simh-testsetgenerator/I7000/i7080_sys.c
Richard Cornwell b5ea9ec38e I7000: Initial release of a set of simulators for IBM 7000 series mainframes.
These include simulators for the IBM 701, IBM 702, IBM 704, IBM 705,
IBM 705/3, IBM 709, IBM 1410/IBM 7010, IBM 7070, IBM 7080, IBM 7090
and IBM7094.

  These basically were a collection of machines that shared a common
  set it peripherals, Each group had its own instruction set, hence
  different simulators.

   IBM 701   -> i701
   IBM 702/705/705/3/7080 -> i7080
   IBM 7070/7074 -> i7070
   IBM 1410/7010 -> i7010
   IBM 704 -> i704
   IBM 704/709/7090/7094 -> i7090
  The i7090 can be set to simulate a IBM 704 however you end up
  disabling almost everything, since the 704 did not have any channels.
  A build option exists that allows this one to be built without all the
  extra features.

   The i7090 simulator’s implementation of the IBM 7094 is a more
   complete implementation of the IBM 7094 which can run CTSS
   while the existing simh I7094 can’t.
2017-12-28 05:05:25 -08:00

729 lines
22 KiB
C
Raw Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/* i7090_sys.c: IBM 705 Simulator system interface.
Copyright (c) 2006-2016, Richard Cornwell
Permission is hereby granted, free of charge, to any person obtaining a
copy of this software and associated documentation files (the "Software"),
to deal in the Software without restriction, including without limitation
the rights to use, copy, modify, merge, publish, distribute, sublicense,
and/or sell copies of the Software, and to permit persons to whom the
Software is furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
RICHARD CORNWELL BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*/
#include "i7080_defs.h"
#include "sim_card.h"
#include <ctype.h>
/* SCP data structures and interface routines
sim_name simulator name string
sim_PC pointer to saved PC register descriptor
sim_emax number of words for examine
sim_devices array of pointers to simulated devices
sim_stop_messages array of pointers to stop messages
sim_load binary loader
*/
char sim_name[] = "IBM 7080";
REG *sim_PC = &cpu_reg[0];
int32 sim_emax = 50;
#ifdef NUM_DEVS_CDP
extern DEVICE stack_dev[];
#endif
DEVICE *sim_devices[] = {
&cpu_dev,
&chan_dev,
#if NUM_DEVS_CDR > 0
&cdr_dev,
#endif
#if NUM_DEVS_CDP > 0
&cdp_dev,
#endif
#ifdef STACK_DEV
&stack_dev,
#endif
#if NUM_DEVS_LPR > 0
&lpr_dev,
#endif
#if NUM_DEVS_CON > 0
&con_dev,
#endif
#if NUM_DEVS_MT > 0
&mta_dev,
#if NUM_DEVS_MT > 1
&mtb_dev,
#if NUM_DEVS_MT > 2
&mtc_dev,
#if NUM_DEVS_MT > 3
&mtd_dev,
#endif
#endif
#endif
#endif
#if NUM_DEVS_DR > 0
&drm_dev,
#endif
#if NUM_DEVS_HT > 0
&hta_dev,
#if NUM_DEVS_HT > 1
&htb_dev,
#endif
#endif
#if NUM_DEVS_DSK > 0
&dsk_dev,
#endif
#if NUM_DEVS_COM > 0
&coml_dev,
&com_dev,
#endif
#if NUM_DEVS_CHRON > 0
&chron_dev,
#endif
NULL
};
/* Device addressing words */
#ifdef NUM_DEVS_CDP
DIB cdp_dib = { CH_TYP_UREC, 1, 0x300, 0xff00, &cdp_cmd, &cdp_ini };
#endif
#ifdef NUM_DEVS_CDR
DIB cdr_dib = { CH_TYP_UREC, 1, 0x100, 0xff00, &cdr_cmd, NULL };
#endif
#ifdef NUM_DEVS_LPR
DIB lpr_dib = { CH_TYP_UREC, 1, 0x400, 0xff00, &lpr_cmd, &lpr_ini };
#endif
#ifdef NUM_DEVS_CON
DIB con_dib = { CH_TYP_UREC, 1, 0x500, 0xff00, &con_cmd, &con_ini };
#endif
#ifdef NUM_DEVS_DR
DIB drm_dib = { CH_TYP_UREC, 1, 0x1000, 0xff00, &drm_cmd, &drm_ini };
#endif
#ifdef NUM_DEVS_MT
DIB mt_dib = { CH_TYP_76XX|CH_TYP_754, NUM_UNITS_MT, 0x200, 0xff00, &mt_cmd, &mt_ini };
#endif
#ifdef NUM_DEVS_CHRON
DIB chron_dib = { CH_TYP_76XX|CH_TYP_UREC, 1, 0x200, 0xff00, &chron_cmd, NULL };
#endif
#ifdef NUM_DEVS_HT
DIB ht_dib = { CH_TYP_79XX, NUM_UNITS_HT, 0, 0, &ht_cmd, NULL };
#endif
#ifdef NUM_DEVS_DSK
DIB dsk_dib = { CH_TYP_79XX, 0, 0, 0, &dsk_cmd, &dsk_ini };
#endif
#ifdef NUM_DEVS_COM
DIB com_dib = { CH_TYP_79XX, 0, 0, 0, &com_cmd, NULL };
#endif
/* Simulator stop codes */
const char *sim_stop_messages[] = {
"Unknown error",
"IO device not ready",
"HALT instruction",
"Breakpoint",
"Unknown Opcode",
"Error1", /* Ind limit */ /* Not on 7080 */
"Error2", /* XEC limit */ /* Not on 7080 */
"I/O Check opcode",
"Machine Check", /* MM in trap */
"7750 invalid line number",
"7750 invalid message",
"7750 No free output buffers",
"7750 No free input buffers",
"Overflow Check", /* Field overflow */
"Sign Check", /* Sign change */
"Divide error",
"Error6", /* Alpha index */ /* Not on 7080 */
"No word mark",
"Invalid Address",
"Record Check",
"Program Check",
"Protect Check",
0,
};
/* Simulator debug controls */
DEBTAB dev_debug[] = {
{"CHANNEL", DEBUG_CHAN},
{"TRAP", DEBUG_TRAP},
{"CMD", DEBUG_CMD},
{"DATA", DEBUG_DATA},
{"DETAIL", DEBUG_DETAIL},
{"EXP", DEBUG_EXP},
{"SENSE", DEBUG_SNS},
{0, 0}
};
DEBTAB crd_debug[] = {
{"CHAN", DEBUG_CHAN},
{"CMD", DEBUG_CMD},
{"DATA", DEBUG_DATA},
{"DETAIL", DEBUG_DETAIL},
{"EXP", DEBUG_EXP},
{"CARD", DEBUG_CARD},
{0, 0}
};
const char mem_to_ascii[64] = {
'a', '1', '2', '3', '4', '5', '6', '7',
'8', '9', '0', '=', '\'', ':', '>', 's',
' ', '/', 'S', 'T', 'U', 'V', 'W', 'X',
'Y', 'Z', '#', ',', '(', '`', '\\', '_',
'-', 'J', 'K', 'L', 'M', 'N', 'O', 'P',
'Q', 'R', '!', '$', '*', ']', ';', '^',
'+', 'A', 'B', 'C', 'D', 'E', 'F', 'G',
'H', 'I', '?', '.', ')', '[', '<', '|',
/*Sq*/ /*GM*/
};
t_stat parse_sym(CONST char *, t_addr, UNIT *, t_value *, int32);
/* Load BCD card image into memory, following 705 standard load format */
int
load_rec(uint8 *image) {
extern uint8 bcd_bin[16];
extern uint32 IC;
uint32 addr;
int len, i;
/* Convert blanks to space code */
for(i = 0; i < 80; i++)
if (image[i] == 0)
image[i] = 020;
addr = bcd_bin[image[12] & 0xf];
addr += 10 * bcd_bin[image[11] & 0xf];
addr += 100 * bcd_bin[image[10] & 0xf];
addr += 1000 * bcd_bin[image[9] & 0xf];
i = (image[9] & 060) >> 4; /* Handle zones */
i |= (image[12] & 040) >> 3;
i |= (image[12] & 020) >> 1;
addr += 10000 * i;
while(addr > EMEMSIZE) addr -= EMEMSIZE; /* Wrap around */
len = bcd_bin[image[14] & 0xf];
len += 10 * bcd_bin[image[13] & 0xf];
if (len > 65)
len = 65;
if (len == 0) {
IC = addr;
return 1;
}
for(i = 0; i < len; i++) {
uint8 ch = image[15+i];
if (ch == 075)
ch = 077;
M[addr++] = ch;
}
return 0;
}
/* Load a card image file into memory. */
t_stat
sim_load(FILE * fileref, CONST char *cptr, CONST char *fnam, int flag)
{
char buffer[160];
int i, j;
if (match_ext(fnam, "crd")) {
uint8 image[80];
while (sim_fread(buffer, 1, 160, fileref) == 160) {
/* Convert bits into image */
for (j = i = 0; j < 80; j++) {
uint16 x;
x = buffer[i++];
x |= buffer[i++] << 8;
image[j] = sim_hol_to_bcd(x);
}
if (load_rec(image))
return SCPE_OK;
}
return SCPE_OK;
} else if (match_ext(fnam, "cbn")) {
uint8 image[80];
while (sim_fread(buffer, 1, 160, fileref) == 160) {
/* Convert bits into image */
for (j = i = 0; j < 80; j++) {
uint16 x;
x = buffer[i++];
x |= buffer[i++] << 8;
image[j] = sim_hol_to_bcd(x);
}
if (load_rec(image))
return SCPE_OK;
}
return SCPE_OK;
} else if (match_ext(fnam, "dck")) {
extern char ascii_to_six[128];
while (fgets(buffer, 160, fileref) != 0) {
uint8 image[80];
/* Convert bits into image */
memset(image, 0, sizeof(image));
for (j = 0; j < 80; j++) {
if (buffer[j] == '\n' || buffer[j] == '\0')
break;
image[j] = sim_ascii_to_six[buffer[j]&0177];
}
if (load_rec(image))
return SCPE_OK;
}
return SCPE_OK;
} else
return SCPE_ARG;
return SCPE_ARG;
}
/* Symbol tables */
typedef struct _opcode
{
uint32 opbase;
const char *name;
uint8 type;
}
t_opcode;
const char *chname[11] = {
"*", "20", "21", "22", "23", "40", "41", "44", "45", "46", "47"
};
#define TYPE_A 1 /* Standard memory operation */
#define TYPE_B 2 /* ASU encoded operation */
#define TYPE_C 3 /* MA encoded operation MA < 100 */
#define TYPE_D 4 /* MA + ASU fixed MA < 100 */
t_opcode optbl[] = {
{OP_ADD, "ADD", TYPE_A},
{OP_RAD, "RAD", TYPE_A},
{OP_SUB, "SUB", TYPE_A},
{OP_RSU, "RSU", TYPE_A},
{OP_MPY, "MPY", TYPE_A},
{OP_DIV, "DIV", TYPE_A},
{OP_ST, "ST", TYPE_A},
{OP_ADM, "ADM", TYPE_A},
{OP_AAM, "AAM", TYPE_A},
{OP_SGN, "SGN", TYPE_A},
{OP_SET, "SET", TYPE_A},
{OP_SHR, "SHR", TYPE_A},
{OP_LEN, "LNG", TYPE_A},
{OP_RND, "RND", TYPE_A},
{OP_LOD, "LOD", TYPE_A},
{OP_UNL, "UNL", TYPE_A},
{OP_LDA, "LDA", TYPE_A},
{OP_ULA, "ULA", TYPE_A},
{OP_SPR, "SPR", TYPE_A},
{OP_RCV, "RCV", TYPE_A},
{OP_SND, "SND", TYPE_A},
{OP_CMP, "CMP", TYPE_A},
{OP_TRE, "TRE", TYPE_A},
{OP_TRH, "TRH", TYPE_A},
{OP_NTR, "NTR", TYPE_A},
{OP_TRP, "TRP", TYPE_A},
{OP_TRZ, "TRZ", TYPE_A},
{OP_NOP, "NOP", TYPE_A},
{OP_TR|000100, "TSL", TYPE_B},
{OP_TR, "TR", TYPE_A},
{OP_TRA|000100, "TAA", TYPE_B},
{OP_TRA|000200, "TAB", TYPE_B},
{OP_TRA|000300, "TAC", TYPE_B},
{OP_TRA|000400, "TAD", TYPE_B},
{OP_TRA|000500, "TAE", TYPE_B},
{OP_TRA|000600, "TAF", TYPE_B},
{OP_TRA|000700, "TNS", TYPE_B},
{OP_TRA, "TRA", TYPE_A},
{OP_TRS|000100, "TRR", TYPE_B},
{OP_TRS|000200, "TTC", TYPE_B},
{OP_TRS|000300, "TSA", TYPE_B},
{OP_TRS|001100, "TAR", TYPE_B},
{OP_TRS|001200, "TIC", TYPE_B},
{OP_TRS|001300, "TMC", TYPE_B},
{OP_TRS|001400, "TRC", TYPE_B},
{OP_TRS|001500, "TEC", TYPE_B},
{OP_TRS|001600, "TOC", TYPE_B},
{OP_TRS|001700, "TSC", TYPE_B},
{OP_TRS, "TRS", TYPE_A},
{OP_TMT, "TMT", TYPE_A},
{OP_CTL2|000000,"SPC", TYPE_B},
{OP_CTL2|000200,"LFC", TYPE_B},
{OP_CTL2|000300,"UFC", TYPE_B},
{OP_CTL2|000400,"LSB", TYPE_B},
{OP_CTL2|000500,"USB", TYPE_B},
{OP_CTL2|000600,"EIM", TYPE_B},
{OP_CTL2|000700,"LIM", TYPE_B},
{OP_CTL2|001000,"TCT", TYPE_B},
{OP_CTL2|001100,"B", TYPE_B},
{OP_CTL2|001200,"EIA", TYPE_B},
{OP_CTL2|001300,"CNO", TYPE_B},
{OP_CTL2|001400,"TLU", TYPE_B},
{OP_CTL2|001500,"TLH", TYPE_B},
{OP_CTL2|001600,"TIP", TYPE_B},
{OP_CTL2|001700,"LIP", TYPE_B},
{OP_CTL2, "CTL2", TYPE_A},
{OP_BLM|000100, "BLMS", TYPE_B},
{OP_BLM, "BLM", TYPE_A},
{OP_SEL, "SEL", TYPE_A},
{OP_CTL|001400, "ECB", TYPE_B},
{OP_CTL|001500, "CHR", TYPE_B},
{OP_CTL|001600, "EEM", TYPE_B},
{OP_CTL|001700, "LEM", TYPE_B},
{OP_CTL|0010000, "WTM", TYPE_D},
{OP_CTL|0020100, "RUN", TYPE_D},
{OP_CTL|0020000, "RWD", TYPE_D},
{OP_CTL|0030000, "ION", TYPE_D},
{OP_CTL|0040100, "BSF", TYPE_D},
{OP_CTL|0040000, "BSP", TYPE_D},
{OP_CTL|0050000, "SUP", TYPE_C},
{OP_CTL|0110000, "SKP", TYPE_C},
{OP_CTL|0450000, "SDL", TYPE_C},
{OP_CTL|0460000, "SDH", TYPE_C},
{OP_CTL|0000000, "IOF", TYPE_D},
{OP_CTL, "CTL", TYPE_A},
{OP_HLT, "HLT", TYPE_A},
{OP_WR|000500, "WMC", TYPE_B},
{OP_WR|000400, "CWR", TYPE_B},
{OP_WR|000300, "SCC", TYPE_B},
{OP_WR|000200, "SRC", TYPE_B},
{OP_WR|000100, "DMP", TYPE_B},
{OP_WR, "WR", TYPE_A},
{OP_RWW, "RWW", TYPE_A},
{OP_RD|000500, "RMB", TYPE_B},
{OP_RD|000400, "CRD", TYPE_B},
{OP_RD|000300, "SST", TYPE_B},
{OP_RD|000200, "RMA", TYPE_B},
{OP_RD|000100, "FSP", TYPE_B},
{OP_RD, "RD", TYPE_A},
{OP_WRE|000100, "WRZ", TYPE_B},
{OP_WRE, "WRE", TYPE_A},
{OP_SBZ|000100, "SBZ1", TYPE_B},
{OP_SBZ|000200, "SBZ2", TYPE_B},
{OP_SBZ|000300, "SBZ3", TYPE_B},
{OP_SBZ|000400, "SBZ4", TYPE_B},
{OP_SBZ|000500, "SBZ5", TYPE_B},
{OP_SBZ|000600, "SBZ6", TYPE_B},
{OP_SBZ|000700, "SBA", TYPE_B},
{OP_SBZ|001000, "SBR", TYPE_B},
{OP_SBZ|001100, "SBN1", TYPE_B},
{OP_SBZ|001200, "SBN2", TYPE_B},
{OP_SBZ|001300, "SBN3", TYPE_B},
{OP_SBZ|001400, "SBN4", TYPE_B},
{OP_SBZ|001500, "SBN5", TYPE_B},
{OP_SBZ|001600, "SBN6", TYPE_B},
{OP_SBZ, "SBZ", TYPE_A},
{OP_TZB, "TZB", TYPE_A},
{OP_SMT|001600, "SMT", TYPE_A},
{0, NULL, 0},
};
/* Print out a address plus index */
t_stat fprint_addr (FILE *of, uint32 addr) {
fprintf(of, "%d", addr);
return SCPE_OK;
}
/* Register change decode
Inputs:
*of = output stream
inst = mask bits
*/
t_stat
fprint_reg (FILE *of, uint32 rdx, t_value *val, UNIT *uptr, int32 sw)
{
fprintf(of, "Register(%d, %x)", rdx, *val);
return SCPE_OK;
}
/* Symbolic decode
Inputs:
*of = output stream
addr = current PC
*val = pointer to values
*uptr = pointer to unit
sw = switches
Outputs:
return = status code
*/
t_stat fprint_sym (FILE *of, t_addr addr, t_value *val, UNIT *uptr, int32 sw)
{
int32 i, t;
uint8 op;
if (sw & SIM_SW_REG)
return fprint_reg(of, addr, val, uptr, sw);
if (sw & SWMASK ('C')) { /* character? */
t = val[0];
fprintf (of, " %c<%02o> ", mem_to_ascii[t & 077], t & 077);
return SCPE_OK;
}
if ((uptr != NULL) && (uptr != &cpu_unit)) return SCPE_ARG; /* CPU? */
if (sw & SWMASK ('D')) { /* dump? */
for (i = 0; i < 50; i++) fprintf (of, "%c", mem_to_ascii[val[i]&077]) ;
return -(i - 1);
}
if (sw & SWMASK ('S')) { /* string? */
i = 0;
do {
t = val[i++];
fprintf (of, "%c", mem_to_ascii[t & 077]);
} while (i < 50);
return -(i - 1);
}
if (sw & SWMASK ('M')) { /* machine code? */
uint32 addr;
t_opcode *tab;
uint8 zone;
uint8 reg;
uint16 opvalue;
i = 0;
op = val[i++] & 077;
t = val[i++]; /* First address char */
zone = (t & 060) >> 4;
t &= 0xf;
if (t == 10)
t = 0;
addr = t * 1000;
t = val[i++]; /* Second address char */
reg = (t & 060) >> 2;
t &= 0xf;
if (t == 10)
t = 0;
addr += t * 100;
t = val[i++]; /* Third address char */
reg |= (t & 060) >> 4;
t &= 0xf;
if (t == 10)
t = 0;
addr += t * 10;
t = val[i++]; /* Forth address char */
zone |= (t & 060) >> 2;
/* Switch BA bits in high zone */
zone = (zone & 03) | ((zone & 04) << 1) | ((zone & 010) >> 1);
t &= 0xf;
if (t == 10)
t = 0;
addr += t;
opvalue = op | (reg << 6);
addr += zone * 10000;
for(tab = optbl; tab->name != NULL; tab++) {
if (tab->type == TYPE_A && op == tab->opbase)
break;
if (tab->type == TYPE_B && opvalue == tab->opbase)
break;
if (tab->type == TYPE_C && addr < 100 &&
(op|(addr << 12)) == tab->opbase)
break;
if (tab->type == TYPE_D && addr < 100 &&
(opvalue|(addr << 12)) == tab->opbase)
break;
}
if (tab->name == NULL)
fprintf(of, "%c<%02o>\t", mem_to_ascii[op], op);
else
fprintf(of, "%s\t", tab->name);
switch(tab->type) {
case TYPE_A:
fprintf(of, "%d", addr);
if (reg != 0)
fprintf(of, ",%d", reg);
break;
case TYPE_B:
fprintf(of, "%d", addr);
break;
case TYPE_C: /* No operand required for type C or D */
case TYPE_D:
break;
}
return -(i - 1);
}
fprintf (of, " %02o ", val[0] & 077);
return SCPE_OK;
}
t_opcode *
find_opcode(char *op, t_opcode * tab)
{
while (tab->name != NULL) {
if (*tab->name != '\0' && strcmp(op, tab->name) == 0)
return tab;
tab++;
}
return NULL;
}
/* Symbolic input
Inputs:
*cptr = pointer to input string
addr = current PC
uptr = pointer to unit
*val = pointer to output values
sw = switches
Outputs:
status = error status
*/
t_stat
parse_sym(CONST char *cptr, t_addr addr, UNIT * uptr, t_value * val, int32 sw)
{
int i;
t_value d;
char buffer[100];
extern char ascii_to_six[];
while (isspace(*cptr))
cptr++;
d = 0;
i = 0;
if (sw & SWMASK('C')) {
while (*cptr != '\0') {
d = sim_ascii_to_six[0177 & *cptr++];
if (d == 0)
d = 020;
val[i++] = d;
}
if (i == 0)
return SCPE_ARG;
return -(i - 1);
} else if (sw & SWMASK('M')) {
t_opcode *op;
uint32 addr = 0;
uint8 asu = 0;
uint8 zone;
uint8 t;
i = 0;
/* Grab opcode */
cptr = get_glyph(cptr, buffer, 0);
if ((op = find_opcode(buffer, optbl)) == 0)
return STOP_UUO;
if (op->type == TYPE_C || op->type == TYPE_D) {
addr = op->opbase >> 12;
val[i++] = op->opbase & 077;
val[i++] = 10;
val[i++] = ((op->opbase & 01400) >> 4) | 10;
t = addr / 10;
if (t == 0)
t = 10;
val[i++] = ((op->opbase & 00300) >> 2) | t;
t = addr % 10;
if (t == 0)
t = 10;
val[i++] = t;
return -(i - 1);
}
/* Skip blanks */
while(isspace(*cptr)) cptr++;
/* Collect address */
while(*cptr >= '0' && *cptr <= '9')
addr = (addr * 10) + (*cptr++ - '0');
/* Skip blanks */
while(isspace(*cptr)) cptr++;
if (*cptr == ',') { /* Collect a ASU */
while(*cptr >= '0' && *cptr <= '9')
asu = (asu * 10) + (*cptr++ - '0');
}
/* Skip blanks */
while(isspace(*cptr)) cptr++;
if (*cptr != '\0')
return SCPE_ARG;
/* Type B's can't have ASU */
if (op->type == TYPE_B) {
if (asu != 0)
return STOP_UUO;
asu = (op->opbase >> 6) & 017;
}
/* Check if ASU out of range */
if (asu > 16)
return SCPE_ARG;
zone = addr / 10000;
if (zone > 16)
return SCPE_ARG;
addr %= 10000;
val[i++] = op->opbase & 077;
t = addr / 1000;
if (t == 0)
t = 10;
addr %= 1000;
val[i++] = t | ((zone << 4) & 060);
t = addr / 100;
if (t == 0)
t = 10;
addr %= 100;
val[i++] = t | ((asu << 2) & 060);
t = addr / 10;
if (t == 0)
t = 10;
addr %= 10;
val[i++] = t | ((asu << 4) & 060);
t = addr;
if (t == 0)
t = 10;
addr %= 10;
val[i++] = t | ((zone << 2) & 060);
return -(i - 1);
} else {
int sign = 0;
i = 0;
while (*cptr != '\0') {
sign = 0;
/* Skip blanks */
while(isspace(*cptr)) cptr++;
if (*cptr == '+') {
cptr++;
sign = 1;
} else if (*cptr == '-') {
cptr++;
sign = -1;
}
if (!(*cptr >= '0' && *cptr <= '9'))
return SCPE_ARG;
while(*cptr >= '0' && *cptr <= '9') {
d = *cptr++ - '0';
if (d == 0)
d = 10;
val[i++] = d;
}
if (*cptr == ',')
cptr++;
if(sign)
val[i-1] |= (sign==-1)?040:060; /* Set sign last digit */
}
if (i == 0)
return SCPE_ARG;
return -(i - 1);
}
return SCPE_OK;
}