Design Notes for Fixing VAX Unaligned Access to IO and Register Space Problem Statement: VAX unaligned accesses are handled by reading the surrounding longword (or longwords) and a) for reads, extracting the addressed addressed word or longword b) for writes, inserting the addressed word or longword and then writing the surrounding longword (or longwords) back This is correct for all memory cases. On the 11/780, the unaligned access to register or IO space causes an error, as it should. On CVAX, it causes incorrect behavior, by either performing too many QBus references, or performing read-modify-writes instead of pure writes, or accessing the wrong Qbus locations. The problem cannot be trivially solved with address manipulation. The core issues is that on CVAX, unaligned access is done to exactly as many bytes as are required, using a base longword address and a byte mask. There are five cases, corresponding to word and longword lengths, and byte offsets 1, 2 (longword only), and 3. Further, behavior is different for reads and writes, because the Qbus always performs word operations on reads, leaving it to the processor to extract a byte if needed. Conceptual design: Changes in vax_mmu.c: Unaligned access is done with two separate physical addresses, pa and pa1, because if the access crosses a page boundary, pa1 may not be contiguous with pa. It's worth noting that in an unaligned access, the low part of the data begins at pa (complete with byte offset), but the high parts begins at pa1 & ~03 (always in the low-order end of the second longword). To handle unaligned data, we will add two routines for read and write unaligned: data = ReadU (pa, len); WriteU (pa, len, val); Note that the length can be 1, 2, or 3 bytes. For ReadU, data is return right-aligned and masked. For WriteU, val is expected to be right-aligned and masked. The read-unaligned flows are changed as follows: if (mapen && ((off + lnt) > VA_PAGSIZE)) { /* cross page? */ vpn = VA_GETVPN (va + lnt); /* vpn 2nd page */ tbi = VA_GETTBI (vpn); xpte = (va & VA_S0)? stlb[tbi]: ptlb[tbi]; /* access tlb */ if (((xpte.pte & acc) == 0) || (xpte.tag != vpn) || ((acc & TLB_WACC) && ((xpte.pte & TLB_M) == 0))) xpte = fill (va + lnt, lnt, acc, NULL); /* fill if needed */ pa1 = ((xpte.pte & TLB_PFN) | VA_GETOFF (va + 4)) & ~03; } else pa1 = ((pa + 4) & PAMASK) & ~03; /* not cross page */ bo = pa & 3; if (lnt >= L_LONG) { /* lw unaligned? */ sc = bo << 3; wl = ReadU (pa, L_LONG - bo); /* read both fragments */ wh = ReadU (pa1, bo); /* extract */ return ((wl | (wh << (32 - sc))) & LMASK); } else if (bo == 1) /* read within lw */ return ReadU (pa, L_WORD); else { wl = ReadU (pa, L_BYTE); /* word cross lw */ wh = ReadU (pa1, L_BYTE); /* read, extract */ return (wl | (wh << 8)); } These are not very different, but they do reflect that ReadU returns right-aligned and properly masked data, rather than the encapsulating longword. The write-unaligned flows change rather more drastically: if (mapen && ((off + lnt) > VA_PAGSIZE)) { vpn = VA_GETVPN (va + 4); tbi = VA_GETTBI (vpn); xpte = (va & VA_S0)? stlb[tbi]: ptlb[tbi]; /* access tlb */ if (((xpte.pte & acc) == 0) || (xpte.tag != vpn) || ((xpte.pte & TLB_M) == 0)) xpte = fill (va + lnt, lnt, acc, NULL); pa1 = ((xpte.pte & TLB_PFN) | VA_GETOFF (va + 4)) & ~03; } else pa1 = ((pa + 4) & PAMASK) & ~03; bo = pa & 3; if (lnt >= L_LONG) { sc = bo << 3; WriteU (pa, L_LONG - bo, val & insert[L_LONG - bo]); WriteU (pa, bo, (val >> (32 - sc)) & insert[bo]); } else if (bo == 1) /* read within lw */ WriteU (pa, L_WORD, val & WMASK); else { /* word cross lw */ WriteU (pa, L_BYTE, val & BMASK); WriteU (pa, L_BYTE, (val >> 8) & BMASK); } return; } Note that all the burden here has been thrown on the WriteU routine. ------------- ReadU is the simpler of the two routines that needs to be written. It will handle memory reads and defer register and IO space to model-specific unaligned handlers. int32 ReadU (uint32 pa, int32 lnt) { int32 dat; int32 sc = (pa & 3) << 3; if (ADDR_IS_MEM (pa)) dat = M[pa >> 2]; else { mchk = REF_V; if (ADDR_IS_IO (pa)) dat = ReadIOU (pa, lnt); else dat = ReadRegU (pa, lnt); } return ((dat >> sc) & insert[lnt]); } Note that the ReadIOU and ReadRegU return a "full longword," just like their aligned counterparts, and ReadU right-aligns the result, just as ReadB, ReadW, and ReadL do. WriteU must handle the memory read-modify-write sequence. However, it defers register and IO space to model-specific unaligned handlers. void WriteU (uint32 pa, int32 lnt, int32 val) { if (ADDR_IS_MEM (pa)) { int32 bo = pa & 3; int32 sc = bo << 3; M[pa >> 2] = (M[pa >> 2] & ~(insert[len] << sc) | (val << sc); } else if ADDR_IS_IO (pa) WriteIOU (pa, lnt, val); else WriteRegU (pa, lnt, val); return; } -------------- For the 11/780, ReadIOU, ReadRegU, WriteIOU, and WriteRegU all do the same thing: they throw an SBI machine check. We can write explicit routines to do this (and remove the unaligned checks from all the normal adapter flows), or leave things as they are and simply define the four routines as macros that go to the normal routines. So there's very little to do. On CVAX, I suspect that ReadRegU and WriteRegU behave like the normal routines. The CVAX specs don't say much, but CMCTL (the memory controller) notes that it ignores the byte mask and treats every access as an aligned longword access. I suspect this is true for the other CVAX support chips, but I no longer have chip specs. The Qbus, on the other hand... that's a fun one. Note that all of these cases are presented to the existing aligned IO routine: bo = 0, byte, word, or longword length bo = 2, word bo = 1, 2, 3, byte length All the other cases are going to end up at ReadIOU and WriteIOU, and they must turn the request into the exactly correct number of Qbus accesses AND NO MORE, because Qbus reads can have side-effects, and word read-modify-write is NOT the same as a byte write. The read cases are: bo = 0, byte or word - read one word bo = 1, byte - read one word bo = 2, byte or word - read one word bo = 3, byte - read one word bo = 0, triword - read two words bo = 1, word or triword - read two words ReadIOU is very similar to the existing ReadIO: int32 ReadIOU (uint32 pa, int32 lnt) { int32 iod; iod = ReadQb (pa); /* wd from Qbus */ if ((lnt + (pa & 1)) <= 2) /* byte or word & even */ iod = iod << ((pa & 2)? 16: 0); /* one op */ else iod = (ReadQb (pa + 2) << 16) | iod; /* two ops, get 2nd wd */ SET_IRQL; return iod; } The write cases are: bo = x, lnt = byte - write one byte bo = 0 or 2, lnt = word - write one word bo = 1, lnt = word - write two bytes bo = 0, lnt = triword - write word, byte bo = 1, lnt = triword - write byte, word WriteIOU is similar to the existing WriteIO: void WriteIO (uint32 pa, int32 val, int32 lnt) { switch (lnt) { case L_BYTE: /* byte */ WriteQb (pa, val & BMASK, WRITEB); break; case L_WORD: /* word */ if (pa & 1) { /* odd addr? */ WriteQb (pa, val & BMASK, WRITEB); WriteQb (pa + 1, (val >> 8) & BMASK, WRITEB); } else WriteQb (pa, val, WRITE); break; case 3: /* triword */ if (pa & 1) { /* odd addr? */ WriteQb (pa, val & BMASK, WRITEB); WriteQb (pa + 1, (val >> 8) & WMASK, WRITE); } else { WriteQb (pa, val & WMASK, WRITE); WriteQb (pa + 2, (val >> 16) & BMASK, WRITEB); } break; } SET_IRQL; return; } ----------------- I think this handles all the cases. /Bob Supnik Conflicts: VAX/vax780_defs.h VAX/vax_mmu.c VAX/vaxmod_defs.h
472 lines
14 KiB
C
472 lines
14 KiB
C
/* vax610_io.c: MicroVAX I Qbus IO simulator
|
|
|
|
Copyright (c) 2011-2012, Matt Burke
|
|
This module incorporates code from SimH, Copyright (c) 1998-2008, Robert M Supnik
|
|
|
|
Permission is hereby granted, free of charge, to any person obtaining a
|
|
copy of this software and associated documentation files (the "Software"),
|
|
to deal in the Software without restriction, including without limitation
|
|
the rights to use, copy, modify, merge, publish, distribute, sublicense,
|
|
and/or sell copies of the Software, and to permit persons to whom the
|
|
Software is furnished to do so, subject to the following conditions:
|
|
|
|
The above copyright notice and this permission notice shall be included in
|
|
all copies or substantial portions of the Software.
|
|
|
|
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
|
|
THE AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
|
|
IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
|
|
CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
|
|
|
|
Except as contained in this notice, the name(s) of the author(s) shall not be
|
|
used in advertising or otherwise to promote the sale, use or other dealings
|
|
in this Software without prior written authorization from the author(s).
|
|
|
|
qba Qbus adapter
|
|
|
|
15-Feb-2012 MB First Version
|
|
*/
|
|
|
|
#include "vax_defs.h"
|
|
|
|
int32 int_req[IPL_HLVL] = { 0 }; /* intr, IPL 14-17 */
|
|
int32 autcon_enb = 1; /* autoconfig enable */
|
|
|
|
extern int32 PSL, SISR, trpirq, mem_err, hlt_pin;
|
|
extern int32 p1;
|
|
extern jmp_buf save_env;
|
|
|
|
int32 eval_int (void);
|
|
t_stat qba_reset (DEVICE *dptr);
|
|
char *qba_description (DEVICE *dptr);
|
|
|
|
/* Qbus adapter data structures
|
|
|
|
qba_dev QBA device descriptor
|
|
qba_unit QBA units
|
|
qba_reg QBA register list
|
|
*/
|
|
|
|
UNIT qba_unit = { UDATA (NULL, 0, 0) };
|
|
|
|
REG qba_reg[] = {
|
|
{ HRDATAD (IPL17, int_req[3], 32, "IPL 17 interrupt flags"), REG_RO },
|
|
{ HRDATAD (IPL16, int_req[2], 32, "IPL 16 interrupt flags"), REG_RO },
|
|
{ HRDATAD (IPL15, int_req[1], 32, "IPL 15 interrupt flags"), REG_RO },
|
|
{ HRDATAD (IPL14, int_req[0], 32, "IPL 14 interrupt flags"), REG_RO },
|
|
{ FLDATA (AUTOCON, autcon_enb, 0), REG_HRO },
|
|
{ NULL }
|
|
};
|
|
|
|
MTAB qba_mod[] = {
|
|
{ MTAB_XTD|MTAB_VDV|MTAB_NMO, 0, "IOSPACE", NULL,
|
|
NULL, &show_iospace, NULL, "Display I/O space address map" },
|
|
{ MTAB_XTD|MTAB_VDV, 1, "AUTOCONFIG", "AUTOCONFIG",
|
|
&set_autocon, &show_autocon, NULL, "Enable/Display autoconfiguration" },
|
|
{ MTAB_XTD|MTAB_VDV, 0, NULL, "NOAUTOCONFIG",
|
|
&set_autocon, NULL, NULL, "Disable autoconfiguration" },
|
|
{ 0 }
|
|
};
|
|
|
|
DEVICE qba_dev = {
|
|
"QBUS", &qba_unit, qba_reg, qba_mod,
|
|
1, 16, 4, 2, 16, 16,
|
|
NULL, NULL, &qba_reset,
|
|
NULL, NULL, NULL,
|
|
NULL, DEV_QBUS, 0, NULL, NULL, NULL, NULL, NULL, NULL,
|
|
&qba_description
|
|
};
|
|
|
|
/* IO page dispatches */
|
|
|
|
t_stat (*iodispR[IOPAGESIZE >> 1])(int32 *dat, int32 ad, int32 md);
|
|
t_stat (*iodispW[IOPAGESIZE >> 1])(int32 dat, int32 ad, int32 md);
|
|
|
|
/* Interrupt request to interrupt action map */
|
|
|
|
int32 (*int_ack[IPL_HLVL][32])(void); /* int ack routines */
|
|
|
|
/* Interrupt request to vector map */
|
|
|
|
int32 int_vec[IPL_HLVL][32]; /* int req to vector */
|
|
|
|
/* The KA610 handles errors in I/O space as follows
|
|
|
|
- read: machine check
|
|
- write: machine check (?)
|
|
*/
|
|
|
|
int32 ReadQb (uint32 pa)
|
|
{
|
|
int32 idx, val;
|
|
|
|
idx = (pa & IOPAGEMASK) >> 1;
|
|
if (iodispR[idx]) {
|
|
iodispR[idx] (&val, pa, READ);
|
|
return val;
|
|
}
|
|
MACH_CHECK (MCHK_READ);
|
|
return 0;
|
|
}
|
|
|
|
void WriteQb (uint32 pa, int32 val, int32 mode)
|
|
{
|
|
int32 idx;
|
|
|
|
idx = (pa & IOPAGEMASK) >> 1;
|
|
if (iodispW[idx]) {
|
|
iodispW[idx] (val, pa, mode);
|
|
return;
|
|
}
|
|
MACH_CHECK (MCHK_WRITE); /* FIXME: is this correct? */
|
|
return;
|
|
}
|
|
|
|
/* ReadIO - read I/O space - aligned access
|
|
|
|
Inputs:
|
|
pa = physical address
|
|
lnt = length (BWLQ)
|
|
Output:
|
|
longword of data
|
|
*/
|
|
|
|
int32 ReadIO (uint32 pa, int32 lnt)
|
|
{
|
|
int32 iod;
|
|
|
|
iod = ReadQb (pa); /* wd from Qbus */
|
|
if (lnt < L_LONG) /* bw? position */
|
|
iod = iod << ((pa & 2)? 16: 0);
|
|
else iod = (ReadQb (pa + 2) << 16) | iod; /* lw, get 2nd wd */
|
|
SET_IRQL;
|
|
return iod;
|
|
}
|
|
|
|
/* ReadIOU - read I/O space - unaligned access
|
|
|
|
Inputs:
|
|
pa = physical address
|
|
lnt = length (1, 2, 3 bytes)
|
|
Output:
|
|
data, not shifted
|
|
|
|
Note that all of these cases are presented to the existing aligned IO routine:
|
|
|
|
bo = 0, byte, word, or longword length
|
|
bo = 2, word
|
|
bo = 1, 2, 3, byte length
|
|
|
|
All the other cases are end up at ReadIOU and WriteIOU, and they must turn
|
|
the request into the exactly correct number of Qbus accesses AND NO MORE,
|
|
because Qbus reads can have side-effects, and word read-modify-write is NOT
|
|
the same as a byte write.
|
|
|
|
Note that the sum of the pa offset and the length cannot be greater than 4.
|
|
The read cases are:
|
|
|
|
bo = 0, byte or word - read one word
|
|
bo = 0, tribyte - read two words
|
|
bo = 1, byte - read one word
|
|
bo = 1, word or tribyte - read two words
|
|
bo = 2, byte or word - read one word
|
|
bo = 3, byte - read one word
|
|
*/
|
|
|
|
int32 ReadIOU (uint32 pa, int32 lnt)
|
|
{
|
|
int32 iod;
|
|
|
|
iod = ReadQb (pa); /* wd from Qbus */
|
|
if ((lnt + (pa & 1)) <= 2) /* byte or (word & even) */
|
|
iod = iod << ((pa & 2)? 16: 0); /* one op */
|
|
else iod = (ReadQb (pa + 2) << 16) | iod; /* two ops, get 2nd wd */
|
|
SET_IRQL;
|
|
return iod;
|
|
}
|
|
|
|
/* WriteIO - write I/O space - aligned access
|
|
|
|
Inputs:
|
|
pa = physical address
|
|
val = data to write, right justified in 32b longword
|
|
lnt = length (BWLQ)
|
|
Outputs:
|
|
none
|
|
*/
|
|
|
|
void WriteIO (uint32 pa, int32 val, int32 lnt)
|
|
{
|
|
if (lnt == L_BYTE)
|
|
WriteQb (pa, val, WRITEB);
|
|
else if (lnt == L_WORD)
|
|
WriteQb (pa, val, WRITE);
|
|
else {
|
|
WriteQb (pa, val & 0xFFFF, WRITE);
|
|
WriteQb (pa + 2, (val >> 16) & 0xFFFF, WRITE);
|
|
}
|
|
SET_IRQL;
|
|
return;
|
|
}
|
|
|
|
/* WriteIOU - write I/O space
|
|
|
|
Inputs:
|
|
pa = physical address
|
|
val = data to write, right justified in 32b longword
|
|
lnt = length (1, 2, or 3 bytes)
|
|
Outputs:
|
|
none
|
|
|
|
The write cases are:
|
|
|
|
bo = x, lnt = byte - write one byte
|
|
bo = 0 or 2, lnt = word - write one word
|
|
bo = 1, lnt = word - write two bytes
|
|
bo = 0, lnt = tribyte - write word, byte
|
|
bo = 1, lnt = tribyte - write byte, word
|
|
*/
|
|
|
|
void WriteIOU (uint32 pa, int32 val, int32 lnt)
|
|
{
|
|
switch (lnt) {
|
|
case L_BYTE: /* byte */
|
|
WriteQb (pa, val & BMASK, WRITEB);
|
|
break;
|
|
|
|
case L_WORD: /* word */
|
|
if (pa & 1) { /* odd addr? */
|
|
WriteQb (pa, val & BMASK, WRITEB);
|
|
WriteQb (pa + 1, (val >> 8) & BMASK, WRITEB);
|
|
}
|
|
else WriteQb (pa, val & WMASK, WRITE);
|
|
break;
|
|
|
|
case 3: /* tribyte */
|
|
if (pa & 1) { /* odd addr? */
|
|
WriteQb (pa, val & BMASK, WRITEB); /* byte then word */
|
|
WriteQb (pa + 1, (val >> 8) & WMASK, WRITE);
|
|
}
|
|
else { /* even */
|
|
WriteQb (pa, val & WMASK, WRITE); /* word then byte */
|
|
WriteQb (pa + 2, (val >> 16) & BMASK, WRITEB);
|
|
}
|
|
break;
|
|
}
|
|
SET_IRQL;
|
|
return;
|
|
}
|
|
|
|
/* Find highest priority outstanding interrupt */
|
|
|
|
int32 eval_int (void)
|
|
{
|
|
int32 ipl = PSL_GETIPL (PSL);
|
|
int32 i, t;
|
|
|
|
static const int32 sw_int_mask[IPL_SMAX] = {
|
|
0xFFFE, 0xFFFC, 0xFFF8, 0xFFF0, /* 0 - 3 */
|
|
0xFFE0, 0xFFC0, 0xFF80, 0xFF00, /* 4 - 7 */
|
|
0xFE00, 0xFC00, 0xF800, 0xF000, /* 8 - B */
|
|
0xE000, 0xC000, 0x8000 /* C - E */
|
|
};
|
|
|
|
if (hlt_pin) /* hlt pin int */
|
|
return IPL_HLTPIN;
|
|
if ((ipl < IPL_MEMERR) && mem_err) /* mem err int */
|
|
return IPL_MEMERR;
|
|
for (i = IPL_HMAX; i >= IPL_HMIN; i--) { /* chk hwre int */
|
|
if (i <= ipl) /* at ipl? no int */
|
|
return 0;
|
|
if (int_req[i - IPL_HMIN]) /* req != 0? int */
|
|
return i;
|
|
}
|
|
if (ipl >= IPL_SMAX) /* ipl >= sw max? */
|
|
return 0;
|
|
if ((t = SISR & sw_int_mask[ipl]) == 0) /* eligible req */
|
|
return 0;
|
|
for (i = IPL_SMAX; i > ipl; i--) { /* check swre int */
|
|
if ((t >> i) & 1) /* req != 0? int */
|
|
return i;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/* Return vector for highest priority hardware interrupt at IPL lvl */
|
|
|
|
int32 get_vector (int32 lvl)
|
|
{
|
|
int32 i;
|
|
int32 l = lvl - IPL_HMIN;
|
|
|
|
if (lvl == IPL_MEMERR) { /* mem error? */
|
|
mem_err = 0;
|
|
return SCB_MEMERR;
|
|
}
|
|
if (lvl > IPL_HMAX) { /* error req lvl? */
|
|
ABORT (STOP_UIPL); /* unknown intr */
|
|
}
|
|
for (i = 0; int_req[l] && (i < 32); i++) {
|
|
if ((int_req[l] >> i) & 1) {
|
|
int_req[l] = int_req[l] & ~(1u << i);
|
|
if (int_ack[l][i])
|
|
return int_ack[l][i]();
|
|
return int_vec[l][i];
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/* Reset I/O bus */
|
|
|
|
void ioreset_wr (int32 data)
|
|
{
|
|
reset_all (5); /* from qba on... */
|
|
return;
|
|
}
|
|
|
|
/* Reset Qbus */
|
|
|
|
t_stat qba_reset (DEVICE *dptr)
|
|
{
|
|
int32 i;
|
|
|
|
for (i = 0; i < IPL_HLVL; i++)
|
|
int_req[i] = 0;
|
|
return SCPE_OK;
|
|
}
|
|
|
|
char *qba_description (DEVICE *dptr)
|
|
{
|
|
return "Qbus adapter";
|
|
}
|
|
|
|
/* Qbus I/O buffer routines, aligned access
|
|
|
|
Map_ReadB - fetch byte buffer from memory
|
|
Map_ReadW - fetch word buffer from memory
|
|
Map_WriteB - store byte buffer into memory
|
|
Map_WriteW - store word buffer into memory
|
|
*/
|
|
|
|
int32 Map_ReadB (uint32 ba, int32 bc, uint8 *buf)
|
|
{
|
|
int32 i;
|
|
uint32 ma = ba & 0x3FFFFF;
|
|
uint32 dat;
|
|
|
|
if ((ba | bc) & 03) { /* check alignment */
|
|
for (i = 0; i < bc; i++, buf++) { /* by bytes */
|
|
*buf = ReadB (ma);
|
|
ma = ma + 1;
|
|
}
|
|
}
|
|
else {
|
|
for (i = 0; i < bc; i = i + 4, buf++) { /* by longwords */
|
|
dat = ReadL (ma); /* get lw */
|
|
*buf++ = dat & BMASK; /* low 8b */
|
|
*buf++ = (dat >> 8) & BMASK; /* next 8b */
|
|
*buf++ = (dat >> 16) & BMASK; /* next 8b */
|
|
*buf = (dat >> 24) & BMASK;
|
|
ma = ma + 4;
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
int32 Map_ReadW (uint32 ba, int32 bc, uint16 *buf)
|
|
{
|
|
int32 i;
|
|
uint32 ma = ba & 0x3FFFFF;
|
|
uint32 dat;
|
|
|
|
ba = ba & ~01;
|
|
bc = bc & ~01;
|
|
if ((ba | bc) & 03) { /* check alignment */
|
|
for (i = 0; i < bc; i = i + 2, buf++) { /* by words */
|
|
*buf = ReadW (ma);
|
|
ma = ma + 2;
|
|
}
|
|
}
|
|
else {
|
|
for (i = 0; i < bc; i = i + 4, buf++) { /* by longwords */
|
|
dat = ReadL (ma); /* get lw */
|
|
*buf++ = dat & WMASK; /* low 16b */
|
|
*buf = (dat >> 16) & WMASK; /* high 16b */
|
|
ma = ma + 4;
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
int32 Map_WriteB (uint32 ba, int32 bc, uint8 *buf)
|
|
{
|
|
int32 i;
|
|
uint32 ma = ba & 0x3FFFFF;
|
|
uint32 dat;
|
|
|
|
if ((ba | bc) & 03) { /* check alignment */
|
|
for (i = 0; i < bc; i++, buf++) { /* by bytes */
|
|
WriteB (ma, *buf);
|
|
ma = ma + 1;
|
|
}
|
|
}
|
|
else {
|
|
for (i = 0; i < bc; i = i + 4, buf++) { /* by longwords */
|
|
dat = (uint32) *buf++; /* get low 8b */
|
|
dat = dat | (((uint32) *buf++) << 8); /* merge next 8b */
|
|
dat = dat | (((uint32) *buf++) << 16); /* merge next 8b */
|
|
dat = dat | (((uint32) *buf) << 24); /* merge hi 8b */
|
|
WriteL (ma, dat); /* store lw */
|
|
ma = ma + 4;
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
int32 Map_WriteW (uint32 ba, int32 bc, uint16 *buf)
|
|
{
|
|
int32 i;
|
|
uint32 ma = ba & 0x3FFFFF;
|
|
uint32 dat;
|
|
|
|
ba = ba & ~01;
|
|
bc = bc & ~01;
|
|
if ((ba | bc) & 03) { /* check alignment */
|
|
for (i = 0; i < bc; i = i + 2, buf++) { /* by words */
|
|
WriteW (ma, *buf);
|
|
ma = ma + 2;
|
|
}
|
|
}
|
|
else {
|
|
for (i = 0; i < bc; i = i + 4, buf++) { /* by longwords */
|
|
dat = (uint32) *buf++; /* get low 16b */
|
|
dat = dat | (((uint32) *buf) << 16); /* merge hi 16b */
|
|
WriteL (ma, dat); /* store lw */
|
|
ma = ma + 4;
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/* Build dib_tab from device list */
|
|
|
|
t_stat build_dib_tab (void)
|
|
{
|
|
int32 i;
|
|
DEVICE *dptr;
|
|
DIB *dibp;
|
|
t_stat r;
|
|
|
|
init_ubus_tab (); /* init bus tables */
|
|
for (i = 0; (dptr = sim_devices[i]) != NULL; i++) { /* loop thru dev */
|
|
dibp = (DIB *) dptr->ctxt; /* get DIB */
|
|
if (dibp && !(dptr->flags & DEV_DIS)) { /* defined, enabled? */
|
|
if ((r = build_ubus_tab (dptr, dibp))) /* add to bus tab */
|
|
return r;
|
|
} /* end if enabled */
|
|
} /* end for */
|
|
return SCPE_OK;
|
|
}
|