/* vax730_stddev.c: VAX 11/730 standard I/O devices

   Copyright (c) 2010-2011, Matt Burke
   This module incorporates code from SimH, Copyright (c) 1998-2008, Robert M Supnik

   Permission is hereby granted, free of charge, to any person obtaining a
   copy of this software and associated documentation files (the "Software"),
   to deal in the Software without restriction, including without limitation
   the rights to use, copy, modify, merge, publish, distribute, sublicense,
   and/or sell copies of the Software, and to permit persons to whom the
   Software is furnished to do so, subject to the following conditions:

   The above copyright notice and this permission notice shall be included in
   all copies or substantial portions of the Software.

   THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
   IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
   FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
   THE AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
   IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
   CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

   Except as contained in this notice, the name(s) of the author(s) shall not be
   used in advertising or otherwise to promote the sale, use or other dealings
   in this Software without prior written authorization from the author(s).

   tti          console input
   tto          console output
   td           console TU58
   todr         TODR clock
   tmr          interval timer

   28-Sep-11    MP      Generalized setting TODR for all OSes.  
                        Unbound the TODR value from the 100hz clock tick 
                        interrupt.  TODR now behaves like the original 
                        battery backed-up clock and runs with the wall 
                        clock, not the simulated instruction clock.  
                        Two operational modes are available:
                        - Default VMS mode, which is similar to the previous 
                          behavior in that without initializing the TODR it 
                          would default to the value VMS would set it to if
                          VMS knew the correct time.  This would be correct
                          almost all the time unless a VMS disk hadn't been
                          booted from for more than a year.  This mode 
                          produces strange time results for non VMS OSes on 
                          each system boot.
                        - OS Agnostic mode.  This mode behaves precisely like
                          the VAX780 TODR and works correctly for all OSes.  
                          This mode is enabled by attaching the TODR to a 
                          battery backup state file for the TOY clock 
                          (i.e. sim> attach TODR TOY_CLOCK).  When operating 
                          in OS Agnostic mode, the TODR will initially start
                          counting from 0 and be adjusted differently when an
                          OS specifically writes to the TODR.  VMS will prompt
                          to set the time on each boot unless the SYSGEN 
                          parameter TIMEPROMPTWAIT is set to 0.
   29-Mar-2011  MB      First Version
*/

#include "vax_defs.h"
#include "sim_tmxr.h"

#include "pdp11_td.h"

/* Terminal definitions */

#define RXCS_RD         (CSR_DONE + CSR_IE)             /* terminal input */
#define RXCS_WR         (CSR_IE)
#define RXDB_V_SEL      8                               /* unit select */
#define RXDB_M_SEL      0xF
#define  RXDB_TERM      0x0                             /* console terminal */
#define  RXDB_MISC      0xF                             /* console misc */
#define RXDB_ERR        0x8000                          /* error */
#define TXCS_RD         (CSR_DONE + CSR_IE)             /* terminal output */
#define TXCS_WR         (CSR_IE)
#define TXDB_V_SEL      8                               /* unit select */
#define TXDB_M_SEL      0xF
#define  TXDB_TERM      0x0                             /* console terminal */
#define  TXDB_MISC      0xF                             /* console misc */
#define MISC_MASK        0xFF                           /* console data mask */
#define  MISC_SWDN       0x1                            /* software done */
#define  MISC_BOOT       0x2                            /* reboot */
#define  MISC_CLWS       0x3                            /* clear warm start */
#define  MISC_CLCS       0x4                            /* clear cold start */
#define TXDB_SEL        (TXDB_M_SEL << TXDB_V_SEL)      /* non-terminal */
#define TXDB_GETSEL(x)  (((x) >> TXDB_V_SEL) & TXDB_M_SEL)

/* Clock definitions */

#define TMR_CSR_ERR     0x80000000                      /* error W1C */
#define TMR_CSR_DON     0x00000080                      /* done W1C */
#define TMR_CSR_IE      0x00000040                      /* int enb RW */
#define TMR_CSR_SGL     0x00000020                      /* single WO */
#define TMR_CSR_XFR     0x00000010                      /* xfer WO */
#define TMR_CSR_RUN     0x00000001                      /* run RW */
#define TMR_CSR_RD      (TMR_CSR_W1C | TMR_CSR_WR)
#define TMR_CSR_W1C     (TMR_CSR_ERR | TMR_CSR_DON)
#define TMR_CSR_WR      (TMR_CSR_IE | TMR_CSR_RUN)
#define TMR_INC         10000                           /* usec/interval */
#define CLK_DELAY       5000                            /* 100 Hz */
#define TMXR_MULT       1                               /* 100 Hz */

static BITFIELD tmr_iccs_bits [] = {
    BIT(RUN),                                   /* Run */
    BITNCF(3),                                  /* unused */
    BIT(XFR),                                   /* Transfer */
    BIT(SGL),                                   /* Single */
    BIT(IE),                                    /* Interrupt Enable */
    BIT(DON),                                   /* Done */
    BITNCF(23),                                 /* unused */
    BIT(ERR),                                   /* Error */
    ENDBITS
    };

/* TU58 definitions */

#define TD_NUMBLK       512                             /* blocks/tape */
#define TD_NUMBY        512                             /* bytes/block */
#define TD_SIZE         (TD_NUMBLK * TD_NUMBY)          /* bytes/tape */

#define TD_OPDAT        001                             /* Data */
#define TD_OPCMD        002                             /* Command */
#define TD_OPINI        004                             /* INIT */
#define TD_OPBOO        010                             /* Bootstrap */
#define TD_OPCNT        020                             /* Continue */
#define TD_OPXOF        023                             /* XOFF */

#define TD_CMDNOP       0000                            /* NOP */
#define TD_CMDINI       0001                            /* INIT */
#define TD_CMDRD        0002                            /* Read */
#define TD_CMDWR        0003                            /* Write */
#define TD_CMDPOS       0005                            /* Position */
#define TD_CMDDIA       0007                            /* Diagnose */
#define TD_CMDGST       0010                            /* Get Status */
#define TD_CMDSST       0011                            /* Set Status */
#define TD_CMDMRSP      0012                            /* MRSP Request */
#define TD_CMDEND       0100                            /* END */

#define TD_STSOK        0000                            /* Normal success */
#define TD_STSRTY       0001                            /* Success with retries */
#define TD_STSFAIL      0377                            /* Failed selftest */
#define TD_STSPO        0376                            /* Partial operation (end of medium) */
#define TD_STSBUN       0370                            /* Bad unit number */
#define TD_STSNC        0367                            /* No cartridge */
#define TD_STSWP        0365                            /* Write protected */
#define TD_STSDCE       0357                            /* Data check error */
#define TD_STSSE        0340                            /* Seek error (block not found) */
#define TD_STSMS        0337                            /* Motor stopped */
#define TD_STSBOP       0320                            /* Bad opcode */
#define TD_STSBBN       0311                            /* Bad block number (>511) */

#define TD_GETOPC       0                               /* get opcode state */
#define TD_GETLEN       1                               /* get length state */
#define TD_GETDATA      2                               /* get data state */

#define TD_IDLE         0                               /* idle state */
#define TD_READ         1                               /* read */
#define TD_READ1        2                               /* fill buffer */
#define TD_READ2        3                               /* empty buffer */
#define TD_WRITE        4                               /* write */
#define TD_WRITE1       5                               /* write */
#define TD_WRITE2       6                               /* write */
#define TD_END          7                               /* empty buffer */
#define TD_END1         8                               /* empty buffer */
#define TD_INIT         9                               /* empty buffer */

int32 tti_csr = 0;                                      /* control/status */
uint32 tti_buftime;                                     /* time input character arrived */
int32 tti_buf = 0;                                      /* buffer */
int32 tti_int = 0;                                      /* interrupt */
int32 tto_csr = 0;                                      /* control/status */
int32 tto_buf = 0;                                      /* buffer */
int32 tto_int = 0;                                      /* interrupt */

int32 csi_int = 0;                                      /* interrupt */
int32 cso_int = 0;                                      /* interrupt */

int32 tmr_iccs = 0;                                     /* interval timer csr */
uint32 tmr_icr = 0;                                     /* curr interval */
uint32 tmr_nicr = 0;                                    /* next interval */
uint32 tmr_inc = 0;                                     /* timer increment */
int32 tmr_int = 0;                                      /* interrupt */
int32 clk_tps = 100;                                    /* ticks/second */
int32 tmxr_poll = CLK_DELAY * TMXR_MULT;                /* term mux poll */
int32 tmr_poll = CLK_DELAY;                             /* pgm timer poll */
struct todr_battery_info {
    uint32 toy_gmtbase;                                 /* GMT base of set value */
    uint32 toy_gmtbasemsec;                             /* The milliseconds of the set value */
    uint32 toy_endian_plus2;                            /* 2 -> Big Endian, 3 -> Little Endian, invalid otherwise */
    };
typedef struct todr_battery_info TOY;

int32 td_regval;                                        /* temp location used in reg declarations */

t_stat tti_svc (UNIT *uptr);
t_stat tto_svc (UNIT *uptr);
t_stat tmr_svc (UNIT *uptr);
t_stat clk_svc (UNIT *uptr);
t_stat tti_reset (DEVICE *dptr);
t_stat tto_reset (DEVICE *dptr);
t_stat clk_reset (DEVICE *dptr);
const char *tti_description (DEVICE *dptr);
const char *tto_description (DEVICE *dptr);
const char *clk_description (DEVICE *dptr);
const char *tmr_description (DEVICE *dptr);
const char *td_description (DEVICE *dptr);
t_stat tti_help (FILE *st, DEVICE *dptr, UNIT *uptr, int32 flag, const char *cptr);
t_stat tto_help (FILE *st, DEVICE *dptr, UNIT *uptr, int32 flag, const char *cptr);
t_stat clk_help (FILE *st, DEVICE *dptr, UNIT *uptr, int32 flag, const char *cptr);
t_stat clk_attach (UNIT *uptr, CONST char *cptr);
t_stat clk_detach (UNIT *uptr);
t_stat tmr_reset (DEVICE *dptr);
t_stat td_reset (DEVICE *dptr);
int32 icr_rd (void);
void tmr_sched (uint32 incr);
t_stat todr_resync (void);
t_stat txdb_misc_wr (int32 data);

/* TTI data structures

   tti_dev      TTI device descriptor
   tti_unit     TTI unit descriptor
   tti_reg      TTI register list
*/

UNIT tti_unit = { UDATA (&tti_svc, UNIT_IDLE|TT_MODE_8B, 0), TMLN_SPD_9600_BPS };

REG tti_reg[] = {
    { HRDATAD (RXDB,       tti_buf,         16, "last data item processed") },
    { HRDATAD (RXCS,       tti_csr,         16, "control/status register") },
    { FLDATAD (INT,        tti_int,          0, "interrupt pending flag") },
    { FLDATAD (DONE,       tti_csr, CSR_V_DONE, "device done flag (CSR<7>)") },
    { FLDATAD (IE,         tti_csr,   CSR_V_IE, "interrupt enable flag (CSR<6>)") },
    { DRDATAD (POS,   tti_unit.pos,   T_ADDR_W, "number of characters input"), PV_LEFT },
    { DRDATAD (TIME, tti_unit.wait,         24, "input polling interval"), PV_LEFT },
    { NULL }
    };

MTAB tti_mod[] = {
    { TT_MODE, TT_MODE_7B, "7b", "7B", NULL, NULL, NULL, "Set 7 bit mode" },
    { TT_MODE, TT_MODE_8B, "8b", "8B", NULL, NULL, NULL, "Set 8 bit mode" },
    { 0 }
    };

DEVICE tti_dev = {
    "TTI", &tti_unit, tti_reg, tti_mod,
    1, 10, 31, 1, 16, 8,
    NULL, NULL, &tti_reset,
    NULL, NULL, NULL,
    NULL, 0, 0, NULL, NULL, NULL, &tti_help, NULL, NULL, 
    &tti_description
    };

/* TTO data structures

   tto_dev      TTO device descriptor
   tto_unit     TTO unit descriptor
   tto_reg      TTO register list
*/

UNIT tto_unit = { UDATA (&tto_svc, TT_MODE_8B, 0), SERIAL_OUT_WAIT };

REG tto_reg[] = {
    { HRDATAD (TXDB,       tto_buf,         16, "last data item processed") },
    { HRDATAD (TXCS,       tto_csr,         16, "control/status register") },
    { FLDATAD (INT,        tto_int,          0, "interrupt pending flag") },
    { FLDATAD (DONE,       tto_csr, CSR_V_DONE, "device done flag (CSR<7>)") },
    { FLDATAD (IE,         tto_csr,   CSR_V_IE, "interrupt enable flag (CSR<6>)") },
    { DRDATAD (POS,   tto_unit.pos,   T_ADDR_W, "number of characters output"), PV_LEFT },
    { DRDATAD (TIME, tto_unit.wait,         24, "time from I/O initiation to interrupt"), PV_LEFT + REG_NZ },
    { NULL }
    };

MTAB tto_mod[] = {
    { TT_MODE, TT_MODE_7B, "7b", "7B", NULL, NULL, NULL, "Set 7 bit mode" },
    { TT_MODE, TT_MODE_8B, "8b", "8B", NULL, NULL, NULL, "Set 8 bit mode" },
    { TT_MODE, TT_MODE_7P, "7p", "7P", NULL, NULL, NULL, "Set 7 bit mode (suppress non printing)" },
    { 0 }
    };

DEVICE tto_dev = {
    "TTO", &tto_unit, tto_reg, tto_mod,
    1, 10, 31, 1, 16, 8,
    NULL, NULL, &tto_reset,
    NULL, NULL, NULL,
    NULL, 0, 0, NULL, NULL, NULL, &tto_help, NULL, NULL, 
    &tto_description
    };

/* TODR and TMR data structures */

UNIT clk_unit = { UDATA (&clk_svc, UNIT_IDLE+UNIT_FIX, sizeof(TOY))};

REG clk_reg[] = {
    { DRDATAD (TIME,                   clk_unit.wait,  24, "initial poll interval"), REG_NZ + PV_LEFT },
    { DRDATAD (POLL,                        tmr_poll,  24, "calibrated poll interval"), REG_NZ + PV_LEFT + REG_HRO },
#if defined (SIM_ASYNCH_IO)
    { DRDATAD (ASYNCH,            sim_asynch_enabled,   1, "asynch I/O enabled flag"), PV_LEFT },
    { DRDATAD (LATENCY,           sim_asynch_latency,  32, "desired asynch interrupt latency"), PV_LEFT },
    { DRDATAD (INST_LATENCY, sim_asynch_inst_latency,  32, "calibrated instruction latency"), PV_LEFT },
#endif
    { NULL }
    };

#define TMR_DB_TODR     0x10    /* TODR */

DEBTAB todr_deb[] = {
    { "TODR",  TMR_DB_TODR,     "TODR activities"},
    { NULL, 0 }
    };

DEVICE clk_dev = {
    "TODR", &clk_unit, clk_reg, NULL,
    1, 0, 8, 4, 0, 32,
    NULL, NULL, &clk_reset,
    NULL, &clk_attach, &clk_detach,
    NULL, DEV_DEBUG, 0, todr_deb, NULL, NULL, &clk_help, NULL, NULL, 
    &clk_description
    };

UNIT tmr_unit = { UDATA (&tmr_svc, 0, 0) };                     /* timer */

REG tmr_reg[] = {
    { HRDATAD (ICCS,          tmr_iccs, 32, "interval timer control and status") },
    { HRDATAD (ICR,            tmr_icr, 32, "interval count register") },
    { HRDATAD (NICR,          tmr_nicr, 32, "next interval count register") },
    { FLDATAD (INT,            tmr_int,  0, "interrupt request") },
    { DRDATAD (TPS,            clk_tps,  8, "ticks per second (100)"), REG_NZ + PV_LEFT },
    { HRDATA  (INCR,           tmr_inc, 32), REG_HIDDEN },
    { NULL }
    };

#define TMR_DB_REG      0x01    /* Register Access */
#define TMR_DB_TICK     0x02    /* Ticks */
#define TMR_DB_SCHED    0x04    /* Scheduling */
#define TMR_DB_INT      0x08    /* Interrupts */

DEBTAB tmr_deb[] = {
    { "REG",   TMR_DB_REG,      "Register Access"},
    { "TICK",  TMR_DB_TICK,     "Ticks"},
    { "SCHED", TMR_DB_SCHED,    "Scheduling"},
    { "INT",   TMR_DB_INT,      "Interrupts"},
    { NULL, 0 }
    };

DEVICE tmr_dev = {
    "TMR", &tmr_unit, tmr_reg, NULL,
    1, 0, 0, 0, 0, 0,
    NULL, NULL, &tmr_reset,
    NULL, NULL, NULL,
    NULL, DEV_DEBUG, 0, 
    tmr_deb, NULL, NULL, NULL, NULL, NULL, 
    &tmr_description
    };

/* TU58 data structures

   td_dev       RX device descriptor
   td_unit      RX unit list
   td_reg       RX register list
   td_mod       RX modifier list
*/

UNIT td_unit[2];

REG td_reg[] = {
    { HRDATAD (ECODE,  td_regval, 8, "end packet success code") },
    { HRDATAD (BLOCK,  td_regval, 8, "current block number") },
    { HRDATAD (RX_CSR, td_regval,16, "input control/status register") },
    { HRDATAD (RX_BUF, td_regval,16, "input buffer register") },
    { HRDATAD (TX_CSR, td_regval,16, "output control/status register") },
    { HRDATAD (TX_BUF, td_regval,16, "output buffer register") },
    { DRDATAD (P_STATE,td_regval, 4, "protocol state"), REG_RO },
    { DRDATAD (O_STATE,td_regval, 4, "output state"), REG_RO },
    { DRDATAD (IBPTR,  td_regval, 9, "input buffer pointer")  },
    { DRDATAD (OBPTR,  td_regval, 9, "output buffer pointer")  },
    { DRDATAD (ILEN,   td_regval, 9, "input length")  },
    { DRDATAD (OLEN,   td_regval, 9, "output length")  },
    { DRDATAD (TXSIZE, td_regval, 9, "remaining transfer size")  },
    { DRDATAD (OFFSET, td_regval, 9, "offset into current transfer")  },
    { DRDATAD (CTIME,  td_regval,24, "command time"), PV_LEFT },
    { DRDATAD (STIME,  td_regval,24, "seek, per block"), PV_LEFT },
    { DRDATAD (XTIME,  td_regval,24, "tr set time"), PV_LEFT },
    { DRDATAD (ITIME,  td_regval,24, "init time"), PV_LEFT },
    { NULL }
    };

MTAB td_mod[] = {
    { MTAB_XTD|MTAB_VUN, 0, "write enabled", "WRITEENABLED", 
        &set_writelock, &show_writelock,   NULL, "Write enable TU58 drive" },
    { MTAB_XTD|MTAB_VUN, 1, NULL, "LOCKED", 
        &set_writelock, NULL,   NULL, "Write lock TU58 drive" },
    { 0 }
    };

DEVICE td_dev = {
    "TD", td_unit, td_reg, td_mod,
    2, DEV_RDX, 20, 1, DEV_RDX, 8,
    NULL, NULL, &td_reset,
    NULL, NULL, NULL,
    NULL, DEV_DEBUG, 0, td_deb, NULL, NULL, NULL, NULL, NULL, 
    &td_description
    };

static void set_csi_int (int32 ctlr, t_bool val)
{
if (csi_int ^ val) {
    csi_int = val;
    sim_debug (TDDEB_INT, &td_dev, "CSI_INT(%d)\n", val);
    }
}

static void set_cso_int (int32 ctlr, t_bool val)
{
if (cso_int ^ val) {
    cso_int = val;
    sim_debug (TDDEB_INT, &td_dev, "CSO_INT(%d)\n", val);
    }
}

/* Console storage MxPR routines

   csrs_rd/wr   input control/status
   csrd_rd      input buffer
   csts_rd/wr   output control/status
   cstd_wr      output buffer
*/

#define ctlr up7

int32 csrs_rd (void)
{
int32 data;

sim_debug (TDDEB_IRD, &td_dev, "csrs_rd()\n");
td_rd_i_csr ((CTLR *)td_unit[0].ctlr, &data);
return data;
}

void csrs_wr (int32 data)
{
sim_debug (TDDEB_IWR, &td_dev, "csrs_wr()\n");
td_wr_i_csr ((CTLR *)td_unit[0].ctlr, data);
}

int32 csrd_rd (void)
{
int32 data;
sim_debug (TDDEB_IRD, &td_dev, "csrd_rd()\n");
td_rd_i_buf ((CTLR *)td_unit[0].ctlr, &data);
return data;
}

int32 csts_rd (void)
{
int32 data;

sim_debug (TDDEB_ORD, &td_dev, "csts_rd()\n");
td_rd_o_csr ((CTLR *)td_unit[0].ctlr, &data);
return data;
}

void csts_wr (int32 data)
{
sim_debug (TDDEB_OWR, &td_dev, "csts_wr()\n");
td_wr_o_csr ((CTLR *)td_unit[0].ctlr, data);
}

void cstd_wr (int32 data)
{
sim_debug (TDDEB_OWR, &td_dev, "cstd_wr()\n");
td_wr_o_buf ((CTLR *)td_unit[0].ctlr, data);
}

/* Terminal MxPR routines

   rxcs_rd/wr   input control/status
   rxdb_rd      input buffer
   txcs_rd/wr   output control/status
   txdb_wr      output buffer
*/

int32 rxcs_rd (void)
{
return (tti_csr & RXCS_RD);
}

void rxcs_wr (int32 data)
{
if ((data & CSR_IE) == 0)
    tti_int = 0;
else {
    if ((tti_csr & (CSR_DONE + CSR_IE)) == CSR_DONE)
        tti_int = 1;
    }
tti_csr = (tti_csr & ~RXCS_WR) | (data & RXCS_WR);
}

int32 rxdb_rd (void)
{
int32 t = tti_buf;                                      /* char + error */

if (tti_csr & CSR_DONE) {                               /* Input pending ? */
    tti_csr = tti_csr & ~CSR_DONE;                      /* clr done */
    tti_buf = tti_buf & BMASK;                          /* clr errors */
    tti_int = 0;
    sim_activate_after_abs (&tti_unit, tti_unit.wait);  /* check soon for more input */
    }
return t;
}

int32 txcs_rd (void)
{
return (tto_csr & TXCS_RD);
}

void txcs_wr (int32 data)
{
if ((data & CSR_IE) == 0)
    tto_int = 0;
else {
    if ((tto_csr & (CSR_DONE + CSR_IE)) == CSR_DONE)
        tto_int = 1;
    }
tto_csr = (tto_csr & ~TXCS_WR) | (data & TXCS_WR);
}

void txdb_wr (int32 data)
{
tto_buf = data & WMASK;                                 /* save data */
tto_csr = tto_csr & ~CSR_DONE;                          /* clear flag */
tto_int = 0;                                            /* clear int */
if (tto_buf & TXDB_SEL)                                 /* console mailbox? */
    txdb_misc_wr (tto_buf);
sim_activate (&tto_unit, tto_unit.wait);                /* no, console */
}

/* Terminal input service (poll for character) */

t_stat tti_svc (UNIT *uptr)
{
int32 c;

sim_clock_coschedule (uptr, tmxr_poll);                 /* continue poll */

if ((tti_csr & CSR_DONE) &&                             /* input still pending and < 500ms? */
    ((sim_os_msec () - tti_buftime) < 500))
     return SCPE_OK;
if ((c = sim_poll_kbd ()) < SCPE_KFLAG)                 /* no char or error? */
    return c;
if (c & SCPE_BREAK)                                     /* break? */
    tti_buf = RXDB_ERR;
else
    tti_buf = sim_tt_inpcvt (c, TT_GET_MODE (uptr->flags));
tti_buftime = sim_os_msec ();
uptr->pos = uptr->pos + 1;
tti_csr = tti_csr | CSR_DONE;
if (tti_csr & CSR_IE)
    tti_int = 1;
return SCPE_OK;
}

/* Terminal input reset */

t_stat tti_reset (DEVICE *dptr)
{
tmxr_set_console_units (&tti_unit, &tto_unit);
tti_buf = 0;
tti_csr = 0;
tti_int = 0;
sim_activate (&tti_unit, tmr_poll);
return SCPE_OK;
}

t_stat tti_help (FILE *st, DEVICE *dptr, UNIT *uptr, int32 flag, const char *cptr)
{
fprintf (st, "Console Terminal Input (TTI)\n\n");
fprintf (st, "The terminal input (TTI) polls the console keyboard for input.\n\n");
fprint_set_help (st, dptr);
fprint_show_help (st, dptr);
fprint_reg_help (st, dptr);
return SCPE_OK;
}

const char *tti_description (DEVICE *dptr)
{
return "console terminal input";
}
/* Terminal output service (output character) */

t_stat tto_svc (UNIT *uptr)
{
int32 c;
t_stat r;

if ((tto_buf & TXDB_SEL) == 0) {                        /* for console? */
    c = sim_tt_outcvt (tto_buf, TT_GET_MODE (uptr->flags));
    if (c >= 0) {
        if ((r = sim_putchar_s (c)) != SCPE_OK) {       /* output; error? */
            sim_activate (uptr, uptr->wait);            /* retry */
            return ((r == SCPE_STALL)? SCPE_OK: r);     /* !stall? report */
            }
        }
    uptr->pos = uptr->pos + 1;
    }
tto_csr = tto_csr | CSR_DONE;
if (tto_csr & CSR_IE)
    tto_int = 1;
return SCPE_OK;
}

/* Terminal output reset */

t_stat tto_reset (DEVICE *dptr)
{
tto_buf = 0;
tto_csr = CSR_DONE;
tto_int = 0;
sim_cancel (&tto_unit);                                 /* deactivate unit */
return SCPE_OK;
}

t_stat tto_help (FILE *st, DEVICE *dptr, UNIT *uptr, int32 flag, const char *cptr)
{
fprintf (st, "Console Terminal Output (TTO)\n\n");
fprintf (st, "The terminal output (TTO) writes to the simulator console.\n\n");
fprint_set_help (st, dptr);
fprint_show_help (st, dptr);
fprint_reg_help (st, dptr);
return SCPE_OK;
}

const char *tto_description (DEVICE *dptr)
{
return "console terminal output";
}

/* Programmable timer

   The architected VAX timer, which increments at 1Mhz, cannot be
   accurately simulated due to the overhead that would be required
   for 1M clock events per second.  Instead 1Mhz intervals are 
   derived from the calibrated instruction execution rate.

   If the interval register is read, then its value between events
   is interpolated relative to the elapsed instruction count.
*/

int32 iccs_rd (void)
{
sim_debug_bits_hdr (TMR_DB_REG, &tmr_dev, "iccs_rd()", tmr_iccs_bits, tmr_iccs, tmr_iccs, TRUE);
return tmr_iccs & TMR_CSR_RD;
}

void iccs_wr (int32 val)
{
sim_debug_bits_hdr (TMR_DB_REG, &tmr_dev, "iccs_wr()", tmr_iccs_bits, tmr_iccs, val, TRUE);
if ((val & TMR_CSR_RUN) == 0) {                         /* clearing run? */
    if (tmr_iccs & TMR_CSR_RUN) {                       /* run 1 -> 0? */
        tmr_icr = icr_rd ();                            /* update icr */
        sim_debug (TMR_DB_REG, &tmr_dev, "iccs_wr() - stopped clock with remaining ICR=0x%08X\n", tmr_icr);
        }
    sim_cancel (&tmr_unit);                             /* cancel timer */
    }
if ((tmr_iccs & CSR_DONE) && (val & CSR_DONE) &&        /* Interrupt Acked? */
    (10000 == (tmr_nicr ? (~tmr_nicr + 1) : 0xFFFFFFFF)))/* of 10ms tick */
    sim_rtcn_tick_ack (20, TMR_CLK);                    /* Let timers know */
tmr_iccs = tmr_iccs & ~(val & TMR_CSR_W1C);             /* W1C csr */
tmr_iccs = (tmr_iccs & ~TMR_CSR_WR) |                   /* new r/w */
    (val & TMR_CSR_WR);
if (val & TMR_CSR_XFR)                                  /* xfr set? */
    tmr_icr = tmr_nicr;
if (val & TMR_CSR_RUN)  {                               /* run? */
    if (val & TMR_CSR_XFR)                              /* new tir? */
        sim_cancel (&tmr_unit);                         /* stop prev */
    if (!sim_is_active (&tmr_unit))                     /* not running? */
        tmr_sched (tmr_icr);                            /* activate */
    }
else {
    if (val & TMR_CSR_XFR)                              /* xfr set? */
        tmr_icr = tmr_nicr;
    if (val & TMR_CSR_SGL) {                            /* single step? */
        tmr_icr = tmr_icr + 1;                          /* incr tmr */
        if (tmr_icr == 0) {                             /* if ovflo, */
            if (tmr_iccs & TMR_CSR_DON)                 /* done? set err */
                tmr_iccs = tmr_iccs | TMR_CSR_ERR;
            else
                tmr_iccs = tmr_iccs | TMR_CSR_DON;      /* set done */
            if (tmr_iccs & TMR_CSR_IE) {                /* ie? */
                tmr_int = 1;                            /* set int req */
                sim_debug (TMR_DB_INT, &tmr_dev, "tmr_incr() - INT=1\n");
                }
            tmr_icr = tmr_nicr;                         /* reload tir */
            }
        }
    }
if ((tmr_iccs & (TMR_CSR_DON | TMR_CSR_IE)) !=          /* update int */
    (TMR_CSR_DON | TMR_CSR_IE)) {
    if (tmr_int) {
        tmr_int = 0;
        sim_debug (TMR_DB_INT, &tmr_dev, "iccs_wr() - INT=0\n");
        }
    }
}

int32 icr_rd (void)
{
int32 result;

if (tmr_iccs & TMR_CSR_RUN) {                           /* running? */
    uint32 usecs_remaining = (uint32)sim_activate_time_usecs (&tmr_unit);

    result = (int32)(~usecs_remaining + 1);
    }
else
    result = (int32)tmr_icr;
sim_debug (TMR_DB_REG, &tmr_dev, "icr_rd() = 0x%08X%s\n", result, (tmr_iccs & TMR_CSR_RUN) ? " - interpolated" : "");
return result;
}

int32 nicr_rd (void)
{
sim_debug (TMR_DB_REG, &tmr_dev, "nicr_rd() = 0x%08X\n", tmr_nicr);
return tmr_nicr;
}

void nicr_wr (int32 val)
{
sim_debug (TMR_DB_REG, &tmr_dev, "nicr_wr(0x%08X)\n", val);
tmr_nicr = val;
}

/* Interval timer unit service */

t_stat tmr_svc (UNIT *uptr)
{
sim_debug (TMR_DB_TICK, &tmr_dev, "tmr_svc()\n");
tmxr_poll = tmr_poll * TMXR_MULT;                   /* set mux poll */
if (tmr_iccs & TMR_CSR_DON)                         /* done? set err */
    tmr_iccs = tmr_iccs | TMR_CSR_ERR;
else
    tmr_iccs = tmr_iccs | TMR_CSR_DON;              /* set done */
if (tmr_iccs & TMR_CSR_RUN)                         /* run? */
    tmr_sched (tmr_nicr);                           /* reactivate */
if (tmr_iccs & TMR_CSR_IE) {                        /* ie? set int req */
    tmr_int = 1;
    sim_debug (TMR_DB_INT, &tmr_dev, "tmr_svc() - INT=1\n");
    }
else
    tmr_int = 0;
AIO_SET_INTERRUPT_LATENCY(tmr_poll*clk_tps);        /* set interrrupt latency */
return SCPE_OK;
}

/* Timer scheduling */

void tmr_sched (uint32 nicr)
{
uint32 usecs = (nicr) ? (~nicr + 1) : 0xFFFFFFFF;

sim_debug (TMR_DB_SCHED, &tmr_dev, "tmr_sched(nicr=0x%08X-usecs=0x%08X) - tps=%d\n", nicr, usecs, clk_tps);
if (usecs == 10000)
    sim_clock_coschedule_tmr (&tmr_unit, TMR_CLK, 1);
else
    sim_activate_after (&tmr_unit, usecs);
}

/* 100Hz TODR reset */

t_stat clk_reset (DEVICE *dptr)
{
if (clk_unit.filebuf == NULL) {                         /* make sure the TODR is initialized */
    clk_unit.filebuf = calloc(sizeof(TOY), 1);
    if (clk_unit.filebuf == NULL)
        return SCPE_MEM;
    }
todr_resync ();
sim_activate_after (&clk_unit, 10000);
tmr_poll = sim_rtcn_init_unit (&clk_unit, CLK_DELAY, TMR_CLK);  /* init timer */
return SCPE_OK;
}

t_stat clk_svc (UNIT *uptr)
{
sim_activate_after (uptr, 10000);
tmr_poll = sim_rtcn_calb (100, TMR_CLK);
tmxr_poll = tmr_poll * TMXR_MULT;                       /* set mux poll */
return SCPE_OK;
}

t_stat clk_help (FILE *st, DEVICE *dptr, UNIT *uptr, int32 flag, const char *cptr)
{
fprintf (st, "Real-Time Clock (%s)\n\n", dptr->name);
fprintf (st, "The real-time clock autocalibrates; the clock interval is adjusted up or down\n");
fprintf (st, "so that the clock tracks actual elapsed time.\n\n");
fprintf (st, "The TODR (Time Of Day Register) is a 32 bit register that counts up once every\n");
fprintf (st, "10 milliseconds of wall clock time.  At the 10 millisecond rate, the 32 bit\n");
fprintf (st, "value will overflow after approximately 16 months.  The operating system\n");
fprintf (st, "running on the machine generally keeps track of when the system date/time has\n");
fprintf (st, "been set and thus can use the system's known base time plus the current TODR\n");
fprintf (st, "value to provide the correct current date/time.\n\n");
fprintf (st, "There are two modes of TODR operation:\n\n");
fprintf (st, "   Default VMS mode.  Without initializing the TODR it returns the current\n");
fprintf (st, "                      time of year offset which VMS would set the clock to\n");
fprintf (st, "                      if VMS knew the correct time (i.e. by manual input).\n");
fprintf (st, "                      This is correct almost all the time unless a VMS disk\n");
fprintf (st, "                      hadn't been booted from in the current year.  This mode\n");
fprintf (st, "                      produces strange time results for non VMS OSes on each\n");
fprintf (st, "                      system boot.\n");
fprintf (st, "   OS Agnostic mode.  This mode behaves precisely like the VAX780 TODR and\n");
fprintf (st, "                      works correctly for all OSes.  This mode is enabled by\n");
fprintf (st, "                      attaching the %s to a battery backup state file for the\n", dptr->name);
fprintf (st, "                      TOY clock (i.e. sim> attach %s TOY_CLOCK).  When\n", dptr->name);
fprintf (st, "                      operating in OS Agnostic mode, the TODR will initially\n");
fprintf (st, "                      start counting from 0 and be adjusted differently when\n");
fprintf (st, "                      an OS specifically writes to the TODR.  VMS determines\n");
fprintf (st, "                      if the TODR currently contains a valid time if the value\n");
fprintf (st, "                      it sees is less than about 1 month.  If the time isn't\n");
fprintf (st, "                      valid VMS will prompt to set the time during the system\n");
fprintf (st, "                      boot.  While prompting for the time it will wait for an\n");
fprintf (st, "                      answer to the prompt for up to the SYSGEN parameter\n");
fprintf (st, "                      TIMEPROMPTWAIT seconds.  A value of 0 for TIMEPROMPTWAIT\n");
fprintf (st, "                      will disable the clock setting prompt.\n");
fprint_reg_help (st, dptr);
return SCPE_OK;
}

const char *clk_description (DEVICE *dptr)
{
return "time of year clock";
}

static uint32 sim_byteswap32 (uint32 data)
{
uint8 *bdata = (uint8 *)&data;
uint8 tmp;

tmp = bdata[0];
bdata[0] = bdata[3];
bdata[3] = tmp;
tmp = bdata[1];
bdata[1] = bdata[2];
bdata[2] = tmp;
return data;
}

/* CLK attach */

t_stat clk_attach (UNIT *uptr, CONST char *cptr)
{
t_stat r;

uptr->flags = uptr->flags | (UNIT_ATTABLE | UNIT_BUFABLE);
memset (uptr->filebuf, 0, (size_t)uptr->capac);
r = attach_unit (uptr, cptr);
if (r != SCPE_OK)
    uptr->flags = uptr->flags & ~(UNIT_ATTABLE | UNIT_BUFABLE);
else {
    TOY *toy = (TOY *)uptr->filebuf;

    uptr->hwmark = (uint32) uptr->capac;
    if ((toy->toy_endian_plus2 < 2) || (toy->toy_endian_plus2 > 3))
        memset (uptr->filebuf, 0, (size_t)uptr->capac);
    else {
        if (toy->toy_endian_plus2 != sim_end + 2) {     /* wrong endian? */
            toy->toy_gmtbase = sim_byteswap32 (toy->toy_gmtbase);
            toy->toy_gmtbasemsec = sim_byteswap32 (toy->toy_gmtbasemsec);
            }
        }
    toy->toy_endian_plus2 = sim_end + 2;
    todr_resync ();
    }
return r;
}

/* CLK detach */

t_stat clk_detach (UNIT *uptr)
{
t_stat r;

r = detach_unit (uptr);
if ((uptr->flags & UNIT_ATT) == 0)
    uptr->flags = uptr->flags & ~(UNIT_ATTABLE | UNIT_BUFABLE);
return r;
}

/* Interval timer reset */

t_stat tmr_reset (DEVICE *dptr)
{
tmr_iccs = 0;
tmr_nicr = 0;
tmr_int = 0;
sim_cancel (&tmr_unit);                                 /* cancel timer */
return SCPE_OK;
}

const char *tmr_description (DEVICE *dptr)
{
return "interval timer";
}

/* TODR routines */

static const char *todr_fmt_vms_todr (int32 val)
{
static char buf[32];
uint32 uval = (uint32)val;

if (val < 0x10000000)
    sprintf (buf, "Not VMS Time: 0x%08X", uval);
else {
    int yday, hr, min, sec, msecs;

    uval -= 0x10000000;
    msecs = (uval % 100) * 10;
    uval /= 100;
    sec = uval % 60;
    uval /= 60;
    min = uval % 60;
    uval /= 60;
    hr = uval % 24;
    uval /= 24;
    yday = uval;
    sprintf (buf, "yday:%d %02d:%02d:%02d.%03d", yday, hr, min, sec, msecs);
    }    
return buf;
}

int32 todr_rd (void)
{
TOY *toy = (TOY *)clk_unit.filebuf;
struct timespec base, now, val;

sim_rtcn_get_time(&now, TMR_CLK);                       /* get curr time */
base.tv_sec = (time_t)toy->toy_gmtbase;
base.tv_nsec = toy->toy_gmtbasemsec * 1000000;
sim_timespec_diff (&val, &now, &base);                  /* val = now - base */
sim_debug (TMR_DB_TODR, &clk_dev, "todr_rd() - TODR=0x%X - %s\n", (int32)(val.tv_sec*100 + val.tv_nsec/10000000), todr_fmt_vms_todr ((int32)(val.tv_sec*100 + val.tv_nsec/10000000)));
return (int32)(val.tv_sec*100 + (val.tv_nsec + 5000000)/10000000);  /* 100hz Clock rounded Ticks */
}

void todr_wr (int32 data)
{
TOY *toy = (TOY *)clk_unit.filebuf;
struct timespec now, val, base;
time_t tbase;

/* Save the GMT time when set value was 0 to record the base for 
   future read operations in "battery backed-up" state */

sim_rtcn_get_time(&now, TMR_CLK);                       /* get curr time */
val.tv_sec = (time_t)((uint32)data) / 100;
val.tv_nsec = (((uint32)data) % 100) * 10000000;
sim_timespec_diff (&base, &now, &val);                  /* base = now - data */
toy->toy_gmtbase = (uint32)base.tv_sec;
tbase = (time_t)base.tv_sec;
toy->toy_gmtbasemsec = (base.tv_nsec + 500000)/1000000;
if (clk_unit.flags & UNIT_ATT) {                        /* OS Agnostic mode? */
    rewind (clk_unit.fileref);
    fwrite (toy, sizeof (*toy), 1, clk_unit.fileref);   /* Save sync time info */
    fflush (clk_unit.fileref);
    }
sim_debug (TMR_DB_TODR, &clk_dev, "todr_wr(0x%X) - %s - GMTBASE=%8.8s.%03d\n", data, todr_fmt_vms_todr (data), 11+ctime(&tbase), (int)(base.tv_nsec/1000000));
}

t_stat todr_resync (void)
{
TOY *toy = (TOY *)clk_unit.filebuf;

if (clk_unit.flags & UNIT_ATT) {                        /* Attached means behave like real VAX TODR */
    if (!toy->toy_gmtbase)                              /* Never set? */
        todr_wr (0);                                    /* Start ticking from 0 */
    }
else {                                                  /* Not-Attached means */
    uint32 base;                                        /* behave like simh VMS default */
    time_t curr;
    struct tm *ctm;
    struct timespec now;

    sim_rtcn_get_time(&now, TMR_CLK);                   /* get curr time */
    curr = (time_t)now.tv_sec;
    if (curr == (time_t) -1)                            /* error? */
        return SCPE_NOFNC;
    ctm = localtime (&curr);                            /* decompose */
    if (ctm == NULL)                                    /* error? */
        return SCPE_NOFNC;
    base = (((((ctm->tm_yday * 24) +                    /* sec since 1-Jan */
            ctm->tm_hour) * 60) +
            ctm->tm_min) * 60) +
            ctm->tm_sec;
    todr_wr ((base * 100) + 0x10000000 +                /* use VMS form */
             (int32)((now.tv_nsec + 5000000)/ 10000000));
    }
return SCPE_OK;
}

/* Console write, txdb<11:8> != 0 (console unit) */

t_stat txdb_misc_wr (int32 data)
{
int32 sel = TXDB_GETSEL (data);                         /* get selection */

if (sel == TXDB_MISC) {                                 /* misc function? */
    switch (data & MISC_MASK) {                         /* case on function */

    case MISC_CLWS:
    case MISC_CLCS:
        break;

    case MISC_SWDN:
        ABORT (STOP_SWDN);
        break;
    
    case MISC_BOOT:
        ABORT (STOP_BOOT);
        break;
        }
    }
return SCPE_OK;
}

/* Reset */

t_stat td_reset (DEVICE *dptr)
{
return td_connect_console_device (&td_dev, set_csi_int, set_cso_int);
}

const char *td_description (DEVICE *dptr)
{
return "Console TU58 cartridge";
}