/************************************************************************* * * * Copyright (c) 2007-2022 Howard M. Harte. * * https://github.com/hharte * * * * Permission is hereby granted, free of charge, to any person obtaining * * a copy of this software and associated documentation files (the * * "Software"), to deal in the Software without restriction, including * * without limitation the rights to use, copy, modify, merge, publish, * * distribute, sublicense, and/or sell copies of the Software, and to * * permit persons to whom the Software is furnished to do so, subject to * * the following conditions: * * * * The above copyright notice and this permission notice shall be * * included in all copies or substantial portions of the Software. * * * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, * * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON- * * INFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE * * LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN * * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN * * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * * SOFTWARE. * * * * Except as contained in this notice, the names of The Authors shall * * not be used in advertising or otherwise to promote the sale, use or * * other dealings in this Software without prior written authorization * * from the Authors. * * * * SIMH Interface based on altairz80_hdsk.c, by Peter Schorn. * * * * Module Description: * * N8VEM Single-Board Computer I/O module for SIMH. * * http://groups.google.com/group/n8vem/web/n8vem-single-board-computer-home-page * * * *************************************************************************/ /* #define DBG_MSG */ #include "altairz80_defs.h" #ifdef DBG_MSG #define DBG_PRINT(args) sim_printf args #else #define DBG_PRINT(args) #endif /* Debug flags */ #define PIO_MSG (1 << 0) #define UART_MSG (1 << 1) #define MPCL_MSG (1 << 2) #define ROM_MSG (1 << 3) #define VERBOSE_MSG (1 << 4) #define N8VEM_MAX_DRIVES 2 typedef struct { PNP_INFO pnp; /* Plug and Play */ uint8 *ram; uint8 *rom; uint8 rom_attached; uint8 uart_scr; uint8 uart_lcr; uint8 mpcl_ram; uint8 mpcl_rom; } N8VEM_INFO; static N8VEM_INFO n8vem_info_data = { { 0x0, 0x8000, 0x60, 32 } }; static N8VEM_INFO *n8vem_info = &n8vem_info_data; extern t_stat set_membase(UNIT *uptr, int32 val, CONST char *cptr, void *desc); extern t_stat show_membase(FILE *st, UNIT *uptr, int32 val, CONST void *desc); extern t_stat set_iobase(UNIT *uptr, int32 val, CONST char *cptr, void *desc); extern t_stat show_iobase(FILE *st, UNIT *uptr, int32 val, CONST void *desc); extern uint32 sim_map_resource(uint32 baseaddr, uint32 size, uint32 resource_type, int32 (*routine)(const int32, const int32, const int32), const char* name, uint8 unmap); extern uint32 PCX; extern int32 find_unit_index (UNIT *uptr); static t_stat n8vem_reset(DEVICE *n8vem_dev); static t_stat n8vem_boot(int32 unitno, DEVICE *dptr); static t_stat n8vem_attach(UNIT *uptr, CONST char *cptr); static t_stat n8vem_detach(UNIT *uptr); static uint8 N8VEM_Read(const uint32 Addr); static uint8 N8VEM_Write(const uint32 Addr, uint8 cData); static int32 n8vemdev(const int32 port, const int32 io, const int32 data); static int32 n8vem_mem(const int32 port, const int32 io, const int32 data); static int32 save_rom = 0x00; /* When set to 1, saves ROM back to file on disk at detach time */ static int32 save_ram = 0x00; /* When set to 1, saves RAM back to file on disk at detach time */ static int32 n8vem_pio1a = 0x00; /* 8255 PIO1A IN Port */ static int32 n8vem_pio1b = 0x00; /* 8255 PIO1B OUT Port */ static int32 n8vem_pio1c = 0x00; /* 8255 PIO1C IN Port */ static int32 n8vem_pio1ctrl = 0x00; /* 8255 PIO1 Control Port */ static const char* n8vem_description(DEVICE *dptr); #define N8VEM_ROM_SIZE (1024 * 1024) #define N8VEM_RAM_SIZE (512 * 1024) #define N8VEM_RAM_SELECT (1 << 7) #define N8VEM_RAM_MASK 0x0F #define N8VEM_ROM_MASK 0x1F #define N8VEM_ADDR_MASK 0x7FFF static UNIT n8vem_unit[] = { { UDATA (NULL, UNIT_FIX + UNIT_ATTABLE + UNIT_DISABLE + UNIT_ROABLE, N8VEM_ROM_SIZE) }, { UDATA (NULL, UNIT_FIX + UNIT_ATTABLE + UNIT_DISABLE + UNIT_ROABLE, N8VEM_RAM_SIZE) } }; static REG n8vem_reg[] = { { HRDATAD (SAVEROM, save_rom, 1, "When 1, saves the ROM back to file on disk at detach time"), }, { HRDATAD (SAVERAM, save_ram, 1, "When 1 save the RAM back to file on disk at detach time"), }, { HRDATAD (PIO1A, n8vem_pio1a, 8, "8255 PIO1A IN Port"), }, { HRDATAD (PIO1B, n8vem_pio1b, 8, "8255 PIO1B OUT Port"), }, { HRDATAD (PIO1C, n8vem_pio1c, 8, "8255 PIO1C IN Port"), }, { HRDATAD (PIO1CTRL, n8vem_pio1ctrl, 8, "8255 PIO1 Control Port"), }, { NULL } }; #define N8VEM_NAME "Single-Board Computer" static const char* n8vem_description(DEVICE *dptr) { return N8VEM_NAME; } static MTAB n8vem_mod[] = { { MTAB_XTD|MTAB_VDV, 0, "MEMBASE", "MEMBASE", &set_membase, &show_membase, NULL, "Sets device base address" }, { MTAB_XTD|MTAB_VDV, 0, "IOBASE", "IOBASE", &set_iobase, &show_iobase, NULL, "Sets device I/O address" }, { 0 } }; /* Debug Flags */ static DEBTAB n8vem_dt[] = { { "PIO", PIO_MSG, "PIP activity"} , { "UART", UART_MSG, "UART activity" }, { "ROM", ROM_MSG, "ROM activity" }, { "VERBOSE", VERBOSE_MSG, "Verbose messages" }, { NULL, 0 } }; DEVICE n8vem_dev = { "N8VEM", n8vem_unit, n8vem_reg, n8vem_mod, N8VEM_MAX_DRIVES, 10, 31, 1, N8VEM_MAX_DRIVES, N8VEM_MAX_DRIVES, NULL, NULL, &n8vem_reset, &n8vem_boot, &n8vem_attach, &n8vem_detach, &n8vem_info_data, (DEV_DISABLE | DEV_DIS | DEV_DEBUG), 0, n8vem_dt, NULL, NULL, NULL, NULL, NULL, &n8vem_description }; /* Reset routine */ static t_stat n8vem_reset(DEVICE *dptr) { PNP_INFO *pnp = (PNP_INFO *)dptr->ctxt; sim_debug(VERBOSE_MSG, &n8vem_dev, "N8VEM: Reset.\n"); if(dptr->flags & DEV_DIS) { /* Disconnect I/O Ports */ sim_map_resource(pnp->io_base, pnp->io_size, RESOURCE_TYPE_IO, &n8vemdev, "n8vemdev", TRUE); sim_map_resource(pnp->mem_base, pnp->mem_size, RESOURCE_TYPE_MEMORY, &n8vem_mem, "n8vem_mem", TRUE); free(n8vem_info->ram); free(n8vem_info->rom); } else { /* Connect N8VEM at base address */ if(sim_map_resource(pnp->io_base, pnp->io_size, RESOURCE_TYPE_IO, &n8vemdev, "n8vemdev", FALSE) != 0) { sim_printf("%s: error mapping I/O resource at 0x%04x\n", __FUNCTION__, pnp->io_base); return SCPE_ARG; } /* Connect N8VEM Memory (512K RAM, 1MB FLASH) */ if(sim_map_resource(pnp->mem_base, pnp->mem_size, RESOURCE_TYPE_MEMORY, &n8vem_mem, "n8vem_mem", FALSE) != 0) { sim_printf("%s: error mapping MEM resource at 0x%04x\n", __FUNCTION__, pnp->mem_base); return SCPE_ARG; } n8vem_info->ram = (uint8 *)calloc(1, (N8VEM_RAM_SIZE)); n8vem_info->rom = (uint8 *)calloc(1, (N8VEM_ROM_SIZE)); /* Clear the RAM and ROM mapping registers */ n8vem_info->mpcl_ram = 0; n8vem_info->mpcl_rom = 0; } return SCPE_OK; } static t_stat n8vem_boot(int32 unitno, DEVICE *dptr) { sim_debug(VERBOSE_MSG, &n8vem_dev, "N8VEM: Boot.\n"); /* Clear the RAM and ROM mapping registers */ n8vem_info->mpcl_ram = 0; n8vem_info->mpcl_rom = 0; /* Set the PC to 0, and go. */ *((int32 *) sim_PC->loc) = 0; return SCPE_OK; } /* Attach routine */ static t_stat n8vem_attach(UNIT *uptr, CONST char *cptr) { t_stat r; int32 i = 0, rtn; i = find_unit_index(uptr); if (i == -1) { return (SCPE_IERR); } r = attach_unit(uptr, cptr); /* attach unit */ if ( r != SCPE_OK) /* error? */ return r; /* Determine length of this disk */ uptr->capac = sim_fsize(uptr->fileref); sim_debug(VERBOSE_MSG, &n8vem_dev, "N8VEM: Attach %s.\n", i == 0 ? "ROM" : "RAM"); if(i == 0) { /* Attaching ROM */ n8vem_info->rom_attached = TRUE; /* Erase ROM */ memset(n8vem_info->rom, 0xFF, N8VEM_ROM_SIZE); if(uptr->capac > 0) { /* Only read in enough of the file to fill the ROM. */ if (uptr->capac > N8VEM_ROM_SIZE) uptr->capac = N8VEM_ROM_SIZE; rtn = fread((void *)(n8vem_info->rom), uptr->capac, 1, uptr->fileref); sim_debug(VERBOSE_MSG, &n8vem_dev, "N8VEM: Reading %d bytes into ROM." " Result = %ssuccessful.\n", uptr->capac, rtn == 1 ? "" : "not "); } } else { /* attaching RAM */ /* Erase RAM */ memset(n8vem_info->ram, 0x00, N8VEM_RAM_SIZE); if(uptr->capac > 0) { /* Only read in enough of the file to fill the RAM. */ if(uptr->capac > N8VEM_RAM_SIZE) uptr->capac = N8VEM_RAM_SIZE; rtn = fread((void *)(n8vem_info->ram), uptr->capac, 1, uptr->fileref); sim_debug(VERBOSE_MSG, &n8vem_dev, "N8VEM: Reading %d bytes into RAM." " Result = %ssuccessful.\n", uptr->capac, rtn == 1 ? "" : "not "); } } return r; } /* Detach routine */ static t_stat n8vem_detach(UNIT *uptr) { t_stat r; int32 i = 0; i = find_unit_index(uptr); if (i == -1) { return (SCPE_IERR); } sim_debug(VERBOSE_MSG, &n8vem_dev, "N8VEM: Detach %s.\n", i == 0 ? "ROM" : "RAM"); /* rewind to the beginning of the file. */ if(sim_fseek(uptr->fileref, 0, SEEK_SET)) { sim_debug(VERBOSE_MSG, &n8vem_dev, "N8VEM: Cannot write into %s image.\n", i == 0 ? "ROM" : "RAM"); } else if(i == 0) { /* ROM */ /* Save the ROM back to disk if SAVEROM is set. */ if(save_rom == 1) { sim_debug(VERBOSE_MSG, &n8vem_dev, "N8VEM: Writing %d bytes into ROM image.\n", N8VEM_ROM_SIZE); fwrite((void *)(n8vem_info->rom), N8VEM_ROM_SIZE, 1, uptr->fileref); } } else { /* RAM */ /* Save the RAM back to disk if SAVERAM is set. */ if(save_ram == 1) { sim_debug(VERBOSE_MSG, &n8vem_dev, "N8VEM: Writing %d bytes into RAM image.\n", N8VEM_RAM_SIZE); fwrite((void *)(n8vem_info->ram), N8VEM_RAM_SIZE, 1, uptr->fileref); } } r = detach_unit(uptr); /* detach unit */ return r; } /* RAM MEMORY PAGE CONFIGURATION LATCH CONTROL PORT ( IO_Y3 ) INFORMATION * * 7 6 5 4 3 2 1 0 ONLY APPLICABLE TO THE LOWER MEMORY PAGE $0000-$7FFF * ^ ^ ^ ^ ^ ^ ^ ^ * : : : : : : : :--0 = A15 RAM ADDRESS LINE DEFAULT IS 0 * : : : : : : :----0 = A16 RAM ADDRESS LINE DEFAULT IS 0 * : : : : : :------0 = A17 RAM ADDRESS LINE DEFAULT IS 0 * : : : : :--------0 = A18 RAM ADDRESS LINE DEFAULT IS 0 * : : : :-----------0 = * : : :-------------0 = * : :---------------0 = * :-----------------0 = * * ROM MEMORY PAGE CONFIGURATION LATCH CONTROL PORT ( IO_Y3+$04 ) INFORMATION * * 7 6 5 4 3 2 1 0 ONLY APPLICABLE TO THE LOWER MEMORY PAGE $0000-$7FFF * ^ ^ ^ ^ ^ ^ ^ ^ * : : : : : : : :--0 = A15 ROM ADDRESS LINE DEFAULT IS 0 * : : : : : : :----0 = A16 ROM ADDRESS LINE DEFAULT IS 0 * : : : : : :------0 = A17 ROM ADDRESS LINE DEFAULT IS 0 * : : : : :--------0 = A18 ROM ADDRESS LINE DEFAULT IS 0 * : : : :-----------0 = A19 ROM ONLY ADDRESS LINE DEFAULT IS 0 * : : :-------------0 = * : :---------------0 = * :-----------------0 = ROM SELECT (0=ROM, 1=RAM) DEFAULT IS 0 */ static int32 n8vem_mem(const int32 Addr, const int32 write, const int32 data) { /* DBG_PRINT(("N8VEM: ROM %s, Addr %04x\n", write ? "WR" : "RD", Addr)); */ if(write) { if(n8vem_info->mpcl_rom & N8VEM_RAM_SELECT) { n8vem_info->ram[((n8vem_info->mpcl_ram & N8VEM_RAM_MASK) << 15) | (Addr & N8VEM_ADDR_MASK)] = data; } else { if(save_rom == 1) { n8vem_info->rom[((n8vem_info->mpcl_rom & N8VEM_ROM_MASK) << 15) | (Addr & N8VEM_ADDR_MASK)] = data; } else { sim_debug(ROM_MSG, &n8vem_dev, "N8VEM: " ADDRESS_FORMAT " WR ROM[0x%05x]: Cannot write to ROM.\n", PCX, ((n8vem_info->mpcl_rom & N8VEM_ROM_MASK) << 15) | (Addr & N8VEM_ADDR_MASK)); } } return 0; } else { if(n8vem_info->mpcl_rom & N8VEM_RAM_SELECT) { return n8vem_info->ram[((n8vem_info->mpcl_ram & N8VEM_RAM_MASK) << 15) | (Addr & N8VEM_ADDR_MASK)]; } else { return n8vem_info->rom[((n8vem_info->mpcl_rom & N8VEM_ROM_MASK) << 15) | (Addr & N8VEM_ADDR_MASK)]; } } } static int32 n8vemdev(const int32 port, const int32 io, const int32 data) { /* DBG_PRINT(("N8VEM: IO %s, Port %02x\n", io ? "WR" : "RD", port)); */ if(io) { N8VEM_Write(port, data); return 0; } else { return(N8VEM_Read(port)); } } #define N8VEM_PIO1A 0x00 /* (INPUT) IN 1-8 */ #define N8VEM_PIO1B 0x01 /* (OUTPUT) OUT TO LEDS */ #define N8VEM_PIO1C 0x02 /* (INPUT) */ #define N8VEM_PIO1CONT 0x03 /* CONTROL BYTE PIO 82C55 */ #define N8VEM_UART_DATA 0x08 #define N8VEM_UART_RSR 0x09 #define N8VEM_UART_INTR 0x0A #define N8VEM_UART_LCR 0x0B #define N8VEM_UART_MCR 0x0C #define N8VEM_UART_LSR 0x0D #define N8VEM_UART_MSR 0x0E #define N8VEM_UART_SCR 0x0F #define N8VEM_MPCL_RAM 0x18 /* RAM Address control port */ #define N8VEM_MPCL_RAM1 0x19 /* RAM Address control port */ #define N8VEM_MPCL_RAM2 0x1A /* RAM Address control port */ #define N8VEM_MPCL_RAM3 0x1B /* RAM Address control port */ #define N8VEM_MPCL_ROM 0x1C /* ROM Address control port */ #define N8VEM_MPCL_ROM1 0x1D /* ROM Address control port */ #define N8VEM_MPCL_ROM2 0x1E /* ROM Address control port */ #define N8VEM_MPCL_ROM3 0x1F /* ROM Address control port */ extern int32 sio0d(const int32 port, const int32 io, const int32 data); extern int32 sio0s(const int32 port, const int32 io, const int32 data); static uint8 N8VEM_Read(const uint32 Addr) { uint8 cData = 0xFF; switch(Addr & 0x1F) { case N8VEM_PIO1A: sim_debug(PIO_MSG, &n8vem_dev, "N8VEM: " ADDRESS_FORMAT " RD: PIO1A\n", PCX); cData = n8vem_pio1a; break; case N8VEM_PIO1B: sim_debug(PIO_MSG, &n8vem_dev, "N8VEM: " ADDRESS_FORMAT " RD: PIO1B\n", PCX); cData = n8vem_pio1b; break; case N8VEM_PIO1C: sim_debug(PIO_MSG, &n8vem_dev, "N8VEM: " ADDRESS_FORMAT " RD: PIO1C\n", PCX); cData = n8vem_pio1c; break; case N8VEM_PIO1CONT: sim_debug(PIO_MSG, &n8vem_dev, "N8VEM: " ADDRESS_FORMAT " RD: PIO1CTRL\n", PCX); cData = n8vem_pio1ctrl; break; case N8VEM_UART_LCR: cData = n8vem_info->uart_lcr; break; case N8VEM_UART_DATA: case N8VEM_UART_RSR: case N8VEM_UART_LSR: case N8VEM_UART_INTR: case N8VEM_UART_MCR: case N8VEM_UART_MSR: sim_debug(UART_MSG, &n8vem_dev, "N8VEM: " ADDRESS_FORMAT " RD[%02x]: UART not Implemented.\n", PCX, Addr); break; case N8VEM_UART_SCR: /* 16550 Scratchpad, implemented so software can detect UART is present */ cData = n8vem_info->uart_scr; break; case N8VEM_MPCL_RAM: case N8VEM_MPCL_RAM1: case N8VEM_MPCL_RAM2: case N8VEM_MPCL_RAM3: sim_debug(MPCL_MSG, &n8vem_dev, "N8VEM: " ADDRESS_FORMAT " RD: MPCL_RAM not Implemented.\n", PCX); break; case N8VEM_MPCL_ROM: case N8VEM_MPCL_ROM1: case N8VEM_MPCL_ROM2: case N8VEM_MPCL_ROM3: sim_debug(MPCL_MSG, &n8vem_dev, "N8VEM: " ADDRESS_FORMAT " RD: MPCL_ROM not Implemented.\n", PCX); break; default: sim_debug(VERBOSE_MSG, &n8vem_dev, "N8VEM: " ADDRESS_FORMAT " RD[%02x]: not Implemented.\n", PCX, Addr); break; } return (cData); } static uint8 N8VEM_Write(const uint32 Addr, uint8 cData) { switch(Addr & 0x1F) { case N8VEM_PIO1A: sim_debug(PIO_MSG, &n8vem_dev, "N8VEM: " ADDRESS_FORMAT " WR: PIO1A=0x%02x\n", PCX, cData); n8vem_pio1a = cData; break; case N8VEM_PIO1B: sim_debug(PIO_MSG, &n8vem_dev, "N8VEM: " ADDRESS_FORMAT " WR: PIO1B=0x%02x\n", PCX, cData); n8vem_pio1b = cData; break; case N8VEM_PIO1C: sim_debug(PIO_MSG, &n8vem_dev, "N8VEM: " ADDRESS_FORMAT " WR: PIO1C=0x%02x\n", PCX, cData); n8vem_pio1c = cData; break; case N8VEM_PIO1CONT: sim_debug(PIO_MSG, &n8vem_dev, "N8VEM: " ADDRESS_FORMAT " WR: PIO1_CTRL=0x%02x\n", PCX, cData); n8vem_pio1ctrl = cData; break; case N8VEM_UART_LCR: sim_debug(UART_MSG, &n8vem_dev, "N8VEM: " ADDRESS_FORMAT " WR: UART LCR=%02x.\n", PCX, cData); n8vem_info->uart_lcr = cData; break; case N8VEM_UART_DATA: case N8VEM_UART_RSR: case N8VEM_UART_INTR: case N8VEM_UART_MCR: case N8VEM_UART_LSR: case N8VEM_UART_MSR: sim_debug(UART_MSG, &n8vem_dev, "N8VEM: " ADDRESS_FORMAT " WR[%02x]: UART not Implemented.\n", PCX, Addr); break; case N8VEM_UART_SCR: /* 16550 Scratchpad, implemented so software can detect UART is present */ n8vem_info->uart_scr = cData; break; case N8VEM_MPCL_RAM: case N8VEM_MPCL_RAM1: case N8VEM_MPCL_RAM2: case N8VEM_MPCL_RAM3: sim_debug(MPCL_MSG, &n8vem_dev, "N8VEM: " ADDRESS_FORMAT " WR: MPCL_RAM=0x%02x\n", PCX, cData); n8vem_info->mpcl_ram = cData; break; case N8VEM_MPCL_ROM: case N8VEM_MPCL_ROM1: case N8VEM_MPCL_ROM2: case N8VEM_MPCL_ROM3: sim_debug(MPCL_MSG, &n8vem_dev, "N8VEM: " ADDRESS_FORMAT " WR: MPCL_ROM=0x%02x\n", PCX, cData); n8vem_info->mpcl_rom = cData; break; default: sim_debug(VERBOSE_MSG, &n8vem_dev, "N8VEM: " ADDRESS_FORMAT " WR[0x%02x]=0x%02x: not Implemented.\n", PCX, Addr, cData); break; } return(0); }