/* pdp18b_stddev.c: 18b PDP's standard devices Copyright (c) 1993-2016, Robert M Supnik Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL ROBERT M SUPNIK BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. Except as contained in this notice, the name of Robert M Supnik shall not be used in advertising or otherwise to promote the sale, use or other dealings in this Software without prior written authorization from Robert M Supnik. ptr paper tape reader ptp paper tape punch tti keyboard tto teleprinter clk clock 15-Mar-16 RMS Added unix v0 terminal support 07-Mar-16 RMS Revised for dynamically allocated memory 13-Sep-15 RMS Added APIVEC register to PTR, CLK only 28-Mar-15 RMS Revised to use sim_printf 18-Apr-12 RMS Added clk_cosched routine Revised clk and tti scheduling 18-Jun-07 RMS Added UNIT_IDLE to console input, clock 18-Oct-06 RMS Added PDP-15 programmable duplex control Fixed handling of non-printable characters in KSR mode Changed clock to be free-running Fixed out-of-tape behavior for PDP-9 vs PDP-15 Synced keyboard to clock 30-Jun-06 RMS Fixed KSR-28 shift tracking 20-Jun-06 RMS Added KSR ASCII reader support 13-Jun-06 RMS Fixed Baudot letters/figures inversion for PDP-4 Fixed PDP-4/PDP-7 default terminal to be local echo 22-Nov-05 RMS Revised for new terminal processing routines 28-May-04 RMS Removed SET TTI CTRL-C 16-Feb-04 RMS Fixed bug in hardware read-in mode bootstrap 14-Jan-04 RMS Revised IO device call interface CAF does not turn off the clock 29-Dec-03 RMS Added console backpressure support 26-Jul-03 RMS Increased PTP, TTO timeouts for PDP-15 operating systems Added hardware read-in mode support for PDP-7/9/15 25-Apr-03 RMS Revised for extended file support 14-Mar-03 RMS Clean up flags on detach 01-Mar-03 RMS Added SET/SHOW CLK freq, SET TTI CTRL-C 22-Dec-02 RMS Added break support 01-Nov-02 RMS Added 7B/8B support to terminal 05-Oct-02 RMS Added DIBs, device number support, IORS call 14-Jul-02 RMS Added ASCII reader/punch support (Hans Pufal) 30-May-02 RMS Widened POS to 32b 29-Nov-01 RMS Added read only unit support 25-Nov-01 RMS Revised interrupt structure 17-Sep-01 RMS Removed multiconsole support 07-Sep-01 RMS Added terminal multiplexor support 17-Jul-01 RMS Moved function prototype 10-Jun-01 RMS Cleaned up IOT decoding to reflect hardware 27-May-01 RMS Added multiconsole support 10-Mar-01 RMS Added funny format loader support 05-Mar-01 RMS Added clock calibration support 22-Dec-00 RMS Added PDP-9/15 half duplex support 30-Nov-00 RMS Fixed PDP-4/7 bootstrap loader for 4K systems 30-Oct-00 RMS Standardized register naming 06-Jan-97 RMS Fixed PDP-4 console input 16-Dec-96 RMS Fixed bug in binary ptr service */ #include "pdp18b_defs.h" #include "sim_tmxr.h" #include #define UNIT_V_RASCII (UNIT_V_UF + 0) /* reader ASCII */ #define UNIT_RASCII (1 << UNIT_V_RASCII) #define UNIT_V_KASCII (UNIT_V_UF + 1) /* KSR ASCII */ #define UNIT_KASCII (1 << UNIT_V_KASCII) #define UNIT_V_PASCII (UNIT_V_UF + 0) /* punch ASCII */ #define UNIT_PASCII (1 << UNIT_V_PASCII) extern int32 *M; extern int32 int_hwre[API_HLVL+1], PC, ASW; extern int32 api_vec[API_HLVL][32]; extern UNIT cpu_unit; int32 clk_state = 0; int32 ptr_err = 0, ptr_stopioe = 0, ptr_state = 0; int32 ptp_err = 0, ptp_stopioe = 0; int32 tti_2nd = 0; /* 2nd char waiting */ int32 tty_shift = 0; /* KSR28 shift state */ int32 tti_fdpx = 0; /* prog mode full duplex */ int32 clk_tps = 60; /* ticks/second */ int32 tmxr_poll = 16000; /* term mux poll */ uint32 clk_task_last = 0; uint32 clk_task_timer = 0; const int32 asc_to_baud[128] = { 000,000,000,000,000,000,000,064, /* bell */ 000,000,0110,000,000,0102,000,000, /* lf, cr */ 000,000,000,000,000,000,000,000, 000,000,000,000,000,000,000,000, 0104,066,061,045,062,000,053,072, /* space - ' */ 076,051,000,000,046,070,047,067, /* ( - / */ 055,075,071,060,052,041,065,074, /* 0 - 7 */ 054,043,056,057,000,000,000,063, /* 8 - ? */ 000,030,023,016,022,020,026,013, /* @ - G */ 005,014,032,036,011,007,006,003, /* H - O */ 015,035,012,024,001,034,017,031, /* P - W */ 027,025,021,000,000,000,000,000, /* X - _ */ 000,030,023,016,022,020,026,013, /* ` - g */ 005,014,032,036,011,007,006,003, /* h - o */ 015,035,012,024,001,034,017,031, /* p - w */ 027,025,021,000,000,000,000,000 /* x - DEL */ }; const char baud_to_asc[64] = { 0 ,'T',015,'O',' ','H','N','M', 012,'L','R','G','I','P','C','V', 'E','Z','D','B','S','Y','F','X', 'A','W','J', 0 ,'U','Q','K', 0, 0 ,'5','\r','9',' ','#',',','.', 012,')','4','&','8','0',':',';', '3','"','$','?','\a','6','!','/', '-','2','\'',0 ,'7','1','(', 0 }; int32 ptr (int32 dev, int32 pulse, int32 dat); int32 ptp (int32 dev, int32 pulse, int32 dat); int32 tti (int32 dev, int32 pulse, int32 dat); int32 tto (int32 dev, int32 pulse, int32 dat); int32 clk_iors (void); int32 ptr_iors (void); int32 ptp_iors (void); int32 tti_iors (void); int32 tto_iors (void); t_stat clk_svc (UNIT *uptr); t_stat ptr_svc (UNIT *uptr); t_stat ptp_svc (UNIT *uptr); t_stat tti_svc (UNIT *uptr); t_stat tto_svc (UNIT *uptr); t_stat clk_reset (DEVICE *dptr); t_stat ptr_reset (DEVICE *dptr); t_stat ptp_reset (DEVICE *dptr); t_stat tti_reset (DEVICE *dptr); t_stat tto_reset (DEVICE *dptr); t_stat ptr_attach (UNIT *uptr, CONST char *cptr); t_stat ptp_attach (UNIT *uptr, CONST char *cptr); t_stat ptr_detach (UNIT *uptr); t_stat ptp_detach (UNIT *uptr); t_stat ptr_boot (int32 unitno, DEVICE *dptr); t_stat tty_set_mode (UNIT *uptr, int32 val, CONST char *cptr, void *desc); t_stat clk_set_freq (UNIT *uptr, int32 val, CONST char *cptr, void *desc); t_stat clk_show_freq (FILE *st, UNIT *uptr, int32 val, CONST void *desc); int32 clk_task_upd (t_bool clr); extern int32 upd_iors (void); /* CLK data structures clk_dev CLK device descriptor clk_unit CLK unit clk_reg CLK register list */ DIB clk_dib = { 0, 0, &clk_iors, { NULL } }; UNIT clk_unit = { UDATA (&clk_svc, UNIT_IDLE, 0), 16000 }; REG clk_reg[] = { { FLDATAD (INT, int_hwre[API_CLK], INT_V_CLK, "interrupt pending flag") }, { FLDATAD (DONE, int_hwre[API_CLK], INT_V_CLK, "device done flag") }, { FLDATAD (ENABLE, clk_state, 0, "clock enable") }, #if defined (PDP15) { ORDATAD (TASKTIMER, clk_task_timer, 18, "task timer") }, { DRDATA (TASKLAST, clk_task_last, 32), REG_HRO }, #endif { DRDATAD (TIME, clk_unit.wait, 24, "clock frequency"), REG_NZ + PV_LEFT }, { DRDATA (TPS, clk_tps, 8), PV_LEFT + REG_HRO }, { ORDATA (APIVEC, api_vec[API_CLK][INT_V_CLK], 6), REG_HRO }, { NULL } }; MTAB clk_mod[] = { { MTAB_XTD|MTAB_VDV, 50, NULL, "50HZ", &clk_set_freq, NULL, NULL }, { MTAB_XTD|MTAB_VDV, 60, NULL, "60HZ", &clk_set_freq, NULL, NULL }, { MTAB_XTD|MTAB_VDV, 0, "FREQUENCY", NULL, NULL, &clk_show_freq, NULL }, { MTAB_XTD|MTAB_VDV, 0, "DEVNO", NULL, NULL, &show_devno }, { 0 } }; DEVICE clk_dev = { "CLK", &clk_unit, clk_reg, clk_mod, 1, 0, 0, 0, 0, 0, NULL, NULL, &clk_reset, NULL, NULL, NULL, &clk_dib, 0 }; /* PTR data structures ptr_dev PTR device descriptor ptr_unit PTR unit ptr_reg PTR register list */ DIB ptr_dib = { DEV_PTR, 1, &ptr_iors, { &ptr } }; UNIT ptr_unit = { UDATA (&ptr_svc, UNIT_SEQ+UNIT_ATTABLE+UNIT_ROABLE, 0), SERIAL_IN_WAIT }; REG ptr_reg[] = { { ORDATAD (BUF, ptr_unit.buf, 18, "last data item processed") }, { FLDATAD (INT, int_hwre[API_PTR], INT_V_PTR, "interrupt pending flag") }, { FLDATAD (DONE, int_hwre[API_PTR], INT_V_PTR, "device done flag") }, #if defined (IOS_PTRERR) { FLDATAD (ERR, ptr_err, 0, "error flag") }, #endif { ORDATA (STATE, ptr_state, 5), REG_HRO }, { DRDATAD (POS, ptr_unit.pos, T_ADDR_W, "position in the input file"), PV_LEFT }, { DRDATAD (TIME, ptr_unit.wait, 24, "time from I/O initiation to interrupt"), PV_LEFT }, { FLDATAD(STOP_IOE, ptr_stopioe, 0, "stop on I/O error") }, { ORDATA (APIVEC, api_vec[API_PTR][INT_V_PTR], 6), REG_HRO }, { NULL } }; MTAB ptr_mod[] = { { UNIT_RASCII, UNIT_RASCII, "even parity ASCII", NULL }, { UNIT_KASCII, UNIT_KASCII, "forced parity ASCII", NULL }, { MTAB_XTD|MTAB_VDV, 0, "DEVNO", NULL, NULL, &show_devno }, { 0 } }; DEVICE ptr_dev = { "PTR", &ptr_unit, ptr_reg, ptr_mod, 1, 10, 31, 1, 8, 8, NULL, NULL, &ptr_reset, &ptr_boot, &ptr_attach, &ptr_detach, &ptr_dib, 0 }; /* PTP data structures ptp_dev PTP device descriptor ptp_unit PTP unit ptp_reg PTP register list */ DIB ptp_dib = { DEV_PTP, 1, &ptp_iors, { &ptp } }; UNIT ptp_unit = { UDATA (&ptp_svc, UNIT_SEQ+UNIT_ATTABLE, 0), SERIAL_OUT_WAIT }; REG ptp_reg[] = { { ORDATAD (BUF, ptp_unit.buf, 8, "last data item processed") }, { FLDATAD (INT, int_hwre[API_PTP], INT_V_PTP, "interrupt pending flag") }, { FLDATAD (DONE, int_hwre[API_PTP], INT_V_PTP, "device done flag") }, #if defined (IOS_PTPERR) { FLDATAD (ERR, ptp_err, 0, "error flag") }, #endif { DRDATAD (POS, ptp_unit.pos, T_ADDR_W, "position in the output file"), PV_LEFT }, { DRDATAD (TIME, ptp_unit.wait, 24, "time from I/O initiation to inturrupt"), PV_LEFT }, { FLDATAD (STOP_IOE, ptp_stopioe, 0, "stop on I/O error") }, { NULL } }; MTAB ptp_mod[] = { { UNIT_PASCII, UNIT_PASCII, "7b ASCII", NULL }, { MTAB_XTD|MTAB_VDV, 0, "DEVNO", NULL, NULL, &show_devno }, { 0 } }; DEVICE ptp_dev = { "PTP", &ptp_unit, ptp_reg, ptp_mod, 1, 10, 31, 1, 8, 8, NULL, NULL, &ptp_reset, NULL, &ptp_attach, &ptp_detach, &ptp_dib, 0 }; /* TTI data structures tti_dev TTI device descriptor tti_unit TTI unit tti_reg TTI register list */ #if defined (KSR28) #define TTI_WIDTH 5 #define TTI_FIGURES (1 << TTI_WIDTH) #define TTI_BOTH (1 << (TTI_WIDTH + 1)) #define BAUDOT_LETTERS 037 #define BAUDOT_FIGURES 033 #else #define TTI_WIDTH 8 #endif #define TTI_MASK ((1 << TTI_WIDTH) - 1) #define TTUF_V_HDX (TTUF_V_UF + 0) /* half duplex */ #define TTUF_V_UNIX (TTUF_V_UF + 1) #define TTUF_HDX (1 << TTUF_V_HDX) #define TTUF_UNIX (1 << TTUF_V_UNIX) DIB tti_dib = { DEV_TTI, 1, &tti_iors, { &tti } }; UNIT tti_unit = { UDATA (&tti_svc, UNIT_IDLE+TT_MODE_KSR+TTUF_HDX, 0), 0 }; REG tti_reg[] = { { ORDATAD (BUF, tti_unit.buf, TTI_WIDTH, "last data item processed") }, #if defined (KSR28) { ORDATA (BUF2ND, tti_2nd, TTI_WIDTH), REG_HRO }, #endif { FLDATAD (INT, int_hwre[API_TTI], INT_V_TTI, "interrupt pending flag") }, { FLDATAD (DONE, int_hwre[API_TTI], INT_V_TTI, "device done flag") }, #if defined (PDP15) { FLDATA (FDPX, tti_fdpx, 0) }, #endif { DRDATAD (POS, tti_unit.pos, T_ADDR_W, "number of characters input"), PV_LEFT }, { DRDATAD (TIME, tti_unit.wait, 24, "input polling interval (if 0, the keyboard is polled synchronously with line clock)"), PV_LEFT }, { NULL } }; MTAB tti_mod[] = { #if !defined (KSR28) { TTUF_UNIX|TT_PAR|TT_MODE, TT_MODE_KSR, "KSR", "KSR", &tty_set_mode }, { TTUF_UNIX|TT_PAR|TT_MODE, TT_MODE_7B, "7b", "7B", &tty_set_mode }, { TTUF_UNIX|TT_PAR|TT_MODE, TT_MODE_8B, "8b", "8B", &tty_set_mode }, { TTUF_UNIX|TT_PAR|TT_MODE, TT_MODE_7P, "7b", NULL, NULL }, #if !defined (PDP15) { TTUF_UNIX|TT_PAR|TT_MODE, TTUF_UNIX|TT_PAR_MARK|TT_MODE_7B, "Unix v0", "UNIX", &tty_set_mode }, #endif #endif { TTUF_HDX, 0 , "full duplex", "FDX", NULL }, { TTUF_HDX, TTUF_HDX, "half duplex", "HDX", NULL }, { MTAB_XTD|MTAB_VDV, 0, "DEVNO", NULL, NULL, &show_devno, NULL }, { 0 } }; DEVICE tti_dev = { "TTI", &tti_unit, tti_reg, tti_mod, 1, 10, 31, 1, 8, 8, NULL, NULL, &tti_reset, NULL, NULL, NULL, &tti_dib, 0 }; /* TTO data structures tto_dev TTO device descriptor tto_unit TTO unit tto_reg TTO register list */ #if defined (KSR28) #define TTO_WIDTH 5 #define TTO_FIGURES (1 << TTO_WIDTH) #else #define TTO_WIDTH 8 #endif #define TTO_MASK ((1 << TTO_WIDTH) - 1) DIB tto_dib = { DEV_TTO, 1, &tto_iors, { &tto } }; UNIT tto_unit = { UDATA (&tto_svc, TT_MODE_KSR, 0), 1000 }; REG tto_reg[] = { { ORDATAD (BUF, tto_unit.buf, TTO_WIDTH, "last data item processed") }, #if defined (KSR28) { FLDATA (SHIFT, tty_shift, 0), REG_HRO }, #endif { FLDATAD (INT, int_hwre[API_TTO], INT_V_TTO, "interrupt pending flag") }, { FLDATAD (DONE, int_hwre[API_TTO], INT_V_TTO, "device done flag") }, { DRDATAD (POS, tto_unit.pos, T_ADDR_W, "number of characters output"), PV_LEFT }, { DRDATAD (TIME, tto_unit.wait, 24, "time from I/O initiation to interrupt"), PV_LEFT }, { NULL } }; MTAB tto_mod[] = { #if !defined (KSR28) { TTUF_UNIX|TT_PAR|TT_MODE, TT_MODE_KSR, "KSR", "KSR", &tty_set_mode }, { TTUF_UNIX|TT_PAR|TT_MODE, TT_MODE_7B, "7b", "7B", &tty_set_mode }, { TTUF_UNIX|TT_PAR|TT_MODE, TT_MODE_8B, "8b", "8B", &tty_set_mode }, { TTUF_UNIX|TT_PAR|TT_MODE, TT_MODE_7P, "7p", "7P", &tty_set_mode }, #if !defined (PDP15) { TTUF_UNIX|TT_PAR|TT_MODE, TTUF_UNIX|TT_PAR_MARK|TT_MODE_7B, "Unix v0", "UNIX", &tty_set_mode }, #endif #endif { MTAB_XTD|MTAB_VDV, 0, "DEVNO", NULL, NULL, &show_devno }, { 0 } }; DEVICE tto_dev = { "TTO", &tto_unit, tto_reg, tto_mod, 1, 10, 31, 1, 8, 8, NULL, NULL, &tto_reset, NULL, NULL, NULL, &tto_dib, 0 }; /* Clock: IOT routine */ int32 clk (int32 dev, int32 pulse, int32 dat) { if (pulse & 001) { /* CLSF */ if (TST_INT (CLK)) dat = dat | IOT_SKP; } if (pulse & 004) { /* CLON/CLOF */ CLR_INT (CLK); /* clear flag */ if (pulse & 040) /* CLON */ clk_state = 1; else clk_state = 0; /* CLOF */ } return dat; } /* Unit service */ t_stat clk_svc (UNIT *uptr) { int32 t; t = sim_rtc_calb (clk_tps); /* calibrate clock */ tmxr_poll = t; /* set mux poll */ sim_activate_after (uptr, 1000000/clk_tps); /* reactivate unit */ #if defined (PDP15) clk_task_upd (FALSE); /* update task timer */ #endif if (clk_state) { /* clock on? */ M[7] = (M[7] + 1) & DMASK; /* incr counter */ if (M[7] == 0) /* ovrflo? set flag */ SET_INT (CLK); } return SCPE_OK; } #if defined (PDP15) /* Task timer update (PDP-15 XVM only) The task timer increments monotonically at 100Khz. Since this can't be simulated accurately, updates are done by interpolation since the last reading. The timer is also updated at clock events to keep the cycle counters from wrapping around more than once between updates. */ int32 clk_task_upd (t_bool clr) { uint32 delta, val, iusec10; uint32 cur = sim_grtime (); double usec10; if (cur > clk_task_last) delta = cur - clk_task_last; else delta = clk_task_last - cur; usec10 = ((((double) delta) * 100000.0) / (((double) tmxr_poll) * ((double) clk_tps))); iusec10 = (int32) usec10; val = (clk_task_timer + iusec10) & DMASK; if (clr) clk_task_timer = 0; else clk_task_timer = val; clk_task_last = cur; return ((int32) val); } #endif /* IORS service */ int32 clk_iors (void) { return (TST_INT (CLK)? IOS_CLK: 0); } /* Reset routine */ t_stat clk_reset (DEVICE *dptr) { int32 t; sim_register_clock_unit (&clk_unit); /* declare clock unit */ CLR_INT (CLK); /* clear flag */ if (!sim_is_running) { /* RESET (not CAF)? */ t = sim_rtc_init (clk_unit.wait); /* init calibration */ tmxr_poll = t; /* set mux poll */ sim_activate_abs (&clk_unit, t); /* activate unit */ clk_state = 0; /* clock off */ clk_task_timer = 0; clk_task_last = 0; } return SCPE_OK; } /* Set frequency */ t_stat clk_set_freq (UNIT *uptr, int32 val, CONST char *cptr, void *desc) { if (cptr) return SCPE_ARG; if ((val != 50) && (val != 60)) return SCPE_IERR; clk_tps = val; return SCPE_OK; } /* Show frequency */ t_stat clk_show_freq (FILE *st, UNIT *uptr, int32 val, CONST void *desc) { fprintf (st, (clk_tps == 50)? "50Hz": "60Hz"); return SCPE_OK; } /* Paper tape reader out-of-tape handling The PDP-4 and PDP-7 readers behaved like most early DEC readers; when they ran out of tape, they hung. It was up to the program to sense this condition by running a timer. The PDP-9 reader controller synthesized the out of tape condition by noticing whether there was a transition on the feed hole within a window. The out-of-tape flag was treated like the reader flag in most cases. The PDP-15 reader controller received the out-of-tape flag as a static condition from the reader itself and simply reported it via IORS. */ /* Paper tape reader: IOT routine */ int32 ptr (int32 dev, int32 pulse, int32 dat) { if (pulse & 001) { /* RSF */ if (TST_INT (PTR)) dat = dat | IOT_SKP; } if (pulse & 002) { /* RRB, RCF */ CLR_INT (PTR); /* clear flag */ dat = dat | ptr_unit.buf; /* return buffer */ } if (pulse & 004) { /* RSA, RSB */ ptr_state = (pulse & 040)? 18: 0; /* set mode */ CLR_INT (PTR); /* clear flag */ #if !defined (PDP15) /* except on PDP15 */ ptr_err = 0; /* clear error */ #endif ptr_unit.buf = 0; /* clear buffer */ sim_activate (&ptr_unit, ptr_unit.wait); } return dat; } /* Unit service */ t_stat ptr_svc (UNIT *uptr) { int32 temp; if ((ptr_unit.flags & UNIT_ATT) == 0) { /* attached? */ #if defined (IOS_PTRERR) SET_INT (PTR); /* if err, set flag */ ptr_err = 1; /* set error */ #endif return IORETURN (ptr_stopioe, SCPE_UNATT); } if ((temp = getc (ptr_unit.fileref)) == EOF) { /* end of file? */ #if defined (IOS_PTRERR) SET_INT (PTR); /* if err, set flag */ ptr_err = 1; /* set error */ #endif if (feof (ptr_unit.fileref)) { if (ptr_stopioe) sim_printf ("PTR end of file\n"); else return SCPE_OK; } else sim_perror ("PTR I/O error"); clearerr (ptr_unit.fileref); return SCPE_IOERR; } if (ptr_state == 0) { /* ASCII */ if (ptr_unit.flags & UNIT_RASCII) { /* want parity? */ ptr_unit.buf = temp = temp & 0177; /* parity off */ while ((temp = temp & (temp - 1))) ptr_unit.buf = ptr_unit.buf ^ 0200; /* count bits */ ptr_unit.buf = ptr_unit.buf ^ 0200; /* set even parity */ } else if (ptr_unit.flags & UNIT_KASCII) /* KSR ASCII? */ ptr_unit.buf = (temp | 0200) & 0377; /* forced parity */ else ptr_unit.buf = temp & 0377; } else if (temp & 0200) { /* binary */ ptr_state = ptr_state - 6; ptr_unit.buf = ptr_unit.buf | ((temp & 077) << ptr_state); } if (ptr_state == 0) /* if done, set flag */ SET_INT (PTR); else sim_activate (&ptr_unit, ptr_unit.wait); /* else restart */ ptr_unit.pos = ptr_unit.pos + 1; return SCPE_OK; } /* Reset routine */ t_stat ptr_reset (DEVICE *dptr) { ptr_state = 0; /* clear state */ ptr_unit.buf = 0; CLR_INT (PTR); /* clear flag */ #if defined (PDP15) /* PDP15, static err */ if (((ptr_unit.flags & UNIT_ATT) == 0) || feof (ptr_unit.fileref)) ptr_err = 1; else #endif ptr_err = 0; /* all other, clr err */ sim_cancel (&ptr_unit); /* deactivate unit */ return SCPE_OK; } /* IORS service */ int32 ptr_iors (void) { return ((TST_INT (PTR)? IOS_PTR: 0) #if defined (IOS_PTRERR) | (ptr_err? IOS_PTRERR: 0) #endif ); } /* Attach routine */ t_stat ptr_attach (UNIT *uptr, CONST char *cptr) { t_stat reason; int32 saved_switches = sim_switches; sim_switches &= ~SWMASK ('A'); reason = attach_unit (uptr, cptr); sim_switches = saved_switches; if (reason != SCPE_OK) return reason; ptr_err = 0; /* attach clrs error */ ptr_unit.flags = ptr_unit.flags & ~(UNIT_RASCII|UNIT_KASCII); if (sim_switches & SWMASK ('A')) ptr_unit.flags = ptr_unit.flags | UNIT_RASCII; if (sim_switches & SWMASK ('K')) ptr_unit.flags = ptr_unit.flags | UNIT_KASCII; return SCPE_OK; } /* Detach routine */ t_stat ptr_detach (UNIT *uptr) { #if defined (PDP15) ptr_err = 1; #endif ptr_unit.flags = ptr_unit.flags & ~UNIT_RASCII; return detach_unit (uptr); } /* Hardware RIM loader routines, PDP-7/9/15 */ int32 ptr_getw (UNIT *uptr, int32 *hi) { int32 word, bits, st, ch; word = st = bits = 0; do { if ((ch = getc (uptr->fileref)) == EOF) return -1; uptr->pos = uptr->pos + 1; if (ch & 0200) { word = (word << 6) | (ch & 077); bits = (bits << 1) | ((ch >> 6) & 1); st++; } } while (st < 3); if (hi != NULL) *hi = bits; return word; } t_stat ptr_rim_load (UNIT *uptr, int32 origin) { int32 bits, val; for (;;) { /* word loop */ if ((val = ptr_getw (uptr, &bits)) < 0) return SCPE_FMT; if (bits & 1) { /* end of tape? */ if ((val & 0760000) == OP_JMP) { PC = ((origin - 1) & 060000) | (val & 017777); return SCPE_OK; } else if (val == OP_HLT) return STOP_HALT; break; } else if (MEM_ADDR_OK (origin)) M[origin++] = val; } return SCPE_FMT; } #if defined (PDP4) || defined (PDP7) /* Bootstrap routine, PDP-4 and PDP-7 In a 4K system, the boostrap resides at 7762-7776. In an 8K or greater system, the bootstrap resides at 17762-17776. Because the program is so small, simple masking can be used to remove addr<5> for a 4K system. */ #define BOOT_START 017577 #define BOOT_FPC 017577 /* funny format loader */ #define BOOT_RPC 017770 /* RIM loader */ #define BOOT_LEN (sizeof (boot_rom) / sizeof (int)) static const int32 boot_rom[] = { 0700144, /* rsb */ 0117762, /* ff, jsb r1b */ 0057666, /* dac done 1 */ 0117762, /* jms r1b */ 0057667, /* dac done 2 */ 0117762, /* jms r1b */ 0040007, /* dac conend */ 0057731, /* dac conbeg */ 0440007, /* isz conend */ 0117762, /* blk, jms r1b */ 0057673, /* dac cai */ 0741100, /* spa */ 0617665, /* jmp done */ 0117762, /* jms r1b */ 0057777, /* dac tem1 */ 0317673, /* add cai */ 0057775, /* dac cks */ 0117713, /* jms r1a */ 0140010, /* dzm word */ 0457777, /* cont, isz tem1 */ 0617632, /* jmp cont1 */ 0217775, /* lac cks */ 0740001, /* cma */ 0740200, /* sza */ 0740040, /* hlt */ 0700144, /* rsb */ 0617610, /* jmp blk */ 0117713, /* cont1, jms r1a */ 0057762, /* dac tem2 */ 0117713, /* jms r1a */ 0742010, /* rtl */ 0742010, /* rtl */ 0742010, /* rtl */ 0742010, /* rtl */ 0317762, /* add tem2 */ 0057762, /* dac tem2 */ 0117713, /* jms r1a */ 0742020, /* rtr */ 0317726, /* add cdsp */ 0057713, /* dac r1a */ 0517701, /* and ccma */ 0740020, /* rar */ 0317762, /* add tem2 */ 0437713, /* xct i r1a */ 0617622, /* jmp cont */ 0617672, /* dsptch, jmp code0 */ 0617670, /* jmp code1 */ 0617700, /* jmp code2 */ 0617706, /* jmp code3 */ 0417711, /* xct code4 */ 0617732, /* jmp const */ 0740000, /* nop */ 0740000, /* nop */ 0740000, /* nop */ 0200007, /* done, lac conend */ 0740040, /* xx */ 0740040, /* xx */ 0517727, /* code1, and imsk */ 0337762, /* add i tem2 */ 0300010, /* code0, add word */ 0740040, /* cai, xx */ 0750001, /* clc */ 0357673, /* tad cai */ 0057673, /* dac cai */ 0617621, /* jmp cont-1 */ 0711101, /* code2, spa cla */ 0740001, /* ccma, cma */ 0277762, /* xor i tem2 */ 0300010, /* add word */ 0040010, /* code2a, dac word */ 0617622, /* jmp cont */ 0057711, /* code3, dac code4 */ 0217673, /* lac cai */ 0357701, /* tad ccma */ 0740040, /* code4, xx */ 0617622, /* jmp cont */ 0000000, /* r1a, 0 */ 0700101, /* rsf */ 0617714, /* jmp .-1 */ 0700112, /* rrb */ 0700104, /* rsa */ 0057730, /* dac tem */ 0317775, /* add cks */ 0057775, /* dac cks */ 0217730, /* lac tem */ 0744000, /* cll */ 0637713, /* jmp i r1a */ 0017654, /* cdsp, dsptch */ 0760000, /* imsk, 760000 */ 0000000, /* tem, 0 */ 0000000, /* conbeg, 0 */ 0300010, /* const, add word */ 0060007, /* dac i conend */ 0217731, /* lac conbeg */ 0040010, /* dac index */ 0220007, /* lac i conend */ 0560010, /* con1, sad i index */ 0617752, /* jmp find */ 0560010, /* sad i index */ 0617752, /* jmp find */ 0560010, /* sad i index */ 0617752, /* jmp find */ 0560010, /* sad i index */ 0617752, /* jmp find */ 0560010, /* sad i index */ 0617752, /* jmp find */ 0617737, /* jmp con1 */ 0200010, /* find, lac index */ 0540007, /* sad conend */ 0440007, /* isz conend */ 0617704, /* jmp code2a */ 0000000, 0000000, 0000000, 0000000, 0000000, /* r1b, 0 */ 0700101, /* rsf */ 0617763, /* jmp .-1 */ 0700112, /* rrb */ 0700144, /* rsb */ 0637762, /* jmp i r1b */ 0700144, /* go, rsb */ 0117762, /* g, jms r1b */ 0057775, /* dac cks */ 0417775, /* xct cks */ 0117762, /* jms r1b */ 0000000, /* cks, 0 */ 0617771 /* jmp g */ }; t_stat ptr_boot (int32 unitno, DEVICE *dptr) { size_t i; int32 mask, wd; #if defined (PDP7) if (sim_switches & SWMASK ('H')) /* hardware RIM load? */ return ptr_rim_load (&ptr_unit, ASW); #endif if (ptr_dib.dev != DEV_PTR) /* non-std addr? */ return STOP_NONSTD; if (MEMSIZE < 8192) /* 4k? */ mask = 0767777; else mask = 0777777; for (i = 0; i < BOOT_LEN; i++) { wd = boot_rom[i]; if ((wd >= 0040000) && (wd < 0640000)) wd = wd & mask; M[(BOOT_START & mask) + i] = wd; } PC = ((sim_switches & SWMASK ('F'))? BOOT_FPC: BOOT_RPC) & mask; return SCPE_OK; } #else /* PDP-9 and PDP-15 have built-in hardware RIM loaders */ t_stat ptr_boot (int32 unitno, DEVICE *dptr) { return ptr_rim_load (&ptr_unit, ASW); } #endif /* Paper tape punch: IOT routine */ int32 ptp (int32 dev, int32 pulse, int32 dat) { if (pulse & 001) { /* PSF */ if (TST_INT (PTP)) dat = dat | IOT_SKP; } if (pulse & 002) /* PCF */ CLR_INT (PTP); if (pulse & 004) { /* PSA, PSB, PLS */ CLR_INT (PTP); /* clear flag */ ptp_unit.buf = (pulse & 040)? /* load punch buf */ (dat & 077) | 0200: dat & 0377; /* bin or alpha */ sim_activate (&ptp_unit, ptp_unit.wait); /* activate unit */ } return dat; } /* Unit service */ t_stat ptp_svc (UNIT *uptr) { SET_INT (PTP); /* set flag */ if ((ptp_unit.flags & UNIT_ATT) == 0) { /* not attached? */ ptp_err = 1; /* set error */ return IORETURN (ptp_stopioe, SCPE_UNATT); } if (ptp_unit.flags & UNIT_PASCII) { /* ASCII mode? */ ptp_unit.buf = ptp_unit.buf & 0177; /* force 7b */ if ((ptp_unit.buf == 0) || (ptp_unit.buf == 0177)) return SCPE_OK; /* skip null, del */ } if (putc (ptp_unit.buf, ptp_unit.fileref) == EOF) { /* I/O error? */ ptp_err = 1; /* set error */ sim_perror ("PTP I/O error"); clearerr (ptp_unit.fileref); return SCPE_IOERR; } ptp_unit.pos = ptp_unit.pos + 1; return SCPE_OK; } /* IORS service */ int32 ptp_iors (void) { return ((TST_INT (PTP)? IOS_PTP: 0) #if defined (IOS_PTPERR) | (ptp_err? IOS_PTPERR: 0) #endif ); } /* Reset routine */ t_stat ptp_reset (DEVICE *dptr) { ptp_unit.buf = 0; CLR_INT (PTP); /* clear flag */ ptp_err = (ptp_unit.flags & UNIT_ATT)? 0: 1; sim_cancel (&ptp_unit); /* deactivate unit */ return SCPE_OK; } /* Attach routine */ t_stat ptp_attach (UNIT *uptr, CONST char *cptr) { t_stat reason; int32 saved_switches = sim_switches; sim_switches |= SWMASK ('A'); /* Default to Append to existing file */ reason = attach_unit (uptr, cptr); if (reason != SCPE_OK) return reason; sim_switches = saved_switches; ptp_err = 0; ptp_unit.flags = ptp_unit.flags & ~UNIT_PASCII; if (sim_switches & SWMASK ('A')) ptp_unit.flags = ptp_unit.flags | UNIT_PASCII; return reason; } /* Detach routine */ t_stat ptp_detach (UNIT *uptr) { ptp_err = 1; ptp_unit.flags = ptp_unit.flags & ~UNIT_PASCII; return detach_unit (uptr); } /* Terminal input: IOT routine */ int32 tti (int32 dev, int32 pulse, int32 dat) { if (pulse & 001) { /* KSF */ if (TST_INT (TTI)) dat = dat | IOT_SKP; } if (pulse & 002) { /* KRS/KRB */ CLR_INT (TTI); /* clear flag */ dat = dat | (tti_unit.buf & TTI_MASK); /* return buffer */ #if defined (PDP15) if (pulse & 020) /* KRS? */ tti_fdpx = 1; else tti_fdpx = 0; /* no, KRB */ #endif } if (pulse & 004) { /* IORS */ dat = dat | upd_iors (); } return dat; } /* Unit service */ t_stat tti_svc (UNIT *uptr) { #if defined (KSR28) /* Baudot... */ int32 in, c, out; sim_clock_coschedule (uptr, tmxr_poll); /* continue poll */ if (tti_2nd) { /* char waiting? */ uptr->buf = tti_2nd; /* return char */ tti_2nd = 0; /* not waiting */ } else { if ((in = sim_poll_kbd ()) < SCPE_KFLAG) return in; c = asc_to_baud[in & 0177]; /* translate char */ if (c == 0) /* untranslatable? */ return SCPE_OK; if ((c & TTI_BOTH) || /* case insensitive? */ (((c & TTI_FIGURES)? 1: 0) == tty_shift)) /* right case? */ uptr->buf = c & TTI_MASK; else { /* send case change */ if (c & TTI_FIGURES) { /* to figures? */ uptr->buf = BAUDOT_FIGURES; tty_shift = 1; } else { /* no, to letters */ uptr->buf = BAUDOT_LETTERS; tty_shift = 0; } tti_2nd = c & TTI_MASK; /* save actual char */ } if ((uptr->flags & TTUF_HDX) && /* half duplex? */ ((out = sim_tt_outcvt (in, TT_GET_MODE (uptr->flags) | TTUF_KSR)) >= 0)) { sim_putchar (out); tto_unit.pos = tto_unit.pos + 1; } } #else /* ASCII... */ int32 c, out; sim_clock_coschedule (uptr, tmxr_poll); /* continue poll */ if ((c = sim_poll_kbd ()) < SCPE_KFLAG) /* no char or error? */ return c; out = c & 0177; /* mask echo to 7b */ if (c & SCPE_BREAK) /* break? */ c = 0; else c = sim_tt_inpcvt (c, TT_GET_MODE (uptr->flags) | TTUF_KSR); if (uptr->flags & TTUF_UNIX) { /* unix v0? */ if (c == 0215) /* cr -> lf */ c = out = 0212; else if (c == 0212) /* lf -> cr */ c = out = 0215; else if (c == 0233) /* esc -> altmode */ c = 0375; } if ((uptr->flags & TTUF_HDX) && !tti_fdpx && out && /* half duplex and */ ((out = sim_tt_outcvt (out, TT_GET_MODE (uptr->flags) | TTUF_KSR)) >= 0)) { sim_putchar (out); /* echo */ tto_unit.pos = tto_unit.pos + 1; } uptr->buf = c; /* got char */ #endif uptr->pos = uptr->pos + 1; SET_INT (TTI); /* set flag */ return SCPE_OK; } /* IORS service */ int32 tti_iors (void) { return (TST_INT (TTI)? IOS_TTI: 0); } /* Reset routine */ t_stat tti_reset (DEVICE *dptr) { tmxr_set_console_units (&tti_unit, &tto_unit); CLR_INT (TTI); /* clear flag */ if (!sim_is_running) { /* RESET (not CAF)? */ tti_unit.buf = 0; /* clear buffer */ tti_2nd = 0; tty_shift = 0; /* clear state */ tti_fdpx = 0; /* clear dpx mode */ } sim_activate (&tti_unit, tmxr_poll); return SCPE_OK; } /* Terminal output: IOT routine */ int32 tto (int32 dev, int32 pulse, int32 dat) { if (pulse & 001) { /* TSF */ if (TST_INT (TTO)) dat = dat | IOT_SKP; } if (pulse & 002) /* clear flag */ CLR_INT (TTO); if (pulse & 004) { /* load buffer */ sim_activate (&tto_unit, tto_unit.wait); /* activate unit */ tto_unit.buf = dat & TTO_MASK; /* load buffer */ } return dat; } /* Unit service */ t_stat tto_svc (UNIT *uptr) { int32 c; t_stat r; #if defined (KSR28) /* Baudot... */ if (uptr->buf == BAUDOT_FIGURES) /* set figures? */ tty_shift = 1; else if (uptr->buf == BAUDOT_LETTERS) /* set letters? */ tty_shift = 0; else { c = baud_to_asc[uptr->buf | (tty_shift << 5)]; /* translate */ #else c = sim_tt_outcvt (uptr->buf, TT_GET_MODE (uptr->flags) | TTUF_KSR); if (c >= 0) { #endif if ((r = sim_putchar_s (c)) != SCPE_OK) { /* output; error? */ sim_activate (uptr, uptr->wait); /* retry? */ return ((r == SCPE_STALL)? SCPE_OK: r); } } SET_INT (TTO); /* set flag */ uptr->pos = uptr->pos + 1; return SCPE_OK; } /* IORS service */ int32 tto_iors (void) { return (TST_INT (TTO)? IOS_TTO: 0); } /* Reset routine */ t_stat tto_reset (DEVICE *dptr) { tto_unit.buf = 0; /* clear buffer */ tty_shift = 0; /* clear state */ CLR_INT (TTO); /* clear flag */ sim_cancel (&tto_unit); /* deactivate unit */ return SCPE_OK; } /* Set mode */ t_stat tty_set_mode (UNIT *uptr, int32 val, CONST char *cptr, void *desc) { tti_unit.flags = (tti_unit.flags & ~(TTUF_UNIX|TT_PAR|TT_MODE)) | val; tto_unit.flags = (tto_unit.flags & ~(TTUF_UNIX|TT_PAR|TT_MODE)) | val; return SCPE_OK; }