } int Mem_read(int flag, int cur_context, int fetch) { int addr; if (AB < 020) { MB = get_reg(AB); } else { sim_interval--; if (!page_lookup(AB, flag, &addr, 0, cur_context, fetch)) return 1; if (addr >= (int)MEMSIZE) { nxm_flag = 1; return 1; } if (sim_brk_summ && sim_brk_test(AB, SWMASK('R'))) watch_stop = 1; MB = M[addr]; } return 0; } /* * Write a location in memory. * * Return of 0 if successful, 1 if there was an error. */ int Mem_write(int flag, int cur_context) { int addr; if (AB < 020) { set_reg(AB, MB); } else { sim_interval--; if (!page_lookup(AB, flag, &addr, 1, cur_context, 0)) return 1; if (addr >= (int)MEMSIZE) { nxm_flag = 1; return 1; } if (sim_brk_summ && sim_brk_test(AB, SWMASK('W'))) watch_stop = 1; M[addr] = MB; } return 0; } #endif /* * Function to determine number of leading zero bits in a work */ int nlzero(uint64 w) { int n = 0; if (w == 0) return 36; if ((w & 00777777000000LL) == 0) { n += 18; w <<= 18; } if ((w & 00777000000000LL) == 0) { n += 9; w <<= 9; } if ((w & 00770000000000LL) == 0) { n += 6; w <<= 6; } if ((w & 00700000000000LL) == 0) { n += 3; w <<= 3; } if ((w & 00600000000000LL) == 0) { n ++; w <<= 1; } if ((w & 00400000000000LL) == 0) { n ++; } return n; } t_stat sim_instr (void) { t_stat reason; int i_flags; /* Instruction mode flags */ int pi_rq; /* Interrupt request */ int pi_ov; /* Overflow during PI cycle */ int pi_cycle; /* Executing an interrupt */ int ind; /* Indirect bit */ int f_load_pc; /* Load AB from PC at start of instruction */ int f_inst_fetch; /* Fetch new instruction */ int f_pc_inh; /* Inhibit PC increment after instruction */ int nrf; /* Normalize flag */ int fxu_hold_set; /* Negitive exponent */ int sac_inh; /* Inihibit saving AC after instruction */ int f; /* Temporary variables */ int flag1; int flag3; int instr_count = 0; /* Number of instructions to execute */ uint32 IA; #if ITS char one_p_arm = 0; /* One proceed arm */ #endif if (sim_step != 0) { instr_count = sim_step; sim_cancel_step(); } /* Build device table */ if ((reason = build_dev_tab ()) != SCPE_OK) /* build, chk dib_tab */ return reason; /* Main instruction fetch/decode loop: check clock queue, intr, trap, bkpt */ f_load_pc = 1; f_inst_fetch = 1; ind = 0; uuo_cycle = 0; pi_cycle = 0; pi_rq = 0; pi_ov = 0; BYF5 = 0; #if KI | KL page_fault = 0; #endif #if ITS if (QITS) { one_p_arm = 0; set_quantum(); } #endif watch_stop = 0; while ( reason == 0) { /* loop until ABORT */ AIO_CHECK_EVENT; /* queue async events */ if (sim_interval <= 0) { /* check clock queue */ if ((reason = sim_process_event()) != SCPE_OK) {/* error? stop sim */ #if ITS if (QITS) load_quantum(); #endif return reason; } } if (sim_brk_summ && f_load_pc && sim_brk_test(PC, SWMASK('E'))) { reason = STOP_IBKPT; break; } if (watch_stop) { reason = STOP_IBKPT; break; } check_apr_irq(); /* Normal instruction */ if (f_load_pc) { modify = 0; xct_flag = 0; #if KI | KL trap_flag = 0; #endif AB = PC; uuo_cycle = 0; f_pc_inh = 0; } if (f_inst_fetch) { #if !(KI | KL) fetch: #endif #if ITS if (QITS && pi_cycle == 0 && mem_prot == 0) { opc = PC | (FLAGS << 18); if ((FLAGS & ONEP) != 0) { one_p_arm = 1; FLAGS &= ~ONEP; } } #endif if (Mem_read(pi_cycle | uuo_cycle, 1, 1)) { pi_rq = check_irq_level(); if (pi_rq) goto st_pi; goto last; } no_fetch: IR = (MB >> 27) & 0777; AC = (MB >> 23) & 017; AD = MB; /* Save for historical sake */ IA = AB; i_flags = opflags[IR]; BYF5 = 0; } #if KI | KL /* Handle page fault and traps */ if (page_enable && trap_flag == 0 && (FLAGS & (TRP1|TRP2))) { AB = 0420 + ((FLAGS & (TRP1|TRP2)) >> 2); trap_flag = FLAGS & (TRP1|TRP2); FLAGS &= ~(TRP1|TRP2); pi_cycle = 1; AB += (FLAGS & USER) ? ub_ptr : eb_ptr; Mem_read_nopage(); goto no_fetch; } #endif /* Handle indirection repeat until no longer indirect */ do { if ((!pi_cycle) & pi_pending #if KI | KL & (!trap_flag) #endif ) { pi_rq = check_irq_level(); } ind = (MB & 020000000) != 0; AR = MB; AB = MB & RMASK; if (MB & 017000000) { AR = MB = (AB + get_reg((MB >> 18) & 017)) & FMASK; AB = MB & RMASK; } if (IR != 0254) AR &= RMASK; if (ind & !pi_rq) if (Mem_read(pi_cycle | uuo_cycle, 1, 0)) goto last; /* Handle events during a indirect loop */ AIO_CHECK_EVENT; /* queue async events */ if (sim_interval-- <= 0) { if ((reason = sim_process_event()) != SCPE_OK) { return reason; } } } while (ind & !pi_rq); /* If there is a interrupt handle it. */ if (pi_rq) { st_pi: sim_debug(DEBUG_IRQ, &cpu_dev, "trap irq %o %03o %03o \n", pi_enc, PIR, PIH); pi_cycle = 1; pi_rq = 0; pi_hold = 0; pi_ov = 0; AB = 040 | (pi_enc << 1) | maoff; #if KI | KL xct_flag = 0; /* * Scan through the devices and allow KI devices to have first * hit at a given level. */ for (f = 0; f < 128; f++) { if (dev_irqv[f] != 0 && dev_irq[f] & (0200 >> pi_enc)) { AB = dev_irqv[f](f << 2, AB); break; } } AB |= eb_ptr; Mem_read_nopage(); goto no_fetch; #else goto fetch; #endif } #if KI | KL if (page_enable && page_fault) { if (!f_pc_inh && !pi_cycle) PC = (PC + 1) & RMASK; goto last; } #endif /* Check if possible idle loop */ if (sim_idle_enab && (((FLAGS & USER) != 0 && PC < 020 && AB < 020 && (IR & 0760) == 0340) || (uuo_cycle && (IR & 0740) == 0 && IA == 041))) { sim_idle (TMR_RTC, FALSE); } /* Update history */ if (hst_lnt) { hst_p = hst_p + 1; if (hst_p >= hst_lnt) { hst_p = 0; } hst[hst_p].pc = HIST_PC | ((BYF5)? (HIST_PC2|PC) : IA); hst[hst_p].ea = AB; hst[hst_p].ir = AD; hst[hst_p].flags = (FLAGS << 5) |(clk_flg << 2) | (nxm_flag << 1) #if KA | PDP6 | (mem_prot << 4) | (push_ovf << 3) #endif #if PDP6 | ill_op #endif ; hst[hst_p].ac = get_reg(AC); } /* Set up to execute instruction */ f_inst_fetch = 1; f_load_pc = 1; nrf = 0; fxu_hold_set = 0; sac_inh = 0; modify = 0; f_pc_inh = 0; /* Load pseudo registers based on flags */ if (i_flags & (FCEPSE|FCE)) { if (i_flags & FCEPSE) modify = 1; if (Mem_read(0, 0, 0)) goto last; AR = MB; } if (i_flags & FAC) { BR = AR; AR = get_reg(AC); } if (i_flags & FBR) { BR = get_reg(AC); } if (hst_lnt) { hst[hst_p].mb = AR; } if (i_flags & FAC2) { MQ = get_reg(AC + 1); } else if (!BYF5) { MQ = 0; } if (i_flags & SWAR) { AR = SWAP_AR; } /* Process the instruction */ switch (IR) { muuo: case 0000: /* UUO */ case 0040: case 0041: case 0042: case 0043: case 0044: case 0045: case 0046: case 0047: case 0050: case 0051: case 0052: case 0053: case 0054: case 0055: case 0056: case 0057: case 0060: case 0061: case 0062: case 0063: case 0064: case 0065: case 0066: case 0067: case 0070: case 0071: case 0072: case 0073: case 0074: case 0075: case 0076: case 0077: /* MUUO */ #if KI | KL case 0100: case 0101: case 0102: case 0103: case 0104: case 0105: case 0106: case 0107: case 0123: case 0247: /* UUO */ unasign: MB = ((uint64)(IR) << 27) | ((uint64)(AC) << 23) | (uint64)(AB); AB = ub_ptr | 0424; Mem_write_nopage(); AB |= 1; MB = (((uint64)(FLAGS) << 23) & LMASK) | ((PC + (trap_flag == 0)) & RMASK); if ((FLAGS & USER) == 0) { MB &= ~SMASK; MB |= (FLAGS & PRV_PUB) ? SMASK : 0; } Mem_write_nopage(); FLAGS &= ~ (PRV_PUB|BYTI|ADRFLT|TRP1|TRP2); AB = ub_ptr | 0430; if (trap_flag != 0) AB |= 1; if (FLAGS & PUBLIC) AB |= 2; if (FLAGS & USER) AB |= 4; Mem_read_nopage(); FLAGS = (MB >> 23) & 017777; /* If transistioning from user to executive adjust flags */ if ((FLAGS & USER) != 0 && (AB & 4) != 0) FLAGS |= USERIO; if ((FLAGS & USER) == 0 && (AB & 2 || (FLAGS & OVR) != 0)) FLAGS |= PRV_PUB|OVR; PC = MB & RMASK; f_pc_inh = 1; break; #else uuo_cycle = 1; #endif /* LUUO */ case 0001: case 0002: case 0003: case 0004: case 0005: case 0006: case 0007: case 0010: case 0011: case 0012: case 0013: case 0014: case 0015: case 0016: case 0017: case 0020: case 0021: case 0022: case 0023: case 0024: case 0025: case 0026: case 0027: case 0030: case 0031: case 0032: case 0033: case 0034: case 0035: case 0036: case 0037: #if PDP6 ill_op = 1; ex_uuo_sync = 1; #endif MB = ((uint64)(IR) << 27) | ((uint64)(AC) << 23) | (uint64)(AB); #if KI | KL if ((FLAGS & USER) == 0) { AB = eb_ptr + 040; Mem_write_nopage(); AB += 1; Mem_read_nopage(); uuo_cycle = 1; goto no_fetch; } #endif AB = 040; if (maoff && uuo_cycle) AB |= maoff; Mem_write(uuo_cycle, 1); AB += 1; f_load_pc = 0; #if ITS if (QITS && one_p_arm) { FLAGS |= ONEP; one_p_arm = 0; } #endif f_pc_inh = 1; break; #if KI | KL case 0110: /* DFAD */ case 0111: /* DFSB */ /* On Load AR,MQ has memory operand */ /* AR,MQ = AC BR,MB = mem */ /* AR High */ if (Mem_read(0, 0, 0)) goto last; AR = MB; BR = AR; AR = get_reg(AC); MQ = get_reg(AC + 1); AB = (AB + 1) & RMASK; if (Mem_read(0, 0, 0)) goto last; /* Make into 64 bit numbers */ SC = GET_EXPO(BR); SMEAR_SIGN(BR); BR <<= 35; BR |= (MB & CMASK); FE = GET_EXPO(AR); SMEAR_SIGN(AR); AR <<= 35; AR |= (MQ & CMASK); if (IR & 01) { BR = (FPFMASK ^ BR) + 1; } SCAD = (SC - 200) + (FE - 200); if (FE > SC) { /* Swap if BR larger */ AD = AR; AR = BR; BR = AD; SCAD = FE; FE = SC; SC = SCAD; } SCAD = SC - FE; flag3 = 0; MQ = 0; if (SCAD > 0) { /* Align numbers */ if (SCAD > 64) /* Outside range */ AR = 0; else { while (SCAD > 0) { MQ >>= 1; if (AR & 1) MQ |= SMASK; AR = (AR & (FPHBIT|FPSBIT)) | (AR >> 1); SCAD--; } } } AR = AR + BR + flag3; /* Set flag1 to sign */ flag1 = (AR & FPHBIT) != 0; dpnorm: /* Make sure High bit and sign bit same */ while (((AR & FPHBIT) != 0) != ((AR & FPSBIT) != 0)) { SC += 1; MQ >>= 1; if (AR & 1) MQ |= SMASK; AR = (AR & FPHBIT) | (AR >> 1); } /* Check for potiential underflow */ if (((SC & 0400) != 0) ^ ((SC & 0200) != 0)) fxu_hold_set = 1; if (AR != 0) { while (AR != 0 && (((AR & (FPSBIT|FPNBIT)) == (FPSBIT|FPNBIT)) || ((AR & (FPSBIT|FPNBIT)) == 0))) { SC --; AR <<= 1; if (MQ & SMASK) AR |= 1; MQ <<= 1; } /* Handle special minus case */ if (AR == (FPHBIT|FPSBIT)) { SC += 1; AR = (AR & FPHBIT) | (AR >> 1); } } else { AR = MQ = 0; SC = 0; } /* Check if we need to round */ if (!nrf && ((MQ & SMASK) != 0) && (((AR & FPSBIT) == 0) || (((AR & FPSBIT) != 0) && ((MQ & 0377700000000LL) != 0)))) { AR++; nrf = 1; /* Clean things up if we overflowed */ if ((AR & FPHBIT) == 0) goto dpnorm; } /* Extract result */ MQ = (AR & CMASK); AR >>= 35; AR &= MMASK; if (flag1) /* Append sign */ AR |= SMASK; /* Check for over/under flow */ if (((SC & 0400) != 0) && !pi_cycle) { FLAGS |= OVR|FLTOVR|TRP1; if (!fxu_hold_set) { FLAGS |= FLTUND; } } /* Add exponent */ SCAD = SC ^ ((AR & SMASK) ? 0377 : 0); AR &= SMASK|MMASK; if (AR != 0 || MQ != 0) AR |= ((uint64)(SCAD & 0377)) << 27; set_reg(AC, AR); set_reg(AC+1, MQ); break; case 0112: /* DFMP */ /* On Load AR,MQ has memory operand */ /* AR,MQ = AC BR,MB = mem */ /* AR High */ if (Mem_read(0, 0, 0)) goto last; AR = MB; BR = AR; AR = get_reg(AC); MQ = get_reg(AC + 1); AB = (AB + 1) & RMASK; if (Mem_read(0, 0, 0)) goto last; /* Make into 64 bit numbers */ SC = GET_EXPO(AR); SMEAR_SIGN(AR); AR <<= 35; AR |= (MQ & CMASK); FE = GET_EXPO(BR); SMEAR_SIGN(BR); BR <<= 35; BR |= MB & CMASK; flag1 = 0; /* Make both numbers positive */ if (AR & FPSBIT) { AR = (FPFMASK ^ AR) + 1; flag1 = 1; } if (BR & FPSBIT) { BR = (FPFMASK ^ BR) + 1; flag1 = !flag1; } /* Compute exponent */ SC = SC + FE - 0200; ARX = 0; /* Do multiply */ for (FE = 0; FE < 62; FE++) { if (FE == 35) /* Clear MQ so it has correct lower product digits */ MQ = 0; if (BR & 1) ARX += AR; MQ >>= 1; if (ARX & 1) MQ |= BIT1; ARX >>= 1; BR >>= 1; } AR = ARX; /* Make result negative if needed */ if (flag1) { MQ = (MQ ^ CMASK) + 0400; AR = (AR ^ FPFMASK); if (MQ & SMASK) { AR ++; MQ &= FMASK; } /* Check for overflow */ if ((AR & (FPHBIT|FPSBIT)) == (FPHBIT)) { SC += 1; MQ >>= 1; if (AR & 1) MQ |= BIT1; AR = (AR >> 1) | (FPHBIT & AR); } } /* Check if we need to normalize */ if (AR != 0) { /* Check for fast shift */ if ((AR & ~MMASK) == 0 || ((AR & ~MMASK) + BIT8) == 0) { SC -= 35; AR <<= 35; AR |= MQ & CMASK; MQ = 0; if ((AR & 0777) == 0777) AR &= (FPFMASK << 8); } if (((AR & (FPSBIT|FPNBIT)) == (FPSBIT|FPNBIT)) || ((AR & (FPSBIT|FPNBIT)) == 0)) { SC --; AR <<= 1; if (MQ & BIT1) AR |= 1; MQ <<= 1; MQ &= FMASK; nrf = 1; } } else { AR = MQ = 0; SC = 0; flag1 = 0; } /* Round if needed */ if (MQ & BIT1) AR++; /* Build results */ MQ = (AR & CMASK); AR >>= 35; AR &= MMASK; if (flag1) AR |= SMASK; if (((SC & 0400) != 0) && !pi_cycle) { FLAGS |= OVR|FLTOVR|TRP1; if (SC < 0) { FLAGS |= FLTUND; } } SCAD = SC ^ ((AR & SMASK) ? 0377 : 0); AR &= SMASK|MMASK; if (AR != 0 || MQ != 0) AR |= ((uint64)(SCAD & 0377)) << 27; set_reg(AC, AR); set_reg(AC+1, MQ); break; case 0113: /* DFDV */ /* On Load AR,MQ has memory operand */ /* AR,MQ = AC BR,MB = mem */ /* AR High */ if (Mem_read(0, 0, 0)) goto last; AR = MB; BR = AR; AR = get_reg(AC); MQ = get_reg(AC + 1); AB = (AB + 1) & RMASK; if (Mem_read(0, 0, 0)) goto last; /* Make into 64 bit numbers */ SC = GET_EXPO(AR); SMEAR_SIGN(AR); AR <<= 35; AR |= (MQ & CMASK); FE = GET_EXPO(BR); SMEAR_SIGN(BR); BR <<= 35; BR |= MB & CMASK; /* Make both positive */ flag1 = 0; if (AR & FPSBIT) { AR = (FPFMASK ^ AR) + 1; flag1 = 1; } if (BR & FPSBIT) { BR = (FPFMASK ^ BR) + 1; flag1 = !flag1; } /* Precheck if divide ok */ if (AR >= (BR << 1)) { if (!pi_cycle) FLAGS |= OVR|FLTOVR|NODIV|TRP1; AR = 0; /* For clean history */ sac_inh = 1; break; } /* Divide by zero */ if (AR == 0) { sac_inh = 1; break; } /* Compute exponents */ SC = SC - FE + 0201; /* Precheck divider */ if (AR < BR) { AR <<= 1; SC--; } if (SC < 0 && !pi_cycle) FLAGS |= FLTUND|OVR|FLTOVR|TRP1; /* Do divide */ AD = 0; for (FE = 0; FE < 62; FE++) { AD <<= 1; if (AR >= BR) { AR = AR - BR; AD |= 1; } AR <<= 1; } AR = AD; if (flag1) { AR = (AR ^ FPFMASK) + 1; } if (((SC & 0400) != 0) ^ ((SC & 0200) != 0) || SC == 0600) fxu_hold_set = 1; while (((AR & FPHBIT) != 0) != ((AR & FPSBIT) != 0)) { SC += 1; AR = (AR & FPHBIT) | (AR >> 1); } MQ = (AR & CMASK); AR >>= 35; AR &= MMASK; if (flag1) AR |= SMASK; if (((SC & 0400) != 0) && !pi_cycle) { FLAGS |= OVR|FLTOVR|TRP1; if (!fxu_hold_set) { FLAGS |= FLTUND; } } SCAD = SC ^ ((AR & SMASK) ? 0377 : 0); AR &= SMASK|MMASK; if (AR != 0 || MQ != 0) AR |= ((uint64)(SCAD & 0377)) << 27; set_reg(AC, AR); set_reg(AC+1, MQ); break; case 0114: /* DADD */ case 0115: /* DSUB */ case 0116: /* DMUL */ case 0117: /* DDIV */ goto unasign; case 0120: /* DMOVE */ if (Mem_read(0, 0, 0)) goto last; AR = MB; AB = (AB + 1) & RMASK; if (Mem_read(0, 0, 0)) goto last; MQ = MB; set_reg(AC, AR); set_reg(AC+1, MQ); break; case 0121: /* DMOVN */ if (Mem_read(0, 0, 0)) goto last; AR = MB; AB = (AB + 1) & RMASK; if (Mem_read(0, 0, 0)) goto last; MQ = ((MB & CMASK) ^ CMASK) + 1; /* Low */ /* High */ AR = (CM(AR) + ((MQ & SMASK) != 0)) & FMASK; MQ &= CMASK; set_reg(AC, AR); set_reg(AC+1, MQ); break; case 0124: /* DMOVEM */ AR = get_reg(AC); /* Handle each half as seperate instruction */ if ((FLAGS & BYTI) == 0) { MB = AR; if (Mem_write(0, 0)) goto last; FLAGS |= BYTI; } MQ = get_reg(AC + 1); if ((FLAGS & BYTI)) { AB = (AB + 1) & RMASK; MB = MQ; if (Mem_write(0, 0)) goto last; FLAGS &= ~BYTI; } break; case 0125: /* DMOVNM */ AR = get_reg(AC); MQ = get_reg(AC + 1); /* Handle each half as seperate instruction */ if ((FLAGS & BYTI) == 0) { BR = AR = CM(AR); BR = (BR + 1); MQ = (((MQ & CMASK) ^ CMASK) + 1); if (MQ & SMASK) AR = BR; AR &= FMASK; MB = AR; if (Mem_write(0, 0)) goto last; FLAGS |= BYTI; } if ((FLAGS & BYTI)) { MQ = get_reg(AC + 1); MQ = (CM(MQ) + 1) & CMASK; AB = (AB + 1) & RMASK; MB = MQ; if (Mem_write(0, 0)) goto last; FLAGS &= ~BYTI; } break; case 0122: /* FIX */ case 0126: /* FIXR */ if (Mem_read(0, 0, 0)) goto last; AR = MB; MQ = 0; SC = ((((AR & SMASK) ? 0377 : 0 ) ^ ((AR >> 27) & 0377)) + 0600) & 0777; SMEAR_SIGN(AR); SC -= 27; SC &= 0777; if (SC < 9) { /* 0 < N < 8 */ AR = (AR << SC) & FMASK; } else if ((SC & 0400) != 0) { /* -27 < N < 0 */ SC = 01000 - SC; if (SC > 27) { AR = MQ = 0; } else { MQ = (AR << (36 - SC)) & FMASK /*- flag1*/ ; AR = (AR >> SC) | (FMASK & (((AR & SMASK)? FMASK << (27 - SC): 0))); } if (((IR & 04) != 0 && (MQ & SMASK) != 0) || ((IR & 04) == 0 && (AR & SMASK) != 0 && ((MQ & CMASK) != 0 || (MQ & SMASK) != 0))) AR ++; } else { if (!pi_cycle) FLAGS |= OVR|TRP1; /* OV & T1 */ sac_inh = 1; } if (!sac_inh) set_reg(AC, AR); break; case 0127: /* FLTR */ if (Mem_read(0, 0, 0)) goto last; AR = MB; AR <<= 27; if (AR & FPSBIT) { flag1 = 1; AR |= FPHBIT; } else flag1 = 0; i_flags = SAC; SC = 162; goto fnorm; #else case 0100: /* TENEX UMOVE */ #if BBN if (QBBN) { if (Mem_read(0, 0, 0)) { IR = 0; goto last; } AR = MB; set_reg(AC, AR); /* blank, I, B */ IR = 0; break; } #endif goto unasign; case 0101: /* TENEX UMOVEI */ #if BBN if (QBBN) { set_reg(AC, AR); /* blank, I, B */ IR = 0; break; } #endif goto unasign; case 0102: /* TENEX UMOVEM */ /* ITS LPM */ #if ITS if (QITS && (FLAGS & USER) == 0) { /* Load store ITS pager info */ /* AC & 1 = Store */ if (AC & 1) { if ((AB + 8) > MEMSIZE) { fault_data |= 0400; mem_prot = 1; break; } MB = ((uint64)age) << 27 | ((uint64)fault_addr & 0777) << 18 | (uint64)jpc; M[AB] = MB; AB = (AB + 1) & RMASK; MB = opc; M[AB] = MB; AB = (AB + 1) & RMASK; MB = (mar & 00777607777777LL) | ((uint64)pag_reload) << 21; M[AB] = MB; AB = (AB + 1) & RMASK; MB = ((uint64)get_quantum()) | ((uint64)fault_data) << 18; M[AB] = MB; AB = (AB + 1) & RMASK; MB = ((uint64)fault_addr & 00760000) << 13 | (uint64)dbr1; M[AB] = MB; AB = (AB + 1) & RMASK; MB = ((uint64)fault_addr & 00037000) << 17 | (uint64)dbr2; M[AB] = MB; AB = (AB + 1) & RMASK; MB = (uint64)dbr3; M[AB] = MB; AB = (AB + 1) & RMASK; MB = (uint64)ac_stack; M[AB] = MB; } else { if ((AB + 8) > MEMSIZE) { fault_data |= 0400; mem_prot = 1; break; } MB = M[AB]; /* WD 0 */ age = (MB >> 27) & 017; jpc = (MB & RMASK); fault_addr = (MB >> 18) & 0777; AB = (AB + 1) & RMASK; MB = M[AB]; opc = MB; AB = (AB + 1) & RMASK; MB = M[AB]; /* WD 2 */ mar = /*03777777 &*/ MB; pag_reload = 0; AB = (AB + 1) & RMASK; MB = M[AB]; /* WD 3 */ /* Store Quantum */ qua_time = MB & (RMASK|BIT17); set_quantum(); fault_data = (MB >> 18) & RMASK; fault_data &= ~1; /* Clear high quantum bit */ mem_prot = 0; if ((fault_data & 0777772) != 0) mem_prot = 1; AB = (AB + 1) & RMASK; MB = M[AB]; /* WD 4 */ dbr1 = ((0377 << 18) | RMASK) & MB; fault_addr |= (MB >> 13) & 00760000; AB = (AB + 1) & RMASK; MB = M[AB]; /* WD 5 */ fault_addr |= (MB >> 17) & 00037000; dbr2 = ((0377 << 18) | RMASK) & MB; AB = (AB + 1) & RMASK; MB = M[AB]; /* WD 6 */ dbr3 = ((0377 << 18) | RMASK) & MB; AB = (AB + 1) & RMASK; MB = M[AB]; /* WD 7 */ ac_stack = (uint32)MB; page_enable = 1; } /* AC & 2 = Clear TLB */ if (AC & 2) { for (f = 0; f < 512; f++) e_tlb[f] = u_tlb[f] = 0; mem_prot = 0; } /* AC & 4 = Set Prot Interrupt */ if (AC & 4) { mem_prot = 1; set_interrupt(0, apr_irq); } break; } #endif #if BBN if (QBBN) { AR = get_reg(AC); MB = AR; if (Mem_write(0, 0)) { IR = 0; goto last; } IR = 0; break; } #endif goto unasign; case 0103: /* TENEX UMOVES */ /* ITS XCTR */ #if ITS if (QITS && (FLAGS & USER) == 0) { /* AC & 1 = Read User */ /* AC & 2 = Write User */ /* AC & 4 = Inhibit mem protect, skip */ /* AC & 8 = ??? */ f_load_pc = 0; f_pc_inh = 1; xct_flag = AC; break; } #endif #if BBN if (QBBN) { if (Mem_read(0, 0, 0)) { IR = 0; goto last; } modify = 1; AR = MB; if (Mem_write(0, 0)) { IR = 0; goto last; } if (AC != 0) set_reg(AC, AR); /* blank, I, B */ IR = 0; break; } #endif goto unasign; /* MUUO */ case 0104: /* TENEX JSYS */ #if BBN if (QBBN) { BR = ((uint64)(FLAGS) << 23) | ((PC + !pi_cycle) & RMASK); if (AB < 01000) { AB += 01000; if ((FLAGS & USER) == 0) FLAGS |= EXJSYS; FLAGS &= ~USER; } if (Mem_read(0, 0, 0)) { FLAGS = (uint32)(BR >> 23); /* On error restore flags */ goto last; } AR = MB; AB = (AR >> 18) & RMASK; MB = BR; if (Mem_write(0, 0)) { FLAGS = (uint32)(BR >> 23); /* On error restore flags */ goto last; } PC = AR & RMASK; break; } #endif goto unasign; case 0247: /* UUO or ITS CIRC instruction */ #if ITS if (QITS) { BR = AR; AR = get_reg(AC); if (hst_lnt) { hst[hst_p].mb = AR; } MQ = get_reg(AC + 1); SC = ((AB & RSIGN) ? (0777 ^ AB) + 1 : AB) & 0777; if (SC == 0) break; SC = SC % 72; if (AB & RSIGN) SC = 72 - SC; /* Have to do this the long way */ while (SC > 0) { AD = ((AR << 1) | (MQ & 1)) & FMASK; MQ = ((MQ >> 1) | (AR & SMASK)) & FMASK; AR = AD; SC--; } set_reg(AC, AR); set_reg(AC+1, MQ); break; } #endif #if WAITS if (QWAITS) { /* WAITS FIX instruction */ if (Mem_read(0, 0, 0)) goto last; AR = MB; BR = get_reg(AC); if (hst_lnt) { hst[hst_p].mb = AR; } MQ = 0; AR = SWAP_AR; goto ufa; } #endif /* UUO */ case 0105: case 0106: case 0107: case 0110: case 0111: case 0112: case 0113: case 0114: case 0115: case 0116: case 0117: case 0120: case 0121: case 0122: case 0123: case 0124: case 0125: case 0126: case 0127: #if PDP6 case 0130: /* UFA */ #endif unasign: #if !PDP6 MB = ((uint64)(IR) << 27) | ((uint64)(AC) << 23) | (uint64)(AB); AB = 060 | maoff; uuo_cycle = 1; Mem_write(uuo_cycle, 0); AB += 1; #if ITS if (QITS && one_p_arm) { FLAGS |= ONEP; one_p_arm = 0; } #endif f_load_pc = 0; #endif break; #endif case 0133: /* IBP/ADJBP */ case 0134: /* ILDB */ case 0136: /* IDPB */ if ((FLAGS & BYTI) == 0) { /* BYF6 */ modify = 1; if (Mem_read(0, !QITS, 0)) { #if PDP6 FLAGS |= BYTI; #endif goto last; } AR = MB; SC = (AR >> 24) & 077; SCAD = (((AR >> 30) & 077) + (0777 ^ SC) + 1) & 0777; if (SCAD & 0400) { SC = ((0777 ^ ((AR >> 24) & 077)) + 044 + 1) & 0777; #if KI | KL AR = (AR & LMASK) | ((AR + 1) & RMASK); #else AR = (AR + 1) & FMASK; #endif } else SC = SCAD; AR &= PMASK; AR |= (uint64)(SC & 077) << 30; MB = AR; if (Mem_write(0, !QITS)) goto last; if ((IR & 04) == 0) break; goto ldb_ptr; } /* Fall through */ case 0135:/* LDB */ case 0137:/* DPB */ if ((FLAGS & BYTI) == 0 || !BYF5) { if (Mem_read(0, !QITS, 0)) goto last; AR = MB; ldb_ptr: SC = (AR >> 30) & 077; MQ = (uint64)(1) << ( 077 & (AR >> 24)); MQ -= 1; f_load_pc = 0; f_inst_fetch = 0; f_pc_inh = 1; FLAGS |= BYTI; BYF5 = 1; #if ITS if (QITS && pi_cycle == 0 && mem_prot == 0) { opc = PC | (FLAGS << 18); } #endif } else { AB = AR & RMASK; if ((IR & 06) == 6) modify = 1; if (Mem_read(0, 0, 0)) goto last; AR = MB; if ((IR & 06) == 4) { AR = AR >> SC; AR &= MQ; set_reg(AC, AR); } else { BR = get_reg(AC); BR = BR << SC; MQ = MQ << SC; AR &= CM(MQ); AR |= BR & MQ; MB = AR & FMASK; Mem_write(0, 0); } FLAGS &= ~BYTI; BYF5 = 0; } break; case 0131:/* DFN */ #if !PDP6 AD = (CM(BR) + 1) & FMASK; SC = (BR >> 27) & 0777; BR = AR; AR = AD; AD = (CM(BR) + ((AD & MANT) == 0)) & FMASK; AR &= MANT; AR |= ((uint64)(SC & 0777)) << 27; BR = AR; AR = AD; MB = BR; set_reg(AC, AR); if (Mem_write(0, 0)) goto last; #endif break; case 0132:/* FSC */ SC = ((AB & RSIGN) ? 0400 : 0) | (AB & 0377); SCAD = GET_EXPO(AR); SC = (SCAD + SC) & 0777; flag1 = 0; if (AR & SMASK) flag1 = 1; #if !PDP6 SMEAR_SIGN(AR); AR <<= 34; goto fnorm; #else if (((SC & 0400) != 0) ^ ((SC & 0200) != 0)) fxu_hold_set = 1; if ((SC & 0400) != 0 && !pi_cycle) { FLAGS |= OVR|FLTOVR|TRP1; if (!fxu_hold_set) FLAGS |= FLTUND; check_apr_irq(); } if (flag1) { SC ^= 0377; } else if (AR == 0) SC = 0; AR &= SMASK|MMASK; AR |= ((uint64)((SC) & 0377)) << 27; break; #endif case 0150: /* FSB */ case 0151: /* FSBL */ case 0152: /* FSBM */ case 0153: /* FSBB */ case 0154: /* FSBR */ case 0155: /* FSBRI, FSBRL on PDP6 */ case 0156: /* FSBRM */ case 0157: /* FSBRB */ AD = (CM(AR) + 1) & FMASK; AR = BR; BR = AD; /* Fall through */ #if !PDP6 case 0130: /* UFA */ #endif #if WAITS ufa: #endif case 0140: /* FAD */ case 0141: /* FADL */ case 0142: /* FADM */ case 0143: /* FADB */ case 0144: /* FADR */ case 0145: /* FADRI, FSBRL on PDP6 */ case 0146: /* FADRM */ case 0147: /* FADRB */ flag3 = 0; SC = ((BR >> 27) & 0777); if ((BR & SMASK) == (AR & SMASK)) { SCAD = SC + (((AR >> 27) & 0777) ^ 0777) + 1; } else { SCAD = SC + ((AR >> 27) & 0777); } SCAD &= 0777; if (((BR & SMASK) != 0) == ((SCAD & 0400) != 0)) { AD = AR; AR = BR; BR = AD; } if ((SCAD & 0400) == 0) { if ((AR & SMASK) == (BR & SMASK)) SCAD = ((SCAD ^ 0777) + 1) & 0777; else SCAD = (SCAD ^ 0777); } else { if ((AR & SMASK) != (BR & SMASK)) SCAD = (SCAD + 1) & 0777; } /* Get exponent */ SC = GET_EXPO(AR); /* Smear the signs */ SMEAR_SIGN(AR); SMEAR_SIGN(BR); AR <<= 34; BR <<= 34; /* Shift smaller right */ if (SCAD & 0400) { SCAD = (01000 - SCAD); if (SCAD < 61) { AD = (BR & FPSBIT)? FPFMASK : 0; BR = (BR >> SCAD) | (AD << (61 - SCAD)); } else { #if PDP6 if (SCAD < 64) /* Under limit */ #else if (SCAD < 65) /* Under limit */ #endif BR = (BR & FPSBIT)? FPFMASK: 0; else BR = 0; } } /* Do the addition now */ AR = (AR + BR); /* Set flag1 to sign and make positive */ flag1 = (AR & FPSBIT) != 0; fnorm: if (((AR & FPSBIT) != 0) != ((AR & FPNBIT) != 0)) { SC += 1; flag3 = AR & 1; AR = (AR & FPHBIT) | (AR >> 1); } if (AR != 0) { #if !PDP6 AR &= ~077; /* Save one extra bit */ #endif if (((SC & 0400) != 0) ^ ((SC & 0200) != 0)) fxu_hold_set = 1; if (IR != 0130) { /* !UFA */ fnormx: while (AR != 0 && ((AR & FPSBIT) != 0) == ((AR & FPNBIT) != 0) && ((AR & FPNBIT) != 0) == ((AR & FP1BIT) != 0)) { SC --; AR <<= 1; #if PDP6 AR |= flag3; flag3 = 0; #endif } /* Handle edge case of a - and overflow bit */ if ((AR & 000777777777600000000000LL) == (FPSBIT|FPNBIT)) { SC += 1; AR = (AR & FPHBIT) | (AR >> 1); } if (!nrf && ((IR & 04) != 0)) { f = (AR & FP1BIT) != 0; if ((AR & FPRBIT2) != 0) { #if !PDP6 /* FADR & FSBR do not rount if negative and equal round */ /* FMPR does not round if result negative and equal round */ if (((IR & 070) != 070 && (AR & FPSBIT) != 0 && (AR & FPRMASK) != FPRBIT2) || (AR & FPSBIT) == 0 || (AR & FPRMASK) != FPRBIT2) #endif AR += FPRBIT1; nrf = 1; #if !PDP6 AR &= ~FPRMASK; #endif flag3 = 0; if (((AR & FP1BIT) != 0) != f) { SC += 1; flag3 = AR & 1; AR = (AR & FPHBIT) | (AR >> 1); } goto fnormx; } } } MQ = AR & FPRMASK; AR >>= 34; if (flag1) AR |= SMASK; } else { AR = MQ = 0; SC = 0; } if (((SC & 0400) != 0) && !pi_cycle) { FLAGS |= OVR|FLTOVR|TRP1; #if !PDP6 if (!fxu_hold_set) { FLAGS |= FLTUND; MQ = 0; } #endif check_apr_irq(); } SCAD = SC ^ ((AR & SMASK) ? 0377 : 0); AR &= SMASK|MMASK; AR |= ((uint64)(SCAD & 0377)) << 27; #if PDP6 /* FADL FADRL FSBL FSBRL FMPL FMPRL */ if ((IR & 03) == 1) { MQ = ((MQ << 1) & CMASK) | flag3/*| (flag3 << nrf)*/; if (flag1) MQ |= SMASK; } #else /* FADL FSBL FMPL */ if ((IR & 07) == 1) { SC = (SC + (0777 ^ 26)) & 0777; if ((SC & 0400) != 0) MQ = 0; MQ = (MQ >> 7) & MMASK; if (MQ != 0) { SC ^= (SC & SMASK) ? 0377 : 0; MQ |= ((uint64)(SC & 0377)) << 27; } } #endif if ((AR & MMASK) == 0) AR = 0; /* Handle UFA */ if (IR == 0130) { set_reg(AC + 1, AR); break; } break; case 0160: /* FMP */ case 0161: /* FMPL */ case 0162: /* FMPM */ case 0163: /* FMPB */ case 0164: /* FMPR */ case 0165: /* FMPRI, FMPRL on PDP6 */ case 0166: /* FMPRM */ case 0167: /* FMPRB */ /* Compute exponent */ SC = (((BR & SMASK) ? 0777 : 0) ^ (BR >> 27)) & 0777; SC += (((AR & SMASK) ? 0777 : 0) ^ (AR >> 27)) & 0777; SC += 0600; SC &= 0777; /* Make positive and compute result sign */ flag1 = 0; flag3 = 0; if (AR & SMASK) { if ((AR & MMASK) == 0) { AR = BIT9; SC++; } else AR = CM(AR) + 1; flag1 = 1; flag3 = 1; } if (BR & SMASK) { if ((BR & MMASK) == 0) { BR = BIT9; SC++; } else BR = CM(BR) + 1; flag1 = !flag1; } AR &= MMASK; BR &= MMASK; AR = (AR * BR) << 7; if (flag1) { AR = (AR ^ FPFMASK) + 1; } #if PDP6 AR &= ~0177; if (flag3) AR |= 0177; #endif goto fnorm; case 0170: /* FDV */ case 0172: /* FDVM */ case 0173: /* FDVB */ case 0174: /* FDVR */ #if !PDP6 case 0175: /* FDVRI */ #endif case 0176: /* FDVRM */ case 0177: /* FDVRB */ flag1 = 0; flag3 = 0; SC = (int)((((BR & SMASK) ? 0777 : 0) ^ (BR >> 27)) & 0777); SCAD = (int)((((AR & SMASK) ? 0777 : 0) ^ (AR >> 27)) & 0777); if ((BR & (MMASK)) == 0) { if (BR == SMASK) { BR = BIT9; SC--; } else { AR = BR; break; } } if (BR & SMASK) { BR = CM(BR) + 1; flag1 = 1; flag3 = 1; } if (AR & SMASK) { if ((AR & MMASK) == 0) { AR = BIT9; SC--; } else AR = CM(AR) + 1; flag1 = !flag1; } SC = (SC + ((0777 ^ SCAD) + 1) + 0201) & 0777; /* Clear exponents */ AR &= MMASK; BR &= MMASK; /* Check if we need to fix things */ if (BR >= (AR << 1)) { if (!pi_cycle) FLAGS |= OVR|NODIV|FLTOVR|TRP1; check_apr_irq(); sac_inh = 1; break; /* Done */ } BR = (BR << 28); MB = AR; AR = BR / AR; if (AR != 0) { #if !PDP6 if ((AR & BIT7) != 0) { AR >>= 1; } else { SC--; } if (((SC & 0400) != 0) ^ ((SC & 0200) != 0) || SC == 0600) fxu_hold_set = 1; if (IR & 04) { AR++; } AR >>= 1; while ((AR & BIT9) == 0) { AR <<= 1; SC--; } #else if (flag1) { AR = ((AR ^ FMASK) + 1) & FMASK; if ((AR & BIT7) == 0) { AR >>= 1; } else { SC--; } } else { if ((AR & BIT7) != 0) { AR >>= 1; } else { SC--; } } if (IR & 04) { AR++; } AR >>= 1; while ((((AR << 1) ^ AR) & BIT8) == 0) { AR <<= 1; SC--; } AR &= MMASK; if (flag1) { AR |= SMASK; } #endif } else if (flag1) { AR = SMASK | BIT9; SC++; flag1 = 0; } else { AR = 0; SC = 0; } if (((SC & 0400) != 0) && !pi_cycle) { FLAGS |= OVR|FLTOVR|TRP1; if (!fxu_hold_set) { FLAGS |= FLTUND; } check_apr_irq(); } #if !PDP6 if (flag1) { AR = ((AR ^ MMASK) + 1) & MMASK; AR |= SMASK; } #endif SCAD = SC ^ ((AR & SMASK) ? 0377 : 0); AR |= ((uint64)(SCAD & 0377)) << 27; break; case 0171: /* FDVL */ #if PDP6 case 0175: /* FDVRL */ flag1 = flag3 = 0; MQ = 0; if (BR & SMASK) { BR = CM(BR); if (MQ == 0) BR = BR + 1; flag1 = 1; flag3 = 1; } if (AR & SMASK) flag1 = !flag1; SC = (int)((((BR & SMASK) ? 0777 : 0) ^ (BR >> 27)) & 0777); SC += (int)((((AR & SMASK) ? 0 : 0777) ^ (AR >> 27)) & 0777); SC = (SC + 0201) & 0777; FE = (int)((((BR & SMASK) ? 0777 : 0) ^ (BR >> 27)) & 0777) - 26; SMEAR_SIGN(AR); SMEAR_SIGN(BR); /* FDT1 */ MQ = (BR & 1) ? SMASK : 0; BR >>= 1; if (((AR & SMASK) == 0)) AD = (CM(AR) + BR + 1) ; else AD = (AR + BR) ; /* Do actual divide */ /* DST14 & DST15 */ for (SCAD = 0; SCAD < 29; SCAD++) { BR = (AD << 1) | ((MQ & SMASK) ? 1 : 0); BR &= FMASK; MQ = (MQ << 1); MQ |= (AD & SMASK) == 0; MQ &= FMASK; if (((AR & SMASK) != 0) ^ ((MQ & 1) != 0)) AD = (CM(AR) + BR + 1) ; else AD = (AR + BR) ; } /* DST16 */ BR = AD | ((MQ & SMASK) ? 1 : 0); BR &= FMASK; MQ = (MQ << 1); MQ |= (AD & SMASK) == 0; MQ &= FMASK; if (((AR & SMASK) != 0) ^ ((MQ & 1) != 0)) AD = (CM(AR) + BR + 1) ; else AD = (AR + BR) ; if ((AD & C1) != 0) BR = AD & FMASK; AR = MQ; if (flag3) BR = ((BR ^ FMASK) + 1) & FMASK; MQ = BR; if (flag1) AR = ((AR ^ FMASK) + 1) & FMASK; /* FDT1 */ if (AR != 0) { MQ = (MQ >> 1) & (CMASK >> 1); if (AR & 1) MQ |= BIT1; AR >>= 1; if (AR & BIT1) AR |= SMASK; /* NRT0 */ left: SC++; MQ = (MQ >> 1) & (CMASK >> 1); if (AR & 1) MQ |= BIT1; AR >>= 1; if (AR & BIT1) AR |= SMASK; while ((((AR >> 1) ^ AR) & BIT9) == 0) { AR = (AR << 1) & FMASK; if (MQ & BIT1) AR |= 1; MQ = (MQ << 1) & CMASK; SC--; } if (!nrf && IR & 04) { nrf = 1; if ((MQ & BIT1) != 0) { AR++; goto left; } } if (AR & SMASK) MQ |= SMASK; if (((SC & 0400) != 0) ^ ((SC & 0200) != 0)) fxu_hold_set = 1; } else { SC = 0; } if (((SC & 0400) != 0) && !pi_cycle) { FLAGS |= OVR|FLTOVR|TRP1; if (!fxu_hold_set) { FLAGS |= FLTUND; } check_apr_irq(); } SCAD = SC ^ ((AR & SMASK) ? 0377 : 0); AR &= SMASK|MMASK; AR |= ((uint64)(SCAD & 0377)) << 27; #else flag1 = flag3 = 0; SC = (int)((((BR & SMASK) ? 0777 : 0) ^ (BR >> 27)) & 0777); SC += (int)((((AR & SMASK) ? 0 : 0777) ^ (AR >> 27)) & 0777); SC = (SC + 0201) & 0777; FE = (int)((((BR & SMASK) ? 0777 : 0) ^ (BR >> 27)) & 0777) - 26; if (BR & SMASK) { MQ = (CM(MQ) + 1) & MMASK; BR = CM(BR); if (MQ == 0) BR = BR + 1; flag1 = 1; flag3 = 1; } MQ &= MMASK; if (AR & SMASK) { AR = CM(AR) + 1; flag1 = !flag1; } /* Clear exponents */ AR &= MMASK; BR &= MMASK; /* Check if we need to fix things */ if (BR >= (AR << 1)) { if (!pi_cycle) FLAGS |= OVR|NODIV|FLTOVR|TRP1; check_apr_irq(); sac_inh = 1; break; /* Done */ } BR = (BR << 27) + MQ; MB = AR; AR <<= 27; AD = 0; if (BR < AR) { BR <<= 1; SC--; FE--; } for (SCAD = 0; SCAD < 27; SCAD++) { AD <<= 1; if (BR >= AR) { BR = BR - AR; AD |= 1; } BR <<= 1; } MQ = BR >> 28; AR = AD; SC++; if (AR != 0) { if ((AR & BIT8) != 0) { SC++; FE++; AR >>= 1; } while ((AR & BIT9) == 0) { AR <<= 1; SC--; } if (((SC & 0400) != 0) ^ ((SC & 0200) != 0)) fxu_hold_set = 1; if (flag1) { AR = (AR ^ MMASK) + 1; AR |= SMASK; } } else if (flag1) { FE = SC = 0; } else { AR = 0; SC = 0; FE = 0; } if (((SC & 0400) != 0) && !pi_cycle) { FLAGS |= OVR|FLTOVR|TRP1; if (!fxu_hold_set) { FLAGS |= FLTUND; } check_apr_irq(); } SCAD = SC ^ ((AR & SMASK) ? 0377 : 0); AR &= SMASK|MMASK; AR |= ((uint64)(SCAD & 0377)) << 27; if (MQ != 0) { MQ &= MMASK; if (flag3) { MQ = (MQ ^ MMASK) + 1; MQ |= SMASK; } if (FE < 0 /*FE & 0400*/) { MQ = 0; FE = 0; } else FE ^= (flag3) ? 0377 : 0; MQ |= ((uint64)(FE & 0377)) << 27; } #endif break; /* FWT */ case 0200: /* MOVE */ case 0201: /* MOVEI */ case 0202: /* MOVEM */ case 0203: /* MOVES */ case 0204: /* MOVS */ case 0205: /* MOVSI */ case 0206: /* MOVSM */ case 0207: /* MOVSS */ case 0503: /* HLLS */ case 0543: /* HRRS */ break; case 0214: /* MOVM */ case 0215: /* MOVMI */ case 0216: /* MOVMM */ case 0217: /* MOVMS */ if ((AR & SMASK) == 0) break; /* Fall though */ case 0210: /* MOVN */ case 0211: /* MOVNI */ case 0212: /* MOVNM */ case 0213: /* MOVNS */ flag1 = flag3 = 0; AD = CM(AR) + 1; if ((((AR & CMASK) ^ CMASK) + 1) & SMASK) { #if !PDP6 FLAGS |= CRY1; #endif flag1 = 1; } if (AD & C1) { #if !PDP6 FLAGS |= CRY0; #endif flag3 = 1; } if (flag1 != flag3 && !pi_cycle) { FLAGS |= OVR|TRP1; check_apr_irq(); } #if KI | KL if (AR == SMASK && !pi_cycle) FLAGS |= TRP1; #endif AR = AD & FMASK; break; case 0220: /* IMUL */ case 0221: /* IMULI */ case 0222: /* IMULM */ case 0223: /* IMULB */ case 0224: /* MUL */ case 0225: /* MULI */ case 0226: /* MULM */ case 0227: /* MULB */ flag3 = 0; if (AR & SMASK) { AR = (CM(AR) + 1) & FMASK; flag3 = 1; } if (BR & SMASK) { BR = (CM(BR) + 1) & FMASK; flag3 = !flag3; } if ((AR == 0) || (BR == 0)) { AR = MQ = 0; break; } #if KA if (BR == SMASK) /* Handle special case */ flag3 = !flag3; #endif MQ = AR * (BR & RMASK); /* 36 * low 18 = 54 bits */ AR = AR * ((BR >> 18) & RMASK); /* 36 * high 18 = 54 bits */ MQ += (AR << 18) & LMASK; /* low order bits */ AR >>= 18; AR = (AR << 1) + (MQ >> 35); MQ &= CMASK; /* low order only has 35 bits */ if ((IR & 4) == 0) { /* IMUL */ if (AR > flag3 && !pi_cycle) { FLAGS |= OVR|TRP1; check_apr_irq(); } if (flag3) { MQ ^= CMASK; MQ++; MQ |= SMASK; } AR = MQ; break; } if ((AR & SMASK) != 0 && !pi_cycle) { FLAGS |= OVR|TRP1; check_apr_irq(); } if (flag3) { AR ^= FMASK; MQ ^= CMASK; MQ += 1; if ((MQ & SMASK) != 0) { AR += 1; MQ &= CMASK; } } AR &= FMASK; MQ = (MQ & ~SMASK) | (AR & SMASK); #if KA if (BR == SMASK && (AR & SMASK)) /* Handle special case */ FLAGS |= OVR; #endif break; case 0230: /* IDIV */ case 0231: /* IDIVI */ case 0232: /* IDIVM */ case 0233: /* IDIVB */ flag1 = 0; flag3 = 0; if (BR & SMASK) { BR = (CM(BR) + 1) & FMASK; flag1 = !flag1; } if (BR == 0) { /* Check for overflow */ FLAGS |= OVR|NODIV; /* Overflow and No Divide */ sac_inh=1; /* Don't touch AC */ check_apr_irq(); break; /* Done */ } #if !PDP6 if (AR == SMASK && BR == 1) { FLAGS |= OVR|NODIV; /* Overflow and No Divide */ sac_inh=1; /* Don't touch AC */ check_apr_irq(); break; /* Done */ } #else if (AR == SMASK && BR == 1) { MQ = 0; AR = 0; break; /* Done */ } #endif if (AR & SMASK) { AR = (CM(AR) + 1) & FMASK; flag1 = !flag1; flag3 = 1; } MQ = AR % BR; AR = AR / BR; if (flag1) AR = (CM(AR) + 1) & FMASK; if (flag3) MQ = (CM(MQ) + 1) & FMASK; break; case 0234: /* DIV */ case 0235: /* DIVI */ case 0236: /* DIVM */ case 0237: /* DIVB */ flag1 = 0; if (AR & SMASK) { AD = (CM(MQ) + 1) & FMASK; MQ = AR; AR = AD; AD = (CM(MQ)) & FMASK; MQ = AR; AR = AD; if ((MQ & CMASK) == 0) AR = (AR + 1) & FMASK; flag1 = 1; } if (BR & SMASK) AD = (AR + BR) & FMASK; else AD = (AR + CM(BR) + 1) & FMASK; MQ = (MQ << 1) & FMASK; MQ |= (AD & SMASK) != 0; SC = 35; if ((AD & SMASK) == 0) { FLAGS |= OVR|NODIV|TRP1; /* Overflow and No Divide */ i_flags = 0; sac_inh=1; check_apr_irq(); break; /* Done */ } while (SC != 0) { if (((BR & SMASK) != 0) ^ ((MQ & 01) != 0)) AD = (AR + CM(BR) + 1); else AD = (AR + BR); AR = (AD << 1) | ((MQ & SMASK) ? 1 : 0); AR &= FMASK; MQ = (MQ << 1) & FMASK; MQ |= (AD & SMASK) == 0; SC--; } if (((BR & SMASK) != 0) ^ ((MQ & 01) != 0)) AD = (AR + CM(BR) + 1); else AD = (AR + BR); AR = AD & FMASK; MQ = (MQ << 1) & FMASK; MQ |= (AD & SMASK) == 0; if (AR & SMASK) { if (BR & SMASK) AD = (AR + CM(BR) + 1) & FMASK; else AD = (AR + BR) & FMASK; AR = AD; } if (flag1) AR = (CM(AR) + 1) & FMASK; if (flag1 ^ ((BR & SMASK) != 0)) { AD = (CM(MQ) + 1) & FMASK; MQ = AR; AR = AD; } else { AD = MQ; MQ = AR; AR = AD; } break; /* Shift */ case 0240: /* ASH */ SC = ((AB & RSIGN) ? (0377 ^ AB) + 1 : AB) & 0377; if (SC == 0) break; AD = (AR & SMASK) ? FMASK : 0; if (AB & RSIGN) { if (SC < 35) AR = ((AR >> SC) | (AD << (36 - SC))) & FMASK; else AR = AD; } else { if (((AD << SC) & ~CMASK) != ((AR << SC) & ~CMASK)) { FLAGS |= OVR|TRP1; check_apr_irq(); } AR = ((AR << SC) & CMASK) | (AR & SMASK); } break; case 0241: /* ROT */ SC = (AB & RSIGN) ? ((AB & 0377) ? (((0377 ^ AB) + 1) & 0377) : 0400) : (AB & 0377); if (SC == 0) break; SC = SC % 36; if (AB & RSIGN) SC = 36 - SC; AR = ((AR << SC) | (AR >> (36 - SC))) & FMASK; break; case 0242: /* LSH */ SC = ((AB & RSIGN) ? (0377 ^ AB) + 1 : AB) & 0377; if (SC != 0) { if (SC > 36){ AR = 0; } else if (AB & RSIGN) { AR = AR >> SC; } else { AR = (AR << SC) & FMASK; } } break; case 0243: /* JFFO */ #if !PDP6 SC = 0; if (AR != 0) { #if ITS if ((FLAGS & USER) && QITS) { jpc = PC; } #endif PC = AB; f_pc_inh = 1; SC = nlzero(AR); } set_reg(AC + 1, SC); #endif break; case 0244: /* ASHC */ SC = ((AB & RSIGN) ? (0377 ^ AB) + 1 : AB) & 0377; if (SC == 0) break; if (SC > 70) SC = 70; AD = (AR & SMASK) ? FMASK : 0; AR &= CMASK; MQ &= CMASK; if (AB & RSIGN) { if (SC >= 35) { MQ = ((AR >> (SC - 35)) | (AD << (70 - SC))) & FMASK; AR = AD; } else { MQ = (AD & SMASK) | (MQ >> SC) | ((AR << (35 - SC)) & CMASK); AR = ((AD & SMASK) | ((AR >> SC) | (AD << (35 - SC)))) & FMASK; } } else { if (SC >= 35) { #if !PDP6 if (((AD << SC) & ~CMASK) != ((AR << SC) & ~CMASK)) { FLAGS |= OVR|TRP1; check_apr_irq(); } #endif AR = (AD & SMASK) | ((MQ << (SC - 35)) & CMASK); MQ = (AD & SMASK); } else { if ((((AD & CMASK) << SC) & ~CMASK) != ((AR << SC) & ~CMASK)) { FLAGS |= OVR|TRP1; check_apr_irq(); } AR = (AD & SMASK) | ((AR << SC) & CMASK) | (MQ >> (35 - SC)); MQ = (AD & SMASK) | ((MQ << SC) & CMASK); } } break; case 0245: /* ROTC */ SC = (AB & RSIGN) ? ((AB & 0377) ? (((0377 ^ AB) + 1) & 0377) : 0400) : (AB & 0377); if (SC == 0) break; SC = SC % 72; if (AB & RSIGN) SC = 72 - SC; if (SC >= 36) { AD = MQ; MQ = AR; AR = AD; SC -= 36; } AD = ((AR << SC) | (MQ >> (36 - SC))) & FMASK; MQ = ((MQ << SC) | (AR >> (36 - SC))) & FMASK; AR = AD; break; case 0246: /* LSHC */ SC = ((AB & RSIGN) ? (0377 ^ AB) + 1 : AB) & 0377; if (SC == 0) break; if (SC > 71) { AR = 0; MQ = 0; } else { if (SC > 36) { if (AB & RSIGN) { MQ = AR; AR = 0; } else { AR = MQ; MQ = 0; } SC -= 36; } if (AB & RSIGN) { MQ = ((MQ >> SC) | (AR << (36 - SC))) & FMASK; AR = AR >> SC; } else { AR = ((AR << SC) | (MQ >> (36 - SC))) & FMASK; MQ = (MQ << SC) & FMASK; } } break; /* Branch */ case 0250: /* EXCH */ MB = AR; if (Mem_write(0, 0)) { goto last; } set_reg(AC, BR); break; case 0251: /* BLT */ BR = AB; do { AIO_CHECK_EVENT; /* queue async events */ if (sim_interval <= 0) { sim_process_event(); } /* Allow for interrupt */ if (pi_pending) { pi_rq = check_irq_level(); if (pi_rq) { f_pc_inh = 1; f_load_pc = 0; f_inst_fetch = 0; set_reg(AC, AR); break; } } AB = (AR >> 18) & RMASK; if (Mem_read(0, 0, 0)) { #if ITS /* On ITS if access error, allow for skip */ if (QITS && (xct_flag & 04) != 0) f_pc_inh =0; else #endif #if PDP6 AR = AOB(AR) & FMASK; #endif f_pc_inh = 1; #if KA & ITS if (QITS) set_reg(AC, AR); #else set_reg(AC, AR); #endif goto last; } AB = (AR & RMASK); if (Mem_write(0, 0)) { #if ITS /* On ITS if access error, allow for skip */ if (QITS && (xct_flag & 04) != 0) f_pc_inh =0; else #endif #if PDP6 AR = AOB(AR) & FMASK; #endif f_pc_inh = 1; #if KA & ITS if (QITS) set_reg(AC, AR); #else set_reg(AC, AR); #endif goto last; } AD = (AR & RMASK) + CM(BR) + 1; AR = AOB(AR); } while ((AD & C1) == 0); break; case 0252: /* AOBJP */ AR = AOB(AR); if ((AR & SMASK) == 0) { #if ITS if ((FLAGS & USER) && QITS) { jpc = PC; } #endif PC_CHANGE PC = AB; f_pc_inh = 1; } break; case 0253: /* AOBJN */ AR = AOB(AR); if ((AR & SMASK) != 0) { #if ITS if ((FLAGS & USER) && QITS) { jpc = PC; } #endif PC_CHANGE PC = AB; f_pc_inh = 1; } break; case 0254: /* JRST */ /* AR Frm PC */ if (uuo_cycle | pi_cycle) { FLAGS &= ~USER; /* Clear USER */ #if ITS if (QITS && one_p_arm) { FLAGS |= ONEP; one_p_arm = 0; } #endif } /* JEN */ if (AC & 010) { /* Restore interrupt level. */ #if KI | KL if ((FLAGS & (USER|USERIO)) == USER || (FLAGS & (USER|PUBLIC)) == PUBLIC) { #else if ((FLAGS & (USER|USERIO)) == USER) { #endif goto muuo; } else { pi_restore = 1; } } /* HALT */ if (AC & 04) { #if KI | KL if ((FLAGS & (USER|USERIO)) == USER || (FLAGS & (USER|PUBLIC)) == PUBLIC) { #else if ((FLAGS & (USER|USERIO)) == USER) { #endif goto muuo; } else { reason = STOP_HALT; } } #if ITS if ((FLAGS & USER) && QITS) { jpc = PC; } #endif PC = AR & RMASK; PC_CHANGE /* JRSTF */ if (AC & 02) { FLAGS &= ~(OVR|NODIV|FLTUND|BYTI|FLTOVR|CRY1|CRY0|TRP1|TRP2|PCHNG); AR >>= 23; /* Move into position */ /* If executive mode, copy USER and UIO */ if ((FLAGS & (PUBLIC|USER)) == 0) FLAGS |= AR & (USER|USERIO|PUBLIC); /* Can always clear UIO */ if ((AR & USERIO) == 0) { FLAGS &= ~USERIO; } #if PDP6 user_io = (FLAGS & USERIO) != 0; #endif FLAGS |= AR & (OVR|NODIV|FLTUND|BYTI|FLTOVR|CRY1|CRY0|\ TRP1|TRP2|PUBLIC|PCHNG); #if ITS if (QITS) FLAGS |= AR & (PURE|ONEP); #endif #if KI FLAGS &= ~PRV_PUB; if ((FLAGS & USER) == 0) FLAGS |= (AR & OVR) ? PRV_PUB : 0; #endif check_apr_irq(); } if (AC & 01) { /* Enter User Mode */ #if KI | KL FLAGS &= ~(PUBLIC|PRV_PUB); #else FLAGS |= USER; #endif } f_pc_inh = 1; break; case 0255: /* JFCL */ if ((FLAGS >> 9) & AC) { #if ITS if ((FLAGS & USER) && QITS) { jpc = PC; } #endif PC = AR & RMASK; f_pc_inh = 1; } FLAGS &= 037777 ^ (AC << 9); break; case 0256: /* XCT */ f_load_pc = 0; f_pc_inh = 1; xct_flag = 0; #if BBN if (QBBN && (FLAGS & USER) == 0) xct_flag = AC; #endif #if KI | KL if ((FLAGS & USER) == 0) xct_flag = AC; #endif #if WAITS if (QWAITS && (FLAGS & USER) == 0) xct_flag = AC; #endif #if ITS if (QITS && one_p_arm) { FLAGS |= ONEP; one_p_arm = 0; } #endif break; case 0257: /* MAP */ #if KI | KL f = AB >> 9; /* Check if Paging Enabled */ if (!page_enable || AB < 020) { AR = 0020000LL + f; /* direct map */ set_reg(AC, AR); break; } flag1 = (FLAGS & USER) != 0; /* Figure out if this is a user space access */ if (xct_flag != 0 && !flag1) { if ((xct_flag & 2) != 0) { flag1 = (FLAGS & USERIO) != 0; } } flag3 = 0; /* If user, check if small user enabled */ if (flag1) { if (small_user && (f & 0340) != 0) { AR = 0420000LL; /* Outside small user space registers */ set_reg(AC, AR); break; } } else { /* Handle system mapping */ /* Pages 340-377 via UBR */ if ((f & 0740) == 0340) { f += 01000 - 0340; flag3 = 2; /* Pages 400-777 via EBR */ } else if (f & 0400) { flag3 = 1; /* Pages 000-037 direct map */ } else { AR = 0020000LL + f; /* direct map */ set_reg(AC, AR); break; } } /* Map the page */ if (flag3&1) { AR = e_tlb[f]; if (AR == 0) { AR = M[eb_ptr + (f >> 1)]; e_tlb[f & 0776] = RMASK & (AR >> 18); e_tlb[f | 1] = RMASK & AR; AR = e_tlb[f]; if (AR == 0) { AR = 0437777; set_reg(AC, AR); break; } pag_reload = ((pag_reload + 1) & 037) | 040; } last_page = ((f ^ 0777) << 1) | 1; } else { AR = u_tlb[f]; if (AR == 0) { AR = M[ub_ptr + (f >> 1)]; u_tlb[f & 01776] = RMASK & (AR >> 18); u_tlb[f | 1] = RMASK & AR; AR = u_tlb[f]; if (AR == 0) { AR = 0437777; set_reg(AC, AR); break; } pag_reload = ((pag_reload + 1) & 037) | 040; } if (flag3 & 2) last_page = (((f-0440) ^ 0777) << 1) | 1; else last_page = ((f ^ 0777) << 1); } if ((AR & 0400000LL) == 0) AR &= 0437777LL; /* Return valid entry for page */ AR ^= 0400000LL; /* Flip access status. */ set_reg(AC, AR); #endif break; /* Stack, JUMP */ case 0260: /* PUSHJ */ /* AR Frm PC */ MB = (((uint64)(FLAGS) << 23) & LMASK) | ((PC + !pi_cycle) & RMASK); #if KI if ((FLAGS & USER) == 0) { MB &= ~SMASK; MB |= (FLAGS & PRV_PUB) ? SMASK : 0; } #endif BR = AB; AR = AOB(AR); AB = AR & RMASK; if (Mem_write(uuo_cycle | pi_cycle, 0)) goto last; FLAGS &= ~ (BYTI|ADRFLT|TRP1|TRP2); if (AR & C1) { #if KI | KL if (!pi_cycle) FLAGS |= TRP2; #else push_ovf = 1; check_apr_irq(); #endif } #if !PDP6 if (uuo_cycle | pi_cycle) { FLAGS &= ~(USER|PUBLIC); /* Clear USER */ #if ITS if (QITS && one_p_arm) { FLAGS |= ONEP; one_p_arm = 0; } #endif } #endif #if ITS if ((FLAGS & USER) && QITS) { jpc = PC; } #endif PC = BR & RMASK; PC_CHANGE f_pc_inh = 1; break; case 0261: /* PUSH */ AR = AOB(AR); AB = AR & RMASK; if (AR & C1) { #if KI | KL if (!pi_cycle) FLAGS |= TRP2; #else push_ovf = 1; check_apr_irq(); #endif } MB = BR; if (Mem_write(0, 0)) goto last; break; case 0262: /* POP */ AB = AR & RMASK; if (Mem_read(0, 0, 0)) goto last; AR = SOB(AR); AB = BR & RMASK; if (Mem_write(0, 0)) goto last; if ((AR & C1) == 0) { #if KI | KL if (!pi_cycle) FLAGS |= TRP2; #else push_ovf = 1; check_apr_irq(); #endif } break; case 0263: /* POPJ */ AB = AR & RMASK; if (Mem_read(0, 0, 0)) goto last; #if ITS if ((FLAGS & USER) && QITS) { jpc = PC; } #endif PC_CHANGE PC = MB & RMASK; AR = SOB(AR); if ((AR & C1) == 0) { #if KI | KL if (!pi_cycle) FLAGS |= TRP2; #else push_ovf = 1; check_apr_irq(); #endif } f_pc_inh = 1; break; case 0264: /* JSR */ /* AR Frm PC */ MB = (((uint64)(FLAGS) << 23) & LMASK) | ((PC + !pi_cycle) & RMASK); #if KI if ((FLAGS & USER) == 0) { MB &= ~SMASK; MB |= (FLAGS & PRV_PUB) ? SMASK : 0; } #endif #if PDP6 if (ill_op | uuo_cycle | pi_cycle | ex_uuo_sync) { ill_op = 0; ex_uuo_sync = 0; #else if (uuo_cycle | pi_cycle) { #endif FLAGS &= ~(USER|PUBLIC); /* Clear USER */ } if (Mem_write(0, 0)) goto last; FLAGS &= ~ (BYTI|ADRFLT|TRP1|TRP2); #if ITS if ((FLAGS & USER) && QITS) { jpc = PC; } #endif PC_CHANGE PC = (AR + 1) & RMASK; f_pc_inh = 1; break; case 0265: /* JSP */ /* AR Frm PC */ AD = (((uint64)(FLAGS) << 23) & LMASK) | ((PC + !pi_cycle) & RMASK); FLAGS &= ~ (BYTI|ADRFLT|TRP1|TRP2); #if KI if ((FLAGS & USER) == 0) { AD &= ~SMASK; AD |= (FLAGS & PRV_PUB) ? SMASK : 0; } #endif #if !PDP6 if (uuo_cycle | pi_cycle) { FLAGS &= ~(USER|PUBLIC); /* Clear USER */ } #endif #if ITS if ((FLAGS & USER) && QITS) { jpc = PC; } #endif PC_CHANGE PC = AR & RMASK; AR = AD; f_pc_inh = 1; break; case 0266: /* JSA */ /* AR Frm PC */ set_reg(AC, (AR << 18) | ((PC + 1) & RMASK)); #if !PDP6 if (uuo_cycle | pi_cycle) { FLAGS &= ~(USER|PUBLIC); /* Clear USER */ } #endif #if ITS if ((FLAGS & USER) && QITS) { jpc = PC; } #endif PC_CHANGE PC = AR & RMASK; AR = BR; break; case 0267: /* JRA */ AD = AB; AB = (get_reg(AC) >> 18) & RMASK; if (Mem_read(uuo_cycle | pi_cycle, 0, 0)) goto last; set_reg(AC, MB); #if ITS if ((FLAGS & USER) && QITS) { jpc = PC; } #endif PC_CHANGE PC = AD & RMASK; f_pc_inh = 1; break; case 0270: /* ADD */ case 0271: /* ADDI */ case 0272: /* ADDM */ case 0273: /* ADDB */ flag1 = flag3 = 0; if (((AR & CMASK) + (BR & CMASK)) & SMASK) { FLAGS |= CRY1; flag1 = 1; } AR = AR + BR; if (AR & C1) { if (!pi_cycle) FLAGS |= CRY0; flag3 = 1; } if (flag1 != flag3) { if (!pi_cycle) FLAGS |= OVR|TRP1; check_apr_irq(); } break; case 0274: /* SUB */ case 0275: /* SUBI */ case 0276: /* SUBM */ case 0277: /* SUBB */ flag1 = flag3 = 0; if ((((AR & CMASK) ^ CMASK) + (BR & CMASK) + 1) & SMASK) { FLAGS |= CRY1; flag1 = 1; } AR = CM(AR) + BR + 1; if (AR & C1) { if (!pi_cycle) FLAGS |= CRY0; flag3 = 1; } if (flag1 != flag3) { if (!pi_cycle) FLAGS |= OVR|TRP1; check_apr_irq(); } break; case 0300: /* CAI */ case 0301: /* CAIL */ case 0302: /* CAIE */ case 0303: /* CAILE */ case 0304: /* CAIA */ case 0305: /* CAIGE */ case 0306: /* CAIN */ case 0307: /* CAIG */ case 0310: /* CAM */ case 0311: /* CAML */ case 0312: /* CAME */ case 0313: /* CAMLE */ case 0314: /* CAMA */ case 0315: /* CAMGE */ case 0316: /* CAMN */ case 0317: /* CAMG */ f = 0; AD = (CM(AR) + BR) + 1; #if PDP6 if (AD & C1) FLAGS |= CRY0; if ((AR & SMASK) != (BR & SMASK)) FLAGS |= CRY1; #endif if (((BR & SMASK) != 0) && (AR & SMASK) == 0) f = 1; if (((BR & SMASK) == (AR & SMASK)) && (AD & SMASK) != 0) f = 1; goto skip_op; case 0320: /* JUMP */ case 0321: /* JUMPL */ case 0322: /* JUMPE */ case 0323: /* JUMPLE */ case 0324: /* JUMPA */ case 0325: /* JUMPGE */ case 0326: /* JUMPN */ case 0327: /* JUMPG */ AD = AR; f = ((AD & SMASK) != 0); goto jump_op; /* JUMP, SKIP */ case 0330: /* SKIP */ case 0331: /* SKIPL */ case 0332: /* SKIPE */ case 0333: /* SKIPLE */ case 0334: /* SKIPA */ case 0335: /* SKIPGE */ case 0336: /* SKIPN */ case 0337: /* SKIPG */ AD = AR; f = ((AD & SMASK) != 0); goto skip_op; /* JUMP, SKIP */ case 0340: /* AOJ */ case 0341: /* AOJL */ case 0342: /* AOJE */ case 0343: /* AOJLE */ case 0344: /* AOJA */ case 0345: /* AOJGE */ case 0346: /* AOJN */ case 0347: /* AOJG */ case 0360: /* SOJ */ case 0361: /* SOJL */ case 0362: /* SOJE */ case 0363: /* SOJLE */ case 0364: /* SOJA */ case 0365: /* SOJGE */ case 0366: /* SOJN */ case 0367: /* SOJG */ flag1 = flag3 = 0; AD = (IR & 020) ? FMASK : 1; if (((AR & CMASK) + (AD & CMASK)) & SMASK) { if (!pi_cycle) FLAGS |= CRY1; flag1 = 1; } AD = AR + AD; #if PDP6 if (AD == FMASK && !pi_cycle) FLAGS |= CRY0; if ((AD & CMASK) == CMASK && !pi_cycle) FLAGS |= CRY1; #endif if (AD & C1) { if (!pi_cycle) FLAGS |= CRY0; flag3 = 1; } if (flag1 != flag3 && !pi_cycle) { FLAGS |= OVR|TRP1; check_apr_irq(); } f = ((AD & SMASK) != 0); jump_op: AD &= FMASK; AR = AD; f |= ((AD == 0) << 1); f = f & IR; if (((IR & 04) != 0) == (f == 0)) { #if ITS if ((FLAGS & USER) && QITS) { jpc = PC; } #endif PC_CHANGE PC = AB; f_pc_inh = 1; } break; case 0350: /* AOS */ case 0351: /* AOSL */ case 0352: /* AOSE */ case 0353: /* AOSLE */ case 0354: /* AOSA */ case 0355: /* AOSGE */ case 0356: /* AOSN */ case 0357: /* AOSG */ case 0370: /* SOS */ case 0371: /* SOSL */ case 0372: /* SOSE */ case 0373: /* SOSLE */ case 0374: /* SOSA */ case 0375: /* SOSGE */ case 0376: /* SOSN */ case 0377: /* SOSG */ flag1 = flag3 = 0; AD = (IR & 020) ? FMASK : 1; if (((AR & CMASK) + (AD & CMASK)) & SMASK) { if (!pi_cycle) FLAGS |= CRY1; flag1 = 1; } AD = AR + AD; if (AD & C1) { if (!pi_cycle) FLAGS |= CRY0; flag3 = 1; } if (flag1 != flag3 && !pi_cycle) { FLAGS |= OVR|TRP1; check_apr_irq(); } f = ((AD & SMASK) != 0); skip_op: AD &= FMASK; AR = AD; f |= ((AD == 0) << 1); f = f & IR; if (((IR & 04) != 0) == (f == 0)) { #if PDP6 if (pi_cycle) f_pc_inh = 1; #endif PC_CHANGE PC = (PC + 1) & RMASK; #if KI | KL } else if (pi_cycle) { pi_ov = pi_hold = 1; #endif } break; /* Bool */ case 0400: /* SETZ */ case 0401: /* SETZI */ case 0402: /* SETZM */ case 0403: /* SETZB */ AR = 0; /* SETZ */ break; case 0404: /* AND */ case 0405: /* ANDI */ case 0406: /* ANDM */ case 0407: /* ANDB */ AR = AR & BR; /* AND */ break; case 0410: /* ANDCA */ case 0411: /* ANDCAI */ case 0412: /* ANDCAM */ case 0413: /* ANDCAB */ AR = AR & CM(BR); /* ANDCA */ break; case 0414: /* SETM */ case 0415: /* SETMI */ case 0416: /* SETMM */ case 0417: /* SETMB */ /* SETM */ break; case 0420: /* ANDCM */ case 0421: /* ANDCMI */ case 0422: /* ANDCMM */ case 0423: /* ANDCMB */ AR = CM(AR) & BR; /* ANDCM */ break; case 0424: /* SETA */ case 0425: /* SETAI */ case 0426: /* SETAM */ case 0427: /* SETAB */ AR = BR; /* SETA */ break; case 0430: /* XOR */ case 0431: /* XORI */ case 0432: /* XORM */ case 0433: /* XORB */ AR = AR ^ BR; /* XOR */ break; case 0434: /* IOR */ case 0435: /* IORI */ case 0436: /* IORM */ case 0437: /* IORB */ AR = CM(CM(AR) & CM(BR)); /* IOR */ break; case 0440: /* ANDCB */ case 0441: /* ANDCBI */ case 0442: /* ANDCBM */ case 0443: /* ANDCBB */ AR = CM(AR) & CM(BR); /* ANDCB */ break; case 0444: /* EQV */ case 0445: /* EQVI */ case 0446: /* EQVM */ case 0447: /* EQVB */ AR = CM(AR ^ BR); /* EQV */ break; case 0450: /* SETCA */ case 0451: /* SETCAI */ case 0452: /* SETCAM */ case 0453: /* SETCAB */ AR = CM(BR); /* SETCA */ break; case 0454: /* ORCA */ case 0455: /* ORCAI */ case 0456: /* ORCAM */ case 0457: /* ORCAB */ AR = CM(CM(AR) & BR); /* ORCA */ break; case 0460: /* SETCM */ case 0461: /* SETCMI */ case 0462: /* SETCMM */ case 0463: /* SETCMB */ AR = CM(AR); /* SETCM */ break; case 0464: /* ORCM */ case 0465: /* ORCMI */ case 0466: /* ORCMM */ case 0467: /* ORCMB */ AR = CM(AR & CM(BR)); /* ORCM */ break; case 0470: /* ORCB */ case 0471: /* ORCBI */ case 0472: /* ORCBM */ case 0473: /* ORCBB */ AR = CM(AR & BR); /* ORCB */ break; case 0474: /* SETO */ case 0475: /* SETOI */ case 0476: /* SETOM */ case 0477: /* SETOB */ AR = FMASK; /* SETO */ break; case 0547: /* HLRS */ BR = SWAP_AR; /* Fall Through */ case 0500: /* HLL */ case 0501: /* HLLI */ case 0502: /* HLLM */ case 0504: /* HRL */ case 0505: /* HRLI */ case 0506: /* HRLM */ AR = (AR & LMASK) | (BR & RMASK); break; case 0510: /* HLLZ */ case 0511: /* HLLZI */ case 0512: /* HLLZM */ case 0513: /* HLLZS */ case 0514: /* HRLZ */ case 0515: /* HRLZI */ case 0516: /* HRLZM */ case 0517: /* HRLZS */ AR = (AR & LMASK); break; case 0520: /* HLLO */ case 0521: /* HLLOI */ case 0522: /* HLLOM */ case 0523: /* HLLOS */ case 0524: /* HRLO */ case 0525: /* HRLOI */ case 0526: /* HRLOM */ case 0527: /* HRLOS */ AR = (AR & LMASK) | RMASK; break; case 0530: /* HLLE */ case 0531: /* HLLEI */ case 0532: /* HLLEM */ case 0533: /* HLLES */ case 0534: /* HRLE */ case 0535: /* HRLEI */ case 0536: /* HRLEM */ case 0537: /* HRLES */ AD = ((AR & SMASK) != 0) ? RMASK : 0; AR = (AR & LMASK) | AD; break; case 0507: /* HRLS */ BR = SWAP_AR; /* Fall Through */ case 0540: /* HRR */ case 0541: /* HRRI */ case 0542: /* HRRM */ case 0544: /* HLR */ case 0545: /* HLRI */ case 0546: /* HLRM */ AR = (BR & LMASK) | (AR & RMASK); break; case 0550: /* HRRZ */ case 0551: /* HRRZI */ case 0552: /* HRRZM */ case 0553: /* HRRZS */ case 0554: /* HLRZ */ case 0555: /* HLRZI */ case 0556: /* HLRZM */ case 0557: /* HLRZS */ AR = (AR & RMASK); break; case 0560: /* HRRO */ case 0561: /* HRROI */ case 0562: /* HRROM */ case 0563: /* HRROS */ case 0564: /* HLRO */ case 0565: /* HLROI */ case 0566: /* HLROM */ case 0567: /* HLROS */ AR = LMASK | (AR & RMASK); break; case 0570: /* HRRE */ case 0571: /* HRREI */ case 0572: /* HRREM */ case 0573: /* HRRES */ case 0574: /* HLRE */ case 0575: /* HLREI */ case 0576: /* HLREM */ case 0577: /* HLRES */ AD = ((AR & RSIGN) != 0) ? LMASK: 0; AR = AD | (AR & RMASK); break; case 0600: /* TRN */ case 0601: /* TLN */ case 0602: /* TRNE */ case 0603: /* TLNE */ case 0604: /* TRNA */ case 0605: /* TLNA */ case 0606: /* TRNN */ case 0607: /* TLNN */ case 0610: /* TDN */ case 0611: /* TSN */ case 0612: /* TDNE */ case 0613: /* TSNE */ case 0614: /* TDNA */ case 0615: /* TSNA */ case 0616: /* TDNN */ case 0617: /* TSNN */ MQ = AR; /* N */ goto test_op; case 0620: /* TRZ */ case 0621: /* TLZ */ case 0622: /* TRZE */ case 0623: /* TLZE */ case 0624: /* TRZA */ case 0625: /* TLZA */ case 0626: /* TRZN */ case 0627: /* TLZN */ case 0630: /* TDZ */ case 0631: /* TSZ */ case 0632: /* TDZE */ case 0633: /* TSZE */ case 0634: /* TDZA */ case 0635: /* TSZA */ case 0636: /* TDZN */ case 0637: /* TSZN */ MQ = CM(AR) & BR; /* Z */ goto test_op; case 0640: /* TRC */ case 0641: /* TLC */ case 0642: /* TRCE */ case 0643: /* TLCE */ case 0644: /* TRCA */ case 0645: /* TLCA */ case 0646: /* TRCN */ case 0647: /* TLCN */ case 0650: /* TDC */ case 0651: /* TSC */ case 0652: /* TDCE */ case 0653: /* TSCE */ case 0654: /* TDCA */ case 0655: /* TSCA */ case 0656: /* TDCN */ case 0657: /* TSCN */ MQ = AR ^ BR; /* C */ goto test_op; case 0660: /* TRO */ case 0661: /* TLO */ case 0662: /* TROE */ case 0663: /* TLOE */ case 0664: /* TROA */ case 0665: /* TLOA */ case 0666: /* TRON */ case 0667: /* TLON */ case 0670: /* TDO */ case 0671: /* TSO */ case 0672: /* TDOE */ case 0673: /* TSOE */ case 0674: /* TDOA */ case 0675: /* TSOA */ case 0676: /* TDON */ case 0677: /* TSON */ MQ = AR | BR; /* O */ test_op: AR &= BR; f = ((AR == 0) & ((IR >> 1) & 1)) ^ ((IR >> 2) & 1); if (f) { PC_CHANGE PC = (PC + 1) & RMASK; } AR = MQ; break; /* IOT */ case 0700: case 0701: case 0702: case 0703: case 0704: case 0705: case 0706: case 0707: case 0710: case 0711: case 0712: case 0713: case 0714: case 0715: case 0716: case 0717: case 0720: case 0721: case 0722: case 0723: case 0724: case 0725: case 0726: case 0727: case 0730: case 0731: case 0732: case 0733: case 0734: case 0735: case 0736: case 0737: case 0740: case 0741: case 0742: case 0743: case 0744: case 0745: case 0746: case 0747: case 0750: case 0751: case 0752: case 0753: case 0754: case 0755: case 0756: case 0757: case 0760: case 0761: case 0762: case 0763: case 0764: case 0765: case 0766: case 0767: case 0770: case 0771: case 0772: case 0773: case 0774: case 0775: case 0776: case 0777: #if KI if (!pi_cycle && ((((FLAGS & (USER|USERIO)) == USER) && (IR & 040) == 0) || ((FLAGS & (USER|PUBLIC)) == PUBLIC))) { #elif PDP6 if ((FLAGS & USER) != 0 && user_io == 0 && !pi_cycle) { #else if ((FLAGS & (USER|USERIO)) == USER && !pi_cycle) { #endif /* User and not User I/O */ goto muuo; } else { int d = ((IR & 077) << 1) | ((AC & 010) != 0); fetch_opr: switch(AC & 07) { case 0: /* 00 BLKI */ case 2: /* 10 BLKO */ if (Mem_read(pi_cycle, 0, 0)) goto last; AR = MB; if (hst_lnt) { hst[hst_p].mb = AR; } AC |= 1; /* Make into DATAI/DATAO */ AR = AOB(AR); if (AR & C1) { pi_ov = 1; } else if (!pi_cycle) PC = (PC + 1) & RMASK; AR &= FMASK; MB = AR; if (Mem_write(pi_cycle, 0)) goto last; AB = AR & RMASK; goto fetch_opr; case 1: /* 04 DATAI */ dev_tab[d](DATAI|(d<<2), &AR); MB = AR; if (Mem_write(pi_cycle, 0)) goto last; break; case 3: /* 14 DATAO */ if (Mem_read(pi_cycle, 0, 0)) goto last; AR = MB; dev_tab[d](DATAO|(d<<2), &AR); break; case 4: /* 20 CONO */ dev_tab[d](CONO|(d<<2), &AR); break; case 5: /* 24 CONI */ dev_tab[d](CONI|(d<<2), &AR); MB = AR; if (Mem_write(pi_cycle, 0)) goto last; break; case 6: /* 30 CONSZ */ dev_tab[d](CONI|(d<<2), &AR); AR &= AB; if (AR == 0) PC = (PC + 1) & RMASK; break; case 7: /* 34 CONSO */ dev_tab[d](CONI|(d<<2), &AR); AR &= AB; if (AR != 0) PC = (PC + 1) & RMASK; break; } } break; } AR &= FMASK; if (!sac_inh && (i_flags & (SCE|FCEPSE))) { MB = AR; if (Mem_write(0, 0)) { goto last; } } if (!sac_inh && ((i_flags & SAC) || ((i_flags & SACZ) && AC != 0))) set_reg(AC, AR); /* blank, I, B */ if (!sac_inh && (i_flags & SAC2)) { MQ &= FMASK; set_reg(AC+1, MQ); } if (hst_lnt) { hst[hst_p].fmb = AR; } last: #if BBN if (QBBN && page_fault) { page_fault = 0; AB = 070 + maoff; f_pc_inh = 1; pi_cycle = 1; goto fetch; } #endif #if KI | KL /* Handle page fault and traps */ if (page_enable && page_fault) { page_fault = 0; AB = ub_ptr + ((FLAGS & USER) ? 0427 : 0426); MB = fault_data; Mem_write_nopage(); FLAGS |= trap_flag & (TRP1|TRP2); trap_flag = 1; AB = ((FLAGS & USER) ? ub_ptr : eb_ptr) | 0420; f_pc_inh = 1; pi_cycle = 1; Mem_read_nopage(); goto no_fetch; } #endif #if KI | KL if (!f_pc_inh && (trap_flag == 0) && !pi_cycle) { #else if (!f_pc_inh && !pi_cycle) { #endif PC = (PC + 1) & RMASK; } #if ITS if (QITS && one_p_arm && (FLAGS & BYTI) == 0) { fault_data |= 02000; mem_prot = 1; one_p_arm = 0; } #endif /* Dismiss an interrupt */ if (pi_cycle) { #if KI | KL if (page_enable && page_fault) { page_fault = 0; inout_fail = 1; } #endif if ((IR & 0700) == 0700 && ((AC & 04) == 0)) { pi_hold = pi_ov; if ((!pi_hold) & f_inst_fetch) { pi_cycle = 0; } else { AB = 040 | (pi_enc << 1) | pi_ov | maoff; #if KI | KL AB |= eb_ptr; Mem_read_nopage(); #else Mem_read(1, 0, 1); #endif goto no_fetch; } } else if (pi_hold && !f_pc_inh) { if ((IR & 0700) == 0700) { (void)check_irq_level(); } AB = 040 | (pi_enc << 1) | pi_ov | maoff; pi_ov = 0; pi_hold = 0; #if KI | KL AB |= eb_ptr; Mem_read_nopage(); #else Mem_read(1, 0, 1); #endif goto no_fetch; } else { #if KI | KL if (f_pc_inh && trap_flag == 0) set_pi_hold(); /* Hold off all lower interrupts */ #else if (!QITS || f_pc_inh) set_pi_hold(); /* Hold off all lower interrupts */ #endif #if PDP6 if ((IR & 0700) == 0700) pi_cycle = 1; else #endif pi_cycle = 0; f_inst_fetch = 1; f_load_pc = 1; } } if (pi_restore) { restore_pi_hold(); pi_restore = 0; } sim_interval--; if (!pi_cycle && instr_count != 0 && --instr_count == 0) { #if ITS if (QITS) load_quantum(); #endif return SCPE_STEP; } } /* Should never get here */ #if ITS if (QITS) load_quantum(); #endif return reason; } t_stat rtc_srv(UNIT * uptr) { int32 t; t = sim_rtcn_calb (rtc_tps, TMR_RTC); sim_activate_after(uptr, 1000000/rtc_tps); tmxr_poll = t/2; clk_flg = 1; if (clk_en) { sim_debug(DEBUG_CONO, &cpu_dev, "CONO timmer\n"); set_interrupt(4, clk_irq); } return SCPE_OK; } #if ITS t_stat qua_srv(UNIT * uptr) { if ((fault_data & 1) == 0 && pi_enable && !pi_pending && (FLAGS & USER) != 0) { mem_prot = 1; } qua_time = BIT17; return SCPE_OK; } #endif /* * This sequence of instructions is a mix that hopefully * represents a resonable instruction set that is a close * estimate to the normal calibrated result. */ static const char *pdp10_clock_precalibrate_commands[] = { "-m 100 ADDM 0,110", "-m 101 ADDI 0,1", "-m 102 JRST 100", "PC 100", NULL}; /* Reset routine */ t_stat cpu_reset (DEVICE *dptr) { int i; BYF5 = uuo_cycle = 0; #if KA | PDP6 Pl = Ph = 01777; Rl = Rh = Pflag = 0; push_ovf = mem_prot = 0; #if PDP6 user_io = 0; #endif #if ITS | BBN page_enable = 0; #endif #endif nxm_flag = clk_flg = 0; PIR = PIH = PIE = pi_enable = parity_irq = 0; pi_pending = pi_enc = apr_irq = 0; ov_irq =fov_irq =clk_en =clk_irq = 0; pi_restore = pi_hold = 0; #if KI | KL ub_ptr = eb_ptr = 0; pag_reload = ac_stack = 0; fm_sel = small_user = user_addr_cmp = page_enable = 0; #endif #if BBN exec_map = 0; #endif for(i=0; i < 128; dev_irq[i++] = 0); sim_brk_types = SWMASK('E') | SWMASK('W') | SWMASK('R'); sim_brk_dflt = SWMASK ('E'); sim_clock_precalibrate_commands = pdp10_clock_precalibrate_commands; sim_rtcn_init_unit (&cpu_unit[0], cpu_unit[0].wait, TMR_RTC); sim_activate(&cpu_unit[0], 10000); #if MPX_DEV mpx_enable = 0; #endif #ifdef PANDA_LIGHTS ka10_lights_init (); #endif return SCPE_OK; } /* Memory examine */ t_stat cpu_ex (t_value *vptr, t_addr ea, UNIT *uptr, int32 sw) { if (vptr == NULL) return SCPE_ARG; if (ea < 020) *vptr = FM[ea] & FMASK; else { if (sw & SWMASK ('V')) { if (ea >= MAXMEMSIZE) return SCPE_REL; } if (ea >= MEMSIZE) return SCPE_NXM; *vptr = M[ea] & FMASK; } return SCPE_OK; } /* Memory deposit */ t_stat cpu_dep (t_value val, t_addr ea, UNIT *uptr, int32 sw) { if (ea < 020) FM[ea] = val & FMASK; else { if (sw & SWMASK ('V')) { if (ea >= MAXMEMSIZE) return SCPE_REL; } if (ea >= MEMSIZE) return SCPE_NXM; M[ea] = val & FMASK; } return SCPE_OK; } /* Memory size change */ t_stat cpu_set_size (UNIT *uptr, int32 sval, CONST char *cptr, void *desc) { int32 i; int32 val = (int32)sval; if ((val <= 0) || ((val * 16 * 1024) > MAXMEMSIZE)) return SCPE_ARG; val = val * 16 * 1024; if (val < (int32)MEMSIZE) { uint64 mc = 0; for (i = val-1; i < (int32)MEMSIZE; i++) mc = mc | M[i]; if ((mc != 0) && (!get_yn ("Really truncate memory [N]?", FALSE))) return SCPE_OK; } for (i = (int32)MEMSIZE; i < val; i++) M[i] = 0; cpu_unit[0].capac = (uint32)val; return SCPE_OK; } /* Build device dispatch table */ t_bool build_dev_tab (void) { DEVICE *dptr; DIB *dibp; uint32 i, j, d; /* Set trap offset based on MAOFF flag */ maoff = (cpu_unit[0].flags & UNIT_MAOFF)? 0100 : 0; #if KA /* Set up memory access routines based on current CPU type. */ /* Default to KA */ Mem_read = &Mem_read_ka; Mem_write = &Mem_write_ka; #if ITS if (QITS) { Mem_read = &Mem_read_its; Mem_write = &Mem_write_its; } #endif #if BBN if (QBBN) { Mem_read = &Mem_read_bbn; Mem_write = &Mem_write_bbn; } #endif #if WAITS /* Waits without BBN pager */ if (QWAITS && !QBBN) { Mem_read = &Mem_read_waits; Mem_write = &Mem_write_waits; } #endif #endif /* Clear device and interrupt table */ for (i = 0; i < 128; i++) { dev_tab[i] = &null_dev; dev_irqv[i] = NULL; } /* Set up basic devices. */ dev_tab[0] = &dev_apr; dev_tab[1] = &dev_pi; #if KI | KL dev_tab[2] = &dev_pag; #endif #if BBN if (QBBN) dev_tab[024>>2] = &dev_pag; #endif /* Assign all RH10 devices */ for (j = i = 0; (dptr = rh_devs[i]) != NULL; i++) { dibp = (DIB *) dptr->ctxt; if (dibp && !(dptr->flags & DEV_DIS)) { /* enabled? */ if (rh[j].dev_num == 0) break; d = rh[j].dev_num; dev_tab[(d >> 2)] = dibp->io; dev_irqv[(d >> 2)] = dibp->irq; rh[j].dev = dptr; j++; } } /* Make sure all are assigned */ if (j == 4 && rh_devs[i] != NULL) { sim_printf ("To many RH10 devices %s\n", sim_dname (dptr)); return TRUE; } /* Assign all remaining devices */ for (i = 0; (dptr = sim_devices[i]) != NULL; i++) { dibp = (DIB *) dptr->ctxt; if (dibp && !(dptr->flags & DEV_DIS)) { /* enabled? */ for (j = 0; j < dibp->num_devs; j++) { /* loop thru disp */ if (dibp->io) { /* any dispatch? */ d = dibp->dev_num; if (d & RH10_DEV) /* Skip RH10 devices */ continue; if (dev_tab[(d >> 2) + j] != &null_dev) { /* already filled? */ sim_printf ("%s device number conflict at %02o\n", sim_dname (dptr), d + (j << 2)); return TRUE; } dev_tab[(d >> 2) + j] = dibp->io; /* fill */ dev_irqv[(d >> 2) + j] = dibp->irq; } /* end if dsp */ } /* end for j */ } /* end if enb */ } /* end for i */ return FALSE; } #if KI | KL /* Set serial */ t_stat cpu_set_serial (UNIT *uptr, int32 val, CONST char *cptr, void *desc) { int32 lnt; t_stat r; if (cptr == NULL) { apr_serial = -1; return SCPE_OK; } lnt = (int32) get_uint (cptr, 10, 001777, &r); if ((r != SCPE_OK) || (lnt <= 0)) return SCPE_ARG; apr_serial = lnt & 01777; return SCPE_OK; } /* Show serial */ t_stat cpu_show_serial (FILE *st, UNIT *uptr, int32 val, CONST void *desc) { fprintf (st, "Serial: " ); if (apr_serial == -1) { fprintf (st, "%d (default)", DEF_SERIAL); return SCPE_OK; } fprintf (st, "%d", apr_serial); return SCPE_OK; } #endif /* Set history */ t_stat cpu_set_hist (UNIT *uptr, int32 val, CONST char *cptr, void *desc) { int32 i, lnt; t_stat r; if (cptr == NULL) { for (i = 0; i < hst_lnt; i++) hst[i].pc = 0; hst_p = 0; return SCPE_OK; } lnt = (int32) get_uint (cptr, 10, HIST_MAX, &r); if ((r != SCPE_OK) || (lnt && (lnt < HIST_MIN))) return SCPE_ARG; hst_p = 0; if (hst_lnt) { free (hst); hst_lnt = 0; hst = NULL; } if (lnt) { hst = (InstHistory *) calloc (lnt, sizeof (InstHistory)); if (hst == NULL) return SCPE_MEM; hst_lnt = lnt; } return SCPE_OK; } /* Show history */ t_stat cpu_show_hist (FILE *st, UNIT *uptr, int32 val, CONST void *desc) { int32 k, di, lnt; char *cptr = (char *) desc; t_stat r; t_value sim_eval; InstHistory *h; if (hst_lnt == 0) /* enabled? */ return SCPE_NOFNC; if (cptr) { lnt = (int32) get_uint (cptr, 10, hst_lnt, &r); if ((r != SCPE_OK) || (lnt == 0)) return SCPE_ARG; } else lnt = hst_lnt; di = hst_p - lnt; /* work forward */ if (di < 0) di = di + hst_lnt; fprintf (st, "PC AC EA AR RES FLAGS IR\n\n"); for (k = 0; k < lnt; k++) { /* print specified */ h = &hst[(++di) % hst_lnt]; /* entry pointer */ if (h->pc & HIST_PC) { /* instruction? */ fprintf (st, "%06o ", h->pc & 0777777); fprint_val (st, h->ac, 8, 36, PV_RZRO); fputs (" ", st); fprintf (st, "%06o ", h->ea); fputs (" ", st); fprint_val (st, h->mb, 8, 36, PV_RZRO); fputs (" ", st); fprint_val (st, h->fmb, 8, 36, PV_RZRO); fputs (" ", st); #if KI | KL fprintf (st, "%c%06o ", ((h->flags & (PRV_PUB << 5))? 'p':' '), h->flags & 0777777); #else fprintf (st, "%06o ", h->flags); #endif if ((h->pc & HIST_PC2) == 0) { sim_eval = h->ir; fprint_val (st, sim_eval, 8, 36, PV_RZRO); fputs (" ", st); if ((fprint_sym (st, h->pc & RMASK, &sim_eval, &cpu_unit[0], SWMASK ('M'))) > 0) { fputs ("(undefined) ", st); fprint_val (st, h->ir, 8, 36, PV_RZRO); } } fputc ('\n', st); /* end line */ } /* end else instruction */ } /* end for */ return SCPE_OK; } t_stat cpu_help(FILE *st, DEVICE *dptr, UNIT *uptr, int32 flag, const char *cptr) { fprintf(st, "%s\n\n", cpu_description(dptr)); fprintf(st, "To stop the cpu use the command:\n\n"); fprintf(st, " sim> SET CTY STOP\n\n"); fprintf(st, "This will write a 1 to location %03o, causing TOPS10 to stop\n", CTY_SWITCH); fprint_set_help(st, dptr); fprint_show_help(st, dptr); return SCPE_OK; } const char * cpu_description (DEVICE *dptr) { #if KL return "KL10A CPU"; #endif #if KI return "KI10 CPU"; #endif #if KA return "KA10 CPU"; #endif #if PDP6 return "PDP6 CPU"; #endif }