simh-testsetgenerator/ND100/nd100_mm.c
Anders Magnusson 5cda68abce ND100: MMS-1 support (Memory Management 1) + other fixes for Nord-100.
Can now boot the last test programs from floppy, and runs INSTRUCTION-C
and PAGING-C without errors.
2023-05-18 16:53:06 -04:00

419 lines
12 KiB
C

/*
* Copyright (c) 2023 Anders Magnusson.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <setjmp.h>
#include "sim_defs.h"
#include "nd100_defs.h"
/*
* Nord-100 Memory Management I
*
* The paging system on Nord-100 have two modes; normal and extended.
* In normal mode it is Nord-10-compatible (with a maximum of 512KW memory)
* and in extended it can handle up to 16MW.
*
* It is quite extensive with both individual page protection (RWX) and
* ring protection, where it has four rings. Ring 0 has lowest prio, ring 3
* has highest.
*
* Page size is 1KW, so 64 pages per address space (page table, PT).
* A process can use an extra page table as well, called alternate page table.
* It is intended to allow large processes to use a separate data space.
* There are four page tables, the PCR tells which table(s) to use.
*
* Which protection ring and which page tables a user belongs to is
* configured in the internal Paging Control Register (PCR). There is
* one PCR per interrupt level. The PCR looks like this:
*
* +-------------------+-------+-----+----------+--+-----+
* | Unused | PT | APT | Level | 0| Ring|
* +-------------------+-------+-----+----------+--+-----+
* 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
*
* PT/APT tells which page table should be used. There are four of them.
* Level is not stored in the PCR, it is only used to tell which level
* a PCR belongs to.
* Ring is the user ring. Must always be >= the page ring.
*
* The page tables are located in "shadow memory". Shadow memory is the
* top pages (>= 177400 in normal mode and >= 177000 in extended) only
* accessible when running as ring 3.
* Page table for normal mode looks as below:
*
* +---+---+---+---+---+-------+-------------------------+
* |WPM|RPM|FPM|WIP|PGU| Ring | Physical Page Number |
* +---+---+---+---+---+-------+-------------------------+
* 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
*
* WPM/RPM/FPM allows for Write/Read/Fetch.
* WIP is set by HW and means "Written in page".
* PGU is set by HW and means "Page used".
* Ring is the ring the page belongs to. Must be <= User ring.
*
* Note that the executing program get its ring level from the page where
* the instruction were fetched from, so if the User ring is 3 but the
* page ring is 2 then the progra cannot access the page tables.
*/
#define MAXMEMSIZE (512*1024)
t_stat mm_reset(DEVICE *dptr);
uint16 PM[MAXMEMSIZE];
uint16 PCR[16]; /* Paging control register */
uint16 ptmap[4][64]; /* protection */
uint16 pmmap[4][64]; /* memory mapping */
uint16 pea, pes, pgs;
int pea_locked, pgs_locked; /* flag to lock register after error */
int userring; /* current user ring */
extern jmp_buf env;
#define ISDIS() (mm_dev.flags & DEV_DIS)
UNIT mm_unit = { UDATA(NULL, UNIT_FIX+UNIT_DISABLE+UNIT_BINK, 0) };
REG mm_reg[] = {
{ BRDATA(PCR, PCR, 8, 16, 16) },
{ ORDATA(PEA, pea, 16) },
{ ORDATA(PES, pes, 16) },
{ ORDATA(PGS, pgs, 16) },
{ NULL }
};
DEVICE mm_dev = {
"MM", &mm_unit, mm_reg, 0,
1, 8, 16, 1, 8, 16,
0, 0, &mm_reset,
NULL, NULL, NULL,
NULL, DEV_DISABLE
};
/*
* Internal registers located on the MM module.
*/
int
mm_tra(int reg)
{
int rv = 0;
switch (reg) {
case IRR_PES:
regA = pes;
break;
case IRR_PGS:
regA = pgs;
pgs_locked = 0;
break;
case IRR_PGC:
regA = PCR[(regA >> 3) & 017];
break;
case IRR_PEA:
regA = pea;
pea_locked = 0;
break;
default:
rv = STOP_UNHINS;
}
return rv;
}
/*
* Read a byte. 0 in lr is left byte, 1 is right byte.
*/
uint8
rdbyte(int vaddr, int lr, int how)
{
uint16 val = rdmem(vaddr, how);
return lr ? val & 0377 : val >> 8;
}
/*
* Write a byte. 0 in lr is left byte, 1 is right byte.
*/
void
wrbyte(int vaddr, int val, int lr, int how)
{
uint16 ov = rdmem(vaddr, how);
val &= 0377; /* sanity */
ov = lr ? (ov & 0177400) | val : (ov & 0377) | (val << 8);
wrmem(vaddr, ov, how);
}
/*
* Access shadow memory. if:
* sexi == 0 && v >= 0177400 && (myring == 3 || pon == 0)
* or
* sexi == 1 && v >= 0177000 && (myring == 3 || pon == 0)
*/
static int
is_shadow(int vaddr)
{
if ((PCR[curlvl] & 03) < 3 && ISPON())
return 0; /* not valid */
if (vaddr > 0177777)
return 0;
if (ISSEX())
return 1;
return (vaddr >= 0177400);
}
/*
* Fetch a word from the shadow mem.
*/
static int
shadowrd(int v)
{
int pt;
int x = 0;
if (ISSEX())
x = v & 1, v >>= 1;
pt = (v >> 6) & 03;
v &= 077;
if (ISSEX())
return x ? pmmap[pt][v] : ptmap[pt][v];
return ptmap[pt][v]|pmmap[pt][v];
}
/*
* Write a word to the shadow mem.
*/
static void
shadowwr(int v, int dat)
{
int pt;
int x = 0;
if (ISSEX())
x = v & 1, v >>= 1;
pt = (v >> 6) & 03;
v &= 077;
if (ISSEX()) {
if (x)
pmmap[pt][v] = dat;
else
ptmap[pt][v] = dat;
} else {
pmmap[pt][v] = dat & 0777;
ptmap[pt][v] = dat & 0177000;
}
}
/*
* MOR - memory out of range. Addressing non-existent memory.
*/
void
morerr(int addr, int why, int pesval)
{
if (pea_locked == 0) {
pea = (uint16)addr;
pes = (uint16)(addr >> 16) | pesval;
pea_locked = 1;
}
intrpt14(IIE_MOR, why);
}
/*
* Physical memory read when doing DMA.
* The only error that can occur is non-existent memory (MOR).
* returns -1 if MOR, value otherwise.
*/
int
dma_rdmem(int addr)
{
addr &= 0xffffff;
if (addr < MAXMEMSIZE)
return PM[addr];
morerr(addr, PM_DMA, PES_DMA);
return -1;
}
int
dma_wrmem(int addr, int val)
{
addr &= 0xffffff;
if (addr < MAXMEMSIZE) {
PM[addr] = val;
return 0;
}
morerr(addr, PM_DMA, PES_DMA);
return -1;
}
/*
* Read direct from physical (24-bit-addr) memory.
*/
uint16
prdmem(int vaddr, int how)
{
if ((vaddr & 0xffffff) < MAXMEMSIZE)
return PM[vaddr];
morerr(vaddr, PM_CPU, how == M_FETCH ? PES_FETCH : 0);
return 0;
}
static void
pgsupd(int pgnr, int pnr, int flg)
{
if (pgs_locked)
return;
pgs = (pgnr << 6) | pnr | flg;
pgs_locked = 1;
}
uint16
rdmem(int vaddr, int how)
{
uint16 *ptmapp;
int sh, pagetablenr, pagering, pagenr, permit, p;
vaddr &= 0177777; /* Sanity */
/* Shadow memory? */
if ((vaddr >= 0177000) && is_shadow(vaddr))
return shadowrd(vaddr);
/* Physical memory? */
if (ISPON() == 0)
return prdmem(vaddr, 0);
/* Paging on. */
permit = (how == M_FETCH ? PT_FPM : PT_RPM);
userring = PCR[curlvl] & 03;
sh = how == M_APT ? 7 : 9;
pagetablenr = (PCR[curlvl] >> sh) & 03;
pagenr = vaddr >> 10;
ptmapp = &ptmap[pagetablenr][pagenr];
pagering = (*ptmapp >> 9) & 03;
p = (permit == PT_FPM ? PGS_FF : 0);
if ((*ptmapp & (PT_WPM|PT_RPM|PT_FPM)) == 0) {
/* page fault */
pgsupd(pagetablenr, pagenr, p | PGS_PM);
intrpt14(IIE_PF, PM_CPU);
} else if ((*ptmapp & permit) == 0) {
pgsupd(pagetablenr, pagenr, p | PGS_PM);
intrpt14(IIE_PV, PM_CPU);
} else if (pagering > userring) {
pgsupd(pagetablenr, pagenr, p);
intrpt14(IIE_PV, PM_CPU);
} else {
/* Mark page as read */
*ptmapp |= PT_PGU;
vaddr = (pmmap[pagetablenr][pagenr] << 10) | (vaddr & 01777);
return prdmem(vaddr, 0);
}
return 0;
}
/*
* Write direct to physical (24-bit-addr) memory.
*/
void
pwrmem(int vaddr, int val, int how)
{
if ((vaddr & 0xffffff) < MAXMEMSIZE)
PM[vaddr] = val;
else
morerr(vaddr, PM_CPU, how == M_FETCH ? PES_FETCH : 0);
}
void
wrmem(int vaddr, int val, int how)
{
uint16 *ptmapp;
int sh, pagetablenr, pagering, permit, pagenr;
vaddr &= 0177777;
if ((vaddr >= 0177000) && is_shadow(vaddr)) {
shadowwr(vaddr, val);
return;
}
if (ISPON() == 0) {
pwrmem(vaddr, val, PM_CPU);
return;
}
/* Paging on. */
permit = PT_WPM;
userring = PCR[curlvl] & 03;
sh = how == M_APT ? 7 : 9;
pagetablenr = (PCR[curlvl] >> sh) & 03;
pagenr = vaddr >> 10;
ptmapp = &ptmap[pagetablenr][pagenr];
pagering = (*ptmapp >> 9) & 03;
if ((*ptmapp & (PT_WPM|PT_RPM|PT_FPM)) == 0) {
/* page fault */
pgsupd(pagetablenr, pagenr, PGS_PM);
intrpt14(IIE_PF, PM_CPU);
} else if ((*ptmapp & permit) == 0) {
pgsupd(pagetablenr, pagenr, PGS_PM);
intrpt14(IIE_PV, PM_CPU);
} else if (pagering > userring) {
pgsupd(pagetablenr, pagenr, 0);
intrpt14(IIE_PV, PM_CPU);
} else {
/* Mark page as written */
*ptmapp |= (PT_PGU|PT_WIP);
vaddr = (pmmap[pagetablenr][pagenr] << 10) | (vaddr & 01777);
pwrmem(vaddr, val, PM_CPU);
}
}
void
mm_wrpcr()
{
if (ISDIS())
return;
PCR[(regA >> 3) & 017] = regA & 03603;
}
t_stat
mm_reset(DEVICE *dptr)
{
return 0;
}
/*
* Check if instruction is privileged enough to execute,
* otherwise give priv instruction fault.
*/
void
mm_privcheck(void)
{
if (ISPON() == 0)
return;
if (userring > 1)
return;
intrpt14(IIE_PI, PM_CPU);
}