/* 3b2_rev2_stddev.h: AT&T 3B2 Rev 2 (Model 400) System Devices Implementation Copyright (c) 2017, Seth J. Morabito Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. Except as contained in this notice, the name of the author shall not be used in advertising or otherwise to promote the sale, use or other dealings in this Software without prior written authorization from the author. */ /* This file contains system-specific registers and devices for the following 3B2 devices: - timer 8253 interval timer - nvram Non-Volatile RAM - csr Control Status Registers - tod MM58174A Real-Time-Clock */ #include "3b2_defs.h" #include "3b2_stddev.h" DEBTAB sys_deb_tab[] = { { "INIT", INIT_MSG, "Init" }, { "READ", READ_MSG, "Read activity" }, { "WRITE", WRITE_MSG, "Write activity" }, { "EXECUTE", EXECUTE_MSG, "Execute activity" }, { "IRQ", IRQ_MSG, "Interrupt activity"}, { "TRACE", TRACE_DBG, "Detailed activity" }, { NULL, 0 } }; struct timer_ctr TIMERS[3]; uint32 *NVRAM = NULL; int32 tmxr_poll = 16667; /* NVRAM */ UNIT nvram_unit = { UDATA(NULL, UNIT_FIX+UNIT_BINK, NVRSIZE) }; REG nvram_reg[] = { { NULL } }; DEVICE nvram_dev = { "NVRAM", &nvram_unit, nvram_reg, NULL, 1, 16, 8, 4, 16, 32, &nvram_ex, &nvram_dep, &nvram_reset, NULL, &nvram_attach, &nvram_detach, NULL, DEV_DEBUG, 0, sys_deb_tab, NULL, NULL, &nvram_help, NULL, NULL, &nvram_description }; t_stat nvram_ex(t_value *vptr, t_addr exta, UNIT *uptr, int32 sw) { uint32 addr = (uint32) exta; if ((vptr == NULL) || (addr & 03)) { return SCPE_ARG; } if (addr >= NVRSIZE) { return SCPE_NXM; } *vptr = NVRAM[addr >> 2]; return SCPE_OK; } t_stat nvram_dep(t_value val, t_addr exta, UNIT *uptr, int32 sw) { uint32 addr = (uint32) exta; if (addr & 03) { return SCPE_ARG; } if (addr >= NVRSIZE) { return SCPE_NXM; } NVRAM[addr >> 2] = (uint32) val; return SCPE_OK; } t_stat nvram_reset(DEVICE *dptr) { if (NVRAM == NULL) { NVRAM = (uint32 *)calloc(NVRSIZE >> 2, sizeof(uint32)); memset(NVRAM, 0, sizeof(uint32) * NVRSIZE >> 2); nvram_unit.filebuf = NVRAM; } if (NVRAM == NULL) { return SCPE_MEM; } return SCPE_OK; } const char *nvram_description(DEVICE *dptr) { return "Non-volatile memory, used to store system state between boots.\n"; } t_stat nvram_help(FILE *st, DEVICE *dptr, UNIT *uptr, int32 flag, const char *cptr) { fprintf(st, "The NVRAM holds system state between boots. On initial startup,\n" "if no valid NVRAM file is attached, you will see the message:\n" "\n" " FW ERROR 1-01: NVRAM SANITY FAILURE\n" " DEFAULT VALUES ASSUMED\n" " IF REPEATED, CHECK THE BATTERY\n" "\n" "To avoid this message on subsequent boots, attach a new NVRAM file\n" "with the SIMH command:\n" "\n" " sim> ATTACH NVRAM \n"); return SCPE_OK; } t_stat nvram_attach(UNIT *uptr, CONST char *cptr) { t_stat r; /* If we've been asked to attach, make sure the ATTABLE and BUFABLE flags are set on the unit */ uptr->flags = uptr->flags | (UNIT_ATTABLE | UNIT_BUFABLE); r = attach_unit(uptr, cptr); if (r != SCPE_OK) { /* Unset the ATTABLE and BUFABLE flags if we failed. */ uptr->flags = uptr->flags & (uint32) ~(UNIT_ATTABLE | UNIT_BUFABLE); } else { uptr->hwmark = (uint32) uptr->capac; } return r; } t_stat nvram_detach(UNIT *uptr) { t_stat r; r = detach_unit(uptr); if ((uptr->flags & UNIT_ATT) == 0) { uptr->flags = uptr->flags & (uint32) ~(UNIT_ATTABLE | UNIT_BUFABLE); } return r; } uint32 nvram_read(uint32 pa, size_t size) { uint32 offset = pa - NVRBASE; uint32 data = 0; uint32 sc = (~(offset & 3) << 3) & 0x1f; switch(size) { case 8: data = (NVRAM[offset >> 2] >> sc) & BYTE_MASK; break; case 16: if (offset & 2) { data = NVRAM[offset >> 2] & HALF_MASK; } else { data = (NVRAM[offset >> 2] >> 16) & HALF_MASK; } break; case 32: data = NVRAM[offset >> 2]; break; } return data; } void nvram_write(uint32 pa, uint32 val, size_t size) { uint32 offset = pa - NVRBASE; uint32 index = offset >> 2; uint32 sc, mask; switch(size) { case 8: sc = (~(pa & 3) << 3) & 0x1f; mask = (uint32) (0xff << sc); NVRAM[index] = (NVRAM[index] & ~mask) | (val << sc); break; case 16: if (offset & 2) { NVRAM[index] = (NVRAM[index] & ~HALF_MASK) | val; } else { NVRAM[index] = (NVRAM[index] & HALF_MASK) | (val << 16); } break; case 32: NVRAM[index] = val; break; } } /* * 8253 Timer. * * The 8253 Timer IC has three interval timers, which we treat here as * three units. * * Note that this simulation is very specific to the 3B2, and not * usable as a general purpose 8253 simulator. * */ /* * The three timers, (A, B, C) run at different * programmatially controlled frequencies, so each must be * handled through a different service routine. */ UNIT timer_unit[] = { { UDATA(&timer0_svc, 0, 0) }, { UDATA(&timer1_svc, UNIT_IDLE, 0) }, { UDATA(&timer2_svc, 0, 0) }, { NULL } }; UNIT *timer_clk_unit = &timer_unit[1]; REG timer_reg[] = { { HRDATAD(DIVA, TIMERS[0].divider, 16, "Divider A") }, { HRDATAD(STA, TIMERS[0].mode, 8, "Mode A") }, { HRDATAD(DIVB, TIMERS[1].divider, 16, "Divider B") }, { HRDATAD(STB, TIMERS[1].mode, 8, "Mode B") }, { HRDATAD(DIVC, TIMERS[2].divider, 16, "Divider C") }, { HRDATAD(STC, TIMERS[2].mode, 8, "Mode C") }, { NULL } }; MTAB timer_mod[] = { { MTAB_XTD|MTAB_VDV|MTAB_VALR|MTAB_NC, 0, NULL, "SHUTDOWN", &timer_set_shutdown, NULL, NULL, "Soft Power Shutdown" }, { 0 } }; DEVICE timer_dev = { "TIMER", timer_unit, timer_reg, timer_mod, 1, 16, 8, 4, 16, 32, NULL, NULL, &timer_reset, NULL, NULL, NULL, NULL, DEV_DEBUG, 0, sys_deb_tab }; t_stat timer_reset(DEVICE *dptr) { int32 i, t; memset(&TIMERS, 0, sizeof(struct timer_ctr) * 3); for (i = 0; i < 3; i++) { timer_unit[i].tmrnum = i; timer_unit[i].tmr = (void *)&TIMERS[i]; } /* Timer 1 gate is always active */ TIMERS[1].gate = 1; if (!sim_is_running) { t = sim_rtcn_init_unit(timer_clk_unit, TPS_CLK, TMR_CLK); sim_activate_after(timer_clk_unit, 1000000 / t); } return SCPE_OK; } static void timer_activate(uint8 ctrnum) { struct timer_ctr *ctr; ctr = &TIMERS[ctrnum]; switch (ctrnum) { case TIMER_SANITY: #ifdef REV3 if ((csr_data & CSRISTIM) == 0) { sim_debug(EXECUTE_MSG, &timer_dev, "[%08x] SANITY TIMER: Activating after %d steps\n", R[NUM_PC], ctr->val); sim_activate_abs(&timer_unit[ctrnum], ctr->val); ctr->val--; } else { sim_debug(EXECUTE_MSG, &timer_dev, "[%08x] SANITY TIMER: Currently disabled, not starting\n", R[NUM_PC]); } #endif break; case TIMER_INTERVAL: if ((csr_data & CSRITIM) == 0) { sim_debug(EXECUTE_MSG, &timer_dev, "[%08x] INTERVAL TIMER: Activating after %d ms\n", R[NUM_PC], ctr->val); sim_activate_after_abs(&timer_unit[ctrnum], ctr->val); ctr->val--; } else { sim_debug(EXECUTE_MSG, &timer_dev, "[%08x] INTERVAL TIMER: Currently disabled, not starting\n", R[NUM_PC]); } break; case TIMER_BUS: #ifdef REV3 if ((csr_data & CSRITIMO) == 0) { sim_debug(EXECUTE_MSG, &timer_dev, "[%08x] BUS TIMER: Activating after %d steps\n", R[NUM_PC], ctr->val); sim_activate_abs(&timer_unit[ctrnum], (ctr->val - 2)); ctr->val -= 2; } else { sim_debug(EXECUTE_MSG, &timer_dev, "[%08x] BUS TIMER: Currently disabled, not starting\n", R[NUM_PC]); } #endif break; default: break; } } t_stat timer_set_shutdown(UNIT *uptr, int32 val, CONST char* cptr, void* desc) { struct timer_ctr *sanity = (struct timer_ctr *)timer_unit[0].tmr; sim_debug(EXECUTE_MSG, &timer_dev, "[%08x] Setting sanity timer to 0 for shutdown.\n", R[NUM_PC]); sanity->val = 0; csr_data &= ~CSRCLK; csr_data |= CSRTIMO; return SCPE_OK; } void timer_enable(uint8 ctrnum) { timer_activate(ctrnum); } void timer_disable(uint8 ctrnum) { sim_debug(EXECUTE_MSG, &timer_dev, "[%08x] Disabling timer %d\n", R[NUM_PC], ctrnum); sim_cancel(&timer_unit[ctrnum]); } /* * Sanity Timer */ t_stat timer0_svc(UNIT *uptr) { struct timer_ctr *ctr; int32 time; ctr = (struct timer_ctr *)uptr->tmr; time = ctr->divider * TIMER_STP_US; if (time == 0) { time = TIMER_STP_US; } sim_activate_after_abs(uptr, time); return SCPE_OK; } /* * Interval Timer */ t_stat timer1_svc(UNIT *uptr) { struct timer_ctr *ctr; int32 t; ctr = (struct timer_ctr *)uptr->tmr; if (ctr->enabled && !(csr_data & CSRITIM)) { /* Fire the IPL 15 clock interrupt */ csr_data |= CSRCLK; } t = sim_rtcn_calb(TPS_CLK, TMR_CLK); sim_activate_after_abs(uptr, 1000000/TPS_CLK); tmxr_poll = t; return SCPE_OK; } /* * Bus Timeout Timer */ t_stat timer2_svc(UNIT *uptr) { struct timer_ctr *ctr; int32 time; ctr = (struct timer_ctr *)uptr->tmr; time = ctr->divider * TIMER_STP_US; if (time == 0) { time = TIMER_STP_US; } sim_activate_after_abs(uptr, time); return SCPE_OK; } uint32 timer_read(uint32 pa, size_t size) { uint32 reg; uint16 ctr_val; uint8 ctrnum; struct timer_ctr *ctr; reg = pa - TIMERBASE; ctrnum = (reg >> 2) & 0x3; ctr = &TIMERS[ctrnum]; switch (reg) { case TIMER_REG_DIVA: case TIMER_REG_DIVB: case TIMER_REG_DIVC: ctr_val = ctr->val; if (ctr_val != ctr->divider) { sim_debug(READ_MSG, &timer_dev, "[%08x] >>> ctr_val = %04x, ctr->divider = %04x\n", R[NUM_PC], ctr_val, ctr->divider); } switch (ctr->mode & CLK_RW) { case CLK_LSB: return ctr_val & 0xff; case CLK_MSB: return (ctr_val & 0xff00) >> 8; case CLK_LMB: if (ctr->lmb) { ctr->lmb = FALSE; return (ctr_val & 0xff00) >> 8; } else { ctr->lmb = TRUE; return ctr_val & 0xff; } default: return 0; } break; case TIMER_REG_CTRL: return ctr->mode; case TIMER_CLR_LATCH: /* Clearing the timer latch has a side-effect of also clearing pending interrupts */ csr_data &= ~CSRCLK; return 0; default: /* Unhandled */ sim_debug(READ_MSG, &timer_dev, "[%08x] UNHANDLED TIMER READ. ADDR=%08x\n", R[NUM_PC], pa); return 0; } } void handle_timer_write(uint8 ctrnum, uint32 val) { struct timer_ctr *ctr; ctr = &TIMERS[ctrnum]; switch(ctr->mode & 0x30) { case 0x10: ctr->divider &= 0xff00; ctr->divider |= val & 0xff; ctr->val = ctr->divider; ctr->enabled = TRUE; ctr->stime = sim_gtime(); sim_cancel(timer_clk_unit); sim_activate_after_abs(timer_clk_unit, ctr->divider * TIMER_STP_US); break; case 0x20: ctr->divider &= 0x00ff; ctr->divider |= (val & 0xff) << 8; ctr->val = ctr->divider; ctr->enabled = TRUE; ctr->stime = sim_gtime(); /* Kick the timer to get the new divider value */ sim_cancel(timer_clk_unit); sim_activate_after_abs(timer_clk_unit, ctr->divider * TIMER_STP_US); break; case 0x30: if (ctr->lmb) { ctr->lmb = FALSE; ctr->divider = (uint16) ((ctr->divider & 0x00ff) | ((val & 0xff) << 8)); ctr->val = ctr->divider; ctr->enabled = TRUE; ctr->stime = sim_gtime(); sim_debug(READ_MSG, &timer_dev, "[%08x] Write timer %d val LMB (MSB): %02x\n", R[NUM_PC], ctrnum, val & 0xff); /* Kick the timer to get the new divider value */ sim_cancel(timer_clk_unit); sim_activate_after_abs(timer_clk_unit, ctr->divider * TIMER_STP_US); } else { ctr->lmb = TRUE; ctr->divider = (ctr->divider & 0xff00) | (val & 0xff); ctr->val = ctr->divider; } break; default: break; } } void timer_write(uint32 pa, uint32 val, size_t size) { uint8 reg, ctrnum; struct timer_ctr *ctr; reg = (uint8) (pa - TIMERBASE); switch(reg) { case TIMER_REG_DIVA: handle_timer_write(0, val); break; case TIMER_REG_DIVB: handle_timer_write(1, val); break; case TIMER_REG_DIVC: handle_timer_write(2, val); break; case TIMER_REG_CTRL: /* The counter number is in bits 6 and 7 */ ctrnum = (val >> 6) & 3; if (ctrnum > 2) { sim_debug(WRITE_MSG, &timer_dev, "[%08x] WARNING: Write to invalid counter: %d\n", R[NUM_PC], ctrnum); return; } ctr = &TIMERS[ctrnum]; ctr->mode = (uint8) val; ctr->enabled = FALSE; ctr->lmb = FALSE; break; case TIMER_CLR_LATCH: sim_debug(WRITE_MSG, &timer_dev, "[%08x] unexpected write to clear timer latch\n", R[NUM_PC]); break; } } void timer_tick() { if (TIMERS[0].gate && TIMERS[0].enabled) { TIMERS[0].val = TIMERS[0].divider - 1; } if (TIMERS[1].gate && TIMERS[1].enabled) { TIMERS[1].val = TIMERS[1].divider - 1; } if (TIMERS[2].gate && TIMERS[2].enabled) { TIMERS[2].val = TIMERS[2].divider - 1; } } /* * MM58174A Time Of Day Clock * * Despite its name, this device is not used by the 3B2 as a clock. It * is only used to store the current date and time between boots. It * is set when an operator changes the date and time. Is is read at * boot time. Therefore, we do not need to treat it as a clock or * timer device here. */ UNIT tod_unit = { UDATA(NULL, UNIT_FIX+UNIT_BINK, sizeof(TOD_DATA)) }; DEVICE tod_dev = { "TOD", &tod_unit, NULL, NULL, 1, 16, 8, 4, 16, 32, NULL, NULL, &tod_reset, NULL, &tod_attach, &tod_detach, NULL, 0, 0, sys_deb_tab, NULL, NULL, &tod_help, NULL, NULL, &tod_description }; t_stat tod_reset(DEVICE *dptr) { if (tod_unit.filebuf == NULL) { tod_unit.filebuf = calloc(sizeof(TOD_DATA), 1); if (tod_unit.filebuf == NULL) { return SCPE_MEM; } } return SCPE_OK; } t_stat tod_attach(UNIT *uptr, CONST char *cptr) { t_stat r; uptr->flags = uptr->flags | (UNIT_ATTABLE | UNIT_BUFABLE); r = attach_unit(uptr, cptr); if (r != SCPE_OK) { uptr->flags = uptr->flags & (uint32) ~(UNIT_ATTABLE | UNIT_BUFABLE); } else { uptr->hwmark = (uint32) uptr->capac; } return r; } t_stat tod_detach(UNIT *uptr) { t_stat r; r = detach_unit(uptr); if ((uptr->flags & UNIT_ATT) == 0) { uptr->flags = uptr->flags & (uint32) ~(UNIT_ATTABLE | UNIT_BUFABLE); } return r; } /* * Re-set the tod_data registers based on the current simulated time. */ void tod_resync() { struct timespec now; struct tm tm; time_t sec; TOD_DATA *td = (TOD_DATA *)tod_unit.filebuf; sim_rtcn_get_time(&now, TMR_CLK); sec = now.tv_sec - td->delta; /* Populate the tm struct based on current sim_time */ tm = *gmtime(&sec); td->tsec = 0; td->unit_sec = tm.tm_sec % 10; td->ten_sec = tm.tm_sec / 10; td->unit_min = tm.tm_min % 10; td->ten_min = tm.tm_min / 10; td->unit_hour = tm.tm_hour % 10; td->ten_hour = tm.tm_hour / 10; /* tm struct stores as 0-11, tod struct as 1-12 */ td->unit_mon = (tm.tm_mon + 1) % 10; td->ten_mon = (tm.tm_mon + 1) / 10; td->unit_day = tm.tm_mday % 10; td->ten_day = tm.tm_mday / 10; td->year = 1 << ((tm.tm_year - 1) % 4); } /* * Re-calculate the delta between real time and simulated time */ void tod_update_delta() { struct timespec now; struct tm tm = {0}; time_t ssec; TOD_DATA *td = (TOD_DATA *)tod_unit.filebuf; sim_rtcn_get_time(&now, TMR_CLK); /* Let the host decide if it is DST or not */ tm.tm_isdst = -1; /* Compute the simulated seconds value */ tm.tm_sec = (td->ten_sec * 10) + td->unit_sec; tm.tm_min = (td->ten_min * 10) + td->unit_min; tm.tm_hour = (td->ten_hour * 10) + td->unit_hour; /* tm struct stores as 0-11, tod struct as 1-12 */ tm.tm_mon = ((td->ten_mon * 10) + td->unit_mon) - 1; tm.tm_mday = (td->ten_day * 10) + td->unit_day; /* We're forced to do this weird arithmetic because the TOD chip * used by the 3B2 does not store the year. It only stores the * offset from the nearest leap year. */ switch(td->year) { case 1: /* Leap Year - 3 */ tm.tm_year = 85; break; case 2: /* Leap Year - 2 */ tm.tm_year = 86; break; case 4: /* Leap Year - 1 */ tm.tm_year = 87; break; case 8: /* Leap Year */ tm.tm_year = 88; break; default: break; } ssec = mktime(&tm); td->delta = (int32)(now.tv_sec - ssec); } uint32 tod_read(uint32 pa, size_t size) { uint8 reg; TOD_DATA *td = (TOD_DATA *)(tod_unit.filebuf); tod_resync(); reg = pa - TODBASE; switch(reg) { case 0x04: /* 1/10 Sec */ return td->tsec; case 0x08: /* 1 Sec */ return td->unit_sec; case 0x0c: /* 10 Sec */ return td->ten_sec; case 0x10: /* 1 Min */ return td->unit_min; case 0x14: /* 10 Min */ return td->ten_min; case 0x18: /* 1 Hour */ return td->unit_hour; case 0x1c: /* 10 Hour */ return td->ten_hour; case 0x20: /* 1 Day */ return td->unit_day; case 0x24: /* 10 Day */ return td->ten_day; case 0x28: /* Day of Week */ return td->wday; case 0x2c: /* 1 Month */ return td->unit_mon; case 0x30: /* 10 Month */ return td->ten_mon; case 0x34: /* Year */ return td->year; default: break; } return 0; } void tod_write(uint32 pa, uint32 val, size_t size) { uint32 reg; TOD_DATA *td = (TOD_DATA *)(tod_unit.filebuf); reg = pa - TODBASE; switch(reg) { case 0x04: /* 1/10 Sec */ td->tsec = (uint8) val; break; case 0x08: /* 1 Sec */ td->unit_sec = (uint8) val; break; case 0x0c: /* 10 Sec */ td->ten_sec = (uint8) val; break; case 0x10: /* 1 Min */ td->unit_min = (uint8) val; break; case 0x14: /* 10 Min */ td->ten_min = (uint8) val; break; case 0x18: /* 1 Hour */ td->unit_hour = (uint8) val; break; case 0x1c: /* 10 Hour */ td->ten_hour = (uint8) val; break; case 0x20: /* 1 Day */ td->unit_day = (uint8) val; break; case 0x24: /* 10 Day */ td->ten_day = (uint8) val; break; case 0x28: /* Day of Week */ td->wday = (uint8) val; break; case 0x2c: /* 1 Month */ td->unit_mon = (uint8) val; break; case 0x30: /* 10 Month */ td->ten_mon = (uint8) val; break; case 0x34: /* Year */ td->year = (uint8) val; break; case 0x38: if (val & 1) { tod_update_delta(); } break; default: break; } } const char *tod_description(DEVICE *dptr) { return "Time-of-Day clock, used to store system time between boots.\n"; } t_stat tod_help(FILE *st, DEVICE *dptr, UNIT *uptr, int32 flag, const char *cptr) { fprintf(st, "The TOD is a battery-backed time-of-day clock that holds system\n" "time between boots. In order to store the time, a file must be\n" "attached to the TOD device with the SIMH command:\n" "\n" " sim> ATTACH TOD \n" "\n" "On a newly installed System V Release 3 UNIX system, no system\n" "time will be stored in the TOD clock. In order to set the system\n" "time, run the following command from within UNIX (as root):\n" "\n" " # sysadm datetime\n" "\n" "On subsequent boots, the correct system time will restored from\n" "from the TOD.\n"); return SCPE_OK; } #if defined(REV3) /* * Fault Register * * The Fault Register is composed of two 32-bit registers at addresses * 0x4C000 and 0x4D000. These latch state of the last address to cause * a CPU fault. * * Bits 00-25: Physical memory address bits 00-25 */ uint32 flt_1 = 0; uint32 flt_2 = 0; UNIT flt_unit = { UDATA(NULL, UNIT_FIX+UNIT_BINK, 8) }; REG flt_reg[] = { { NULL } }; DEVICE flt_dev = { "FLT", &flt_unit, flt_reg, NULL, 1, 16, 8, 4, 16, 32, NULL, NULL, NULL, NULL, NULL, NULL, NULL, DEV_DEBUG, 0, sys_deb_tab, NULL, NULL, NULL, NULL, NULL, NULL }; uint32 flt_read(uint32 pa, size_t size) { sim_debug(READ_MSG, &flt_dev, "[%08x] Read from FLT Register at %x\n", R[NUM_PC], pa); return 0; } void flt_write(uint32 pa, uint32 val, size_t size) { sim_debug(WRITE_MSG, &flt_dev, "[%08x] Write to FLT Register at %x (val=%x)\n", R[NUM_PC], pa, val); return; } #endif