1. New Features in 2.10-2 The build procedures have changed. There is only one UNIX makefile. To compile without Ethernet support, simply type gmake {target|all} To compile with Ethernet support, type gmake USE_NETWORK=1 {target|all} The Mingw batch files require Mingw release 2 and invoke the Unix makefile. There are still separate batch files for compilation with or without Ethernet support. 1.1 SCP and Libraries - The EVAL command will evaluate a symbolic type-in and display it in numeric form. - The ! command (with no arguments) will launch the host operating system command shell. The ! command (with an argument) executes the argument as a host operating system command. (Code from Mark Pizzolato) - Telnet sessions now recognize BREAK. How a BREAK is transmitted dependent on the particular Telnet client. (Code from Mark Pizzolato) - The sockets library includes code for active connections as well as listening connections. - The RESTORE command will restore saved memory size, if the simulator supports dynamic memory resizing. 1.2 PDP-1 - The PDP-1 supports the Type 24 serial drum (based on recently discovered documents). 1.3 18b PDP's - The PDP-4 supports the Type 24 serial drum (based on recently discovered documents). 1.4 PDP-11 - The PDP-11 implements a stub DEUNA/DELUA (XU). The real XU module will be included in a later release. 1.5 PDP-10 - The PDP-10 implements a stub DEUNA/DELUA (XU). The real XU module will be included in a later release. 1.6 HP 2100 - The IOP microinstruction set is supported for the 21MX as well as the 2100. - The HP2100 supports the Access Interprocessor Link (IPL). 1.7 VAX - If the VAX console is attached to a Telnet session, BREAK is interpreted as console halt. - The SET/SHOW HISTORY commands enable and display a history of the most recently executed instructions. (Code from Mark Pizzolato) 1.8 Terminals Multiplexors - BREAK detection was added to the HP, DEC, and Interdata terminal multiplexors. 1.9 Interdata 16b and 32b - First release. UNIX is not yet working. 1.10 SDS 940 - First release. 2. Bugs Fixed in 2.10-2 - PDP-11 console must default to 7b for early UNIX compatibility. - PDP-11/VAX TMSCP emulator was using the wrong packet length for read/write end packets. - Telnet IAC+IAC processing was fixed, both for input and output (found by Mark Pizzolato). - PDP-11/VAX Ethernet setting flag bits wrong for chained descriptors (found by Mark Pizzolato). 3. New Features in 2.10 vs prior releases 3.1 SCP and Libraries - The VT emulation package has been replaced by the capability to remote the console to a Telnet session. Telnet clients typically have more complete and robust VT100 emulation. - Simulated devices may now have statically allocated buffers, in addition to dynamically allocated buffers or disk-based data stores. - The DO command now takes substitutable arguments (max 9). In command files, %n represents substitutable argument n. - The initial command line is now interpreted as the command name and substitutable arguments for a DO command. This is backward compatible to prior versions. - The initial command line parses switches. -Q is interpreted as quiet mode; informational messages are suppressed. - The HELP command now takes an optional argument. HELP <cmd> types help on the specified command. - Hooks have been added for implementing GUI-based consoles, as well as simulator-specific command extensions. A few internal data structures and definitions have changed. - Two new routines (tmxr_open_master, tmxr_close_master) have been added to sim_tmxr.c. The calling sequence for sim_accept_conn has been changed in sim_sock.c. - The calling sequence for the VM boot routine has been modified to add an additional parameter. - SAVE now saves, and GET now restores, controller and unit flags. - Library sim_ether.c has been added for Ethernet support. 3.2 VAX - Non-volatile RAM (NVR) can behave either like a memory or like a disk-based peripheral. If unattached, it behaves like memory and is saved and restored by SAVE and RESTORE, respectively. If attached, its contents are loaded from disk by ATTACH and written back to disk at DETACH and EXIT. - SHOW <device> VECTOR displays the device's interrupt vector. A few devices allow the vector to be changed with SET <device> VECTOR=nnn. - SHOW CPU IOSPACE displays the I/O space address map. - The TK50 (TMSCP tape) has been added. - The DEQNA/DELQA (Qbus Ethernet controllers) have been added. - Autoconfiguration support has been added. - The paper tape reader has been removed from vax_stddev.c and now references a common implementation file, dec_pt.h. - Examine and deposit switches now work on all devices, not just the CPU. - Device address conflicts are not detected until simulation starts. 3.3 PDP-11 - SHOW <device> VECTOR displays the device's interrupt vector. Most devices allow the vector to be changed with SET <device> VECTOR=nnn. - SHOW CPU IOSPACE displays the I/O space address map. - The TK50 (TMSCP tape), RK611/RK06/RK07 (cartridge disk), RX211 (double density floppy), and KW11P programmable clock have been added. - The DEQNA/DELQA (Qbus Ethernet controllers) have been added. - Autoconfiguration support has been added. - The paper tape reader has been removed from pdp11_stddev.c and now references a common implementation file, dec_pt.h. - Device bootstraps now use the actual CSR specified by the SET ADDRESS command, rather than just the default CSR. Note that PDP-11 operating systems may NOT support booting with non-standard addresses. - Specifying more than 256KB of memory, or changing the bus configuration, causes all peripherals that are not compatible with the current bus configuration to be disabled. - Device address conflicts are not detected until simulation starts. 3.4 PDP-10 - SHOW <device> VECTOR displays the device's interrupt vector. A few devices allow the vector to be changed with SET <device> VECTOR=nnn. - SHOW CPU IOSPACE displays the I/O space address map. - The RX211 (double density floppy) has been added; it is off by default. - The paper tape now references a common implementation file, dec_pt.h. - Device address conflicts are not detected until simulation starts. 3.5 PDP-1 - DECtape (then known as MicroTape) support has been added. - The line printer and DECtape can be disabled and enabled. 3.6 PDP-8 - The RX28 (double density floppy) has been added as an option to the existing RX8E controller. - SHOW <device> DEVNO displays the device's device number. Most devices allow the device number to be changed with SET <device> DEVNO=nnn. - Device number conflicts are not detected until simulation starts. 3.7 IBM 1620 - The IBM 1620 simulator has been released. 3.8 AltairZ80 - A hard drive has been added for increased storage. - Several bugs have been fixed. 3.9 HP 2100 - The 12845A has been added and made the default line printer (LPT). The 12653A has been renamed LPS and is off by default. It also supports the diagnostic functions needed to run the DCPC and DMS diagnostics. - The 12557A/13210A disk defaults to the 13210A (7900/7901). - The 12559A magtape is off by default. - New CPU options (EAU/NOEAU) enable/disable the extended arithmetic instructions for the 2116. These instructions are standard on the 2100 and 21MX. - New CPU options (MPR/NOMPR) enable/disable memory protect for the 2100 and 21MX. - New CPU options (DMS/NODMS) enable/disable the dynamic mapping instructions for the 21MX. - The 12539 timebase generator autocalibrates. 3.10 Simulated Magtapes - Simulated magtapes recognize end of file and the marker 0xFFFFFFFF as end of medium. Only the TMSCP tape simulator can generate an end of medium marker. - The error handling in simulated magtapes was overhauled to be consistent through all simulators. 3.11 Simulated DECtapes - Added support for RT11 image file format (256 x 16b) to DECtapes. 4. Bugs Fixed in 2.10 vs prior releases - TS11/TSV05 was not simulating the XS0_MOT bit, causing failures under VMS. In addition, two of the CTL options were coded interchanged. - IBM 1401 tape was not setting a word mark under group mark for load mode reads. This caused the diagnostics to crash. - SCP bugs in ssh_break and set_logon were fixed (found by Dave Hittner). - Numerous bugs in the HP 2100 extended arithmetic, floating point, 21MX, DMS, and IOP instructions were fixed. Bugs were also fixed in the memory protect and DMS functions. The moving head disks (DP, DQ) were revised to simulate the hardware more accurately. Missing functions in DQ (address skip, read address) were added. - PDP-10 tape wouldn't boot, and then wouldn't read (reported by Michael Thompson and Harris Newman, respectively) - PDP-1 typewriter is half duplex, with only one shift state for both input and output (found by Derek Peschel) 5. General Notes WARNING: V2.10 has reorganized and renamed some of the definition files for the PDP-10, PDP-11, and VAX. Be sure to delete all previous source files before you unpack the Zip archive, or unpack it into a new directory structure. WARNING: V2.10 has a new, more comprehensive save file format. Restoring save files from previous releases will cause 'invalid register' errors and loss of CPU option flags, device enable/ disable flags, unit online/offline flags, and unit writelock flags. WARNING: If you are using Visual Studio .NET through the IDE, be sure to turn off the /Wp64 flag in the project settings, or dozens of spurious errors will be generated. WARNING: Compiling Ethernet support under Windows requires extra steps; see the Ethernet readme file. Ethernet support is currently available only for Windows, Linux, NetBSD, and OpenBSD.
899 lines
29 KiB
C
899 lines
29 KiB
C
/* nova_cpu.c: NOVA CPU simulator
|
||
|
||
Copyright (c) 1993-2002, Robert M. Supnik
|
||
|
||
Permission is hereby granted, free of charge, to any person obtaining a
|
||
copy of this software and associated documentation files (the "Software"),
|
||
to deal in the Software without restriction, including without limitation
|
||
the rights to use, copy, modify, merge, publish, distribute, sublicense,
|
||
and/or sell copies of the Software, and to permit persons to whom the
|
||
Software is furnished to do so, subject to the following conditions:
|
||
|
||
The above copyright notice and this permission notice shall be included in
|
||
all copies or substantial portions of the Software.
|
||
|
||
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
||
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
||
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
|
||
ROBERT M SUPNIK BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
|
||
IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
|
||
CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
|
||
|
||
Except as contained in this notice, the name of Robert M Supnik shall not
|
||
be used in advertising or otherwise to promote the sale, use or other dealings
|
||
in this Software without prior written authorization from Robert M Supnik.
|
||
|
||
cpu Nova central processor
|
||
|
||
03-Oct-02 RMS Added DIB infrastructure
|
||
30-Dec-01 RMS Added old PC queue
|
||
07-Dec-01 RMS Revised to use breakpoint package
|
||
30-Nov-01 RMS Added extended SET/SHOW support
|
||
10-Aug-01 RMS Removed register in declarations
|
||
17-Jul-01 RMS Moved function prototype
|
||
26-Apr-01 RMS Added device enable/disable support
|
||
05-Mar-01 RMS Added clock calibration
|
||
22-Dec-00 RMS Added Bruce Ray's second terminal
|
||
15-Dec-00 RMS Added Charles Owen's CPU bootstrap
|
||
08-Dec-00 RMS Changes from Bruce Ray
|
||
-- fixed trap test to include Nova 3
|
||
-- fixed DIV and DIVS divide by 0
|
||
-- fixed RETN to set SP from FP
|
||
-- fixed IORST to preserve carry
|
||
-- added "secret" Nova 4 PSHN/SAVEN instructions
|
||
-- added plotter support
|
||
15-Oct-00 RMS Fixed bug in MDV test, added stack, byte, trap instructions
|
||
14-Apr-98 RMS Changed t_addr to unsigned
|
||
15-Sep-97 RMS Added read and write breakpoints
|
||
|
||
The register state for the NOVA CPU is:
|
||
|
||
AC[0:3]<0:15> general registers
|
||
C carry flag
|
||
PC<0:14> program counter
|
||
|
||
The NOVA has three instruction formats: memory reference, I/O transfer,
|
||
and operate. The memory reference format is:
|
||
|
||
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
|
||
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
|
||
| 0| op | AC |in| mode| displacement | memory reference
|
||
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
|
||
|
||
<0:4> mnemonic action
|
||
|
||
00000 JMP PC = MA
|
||
00001 JMS AC3 = PC, PC = MA
|
||
00010 ISZ M[MA] = M[MA] + 1, skip if M[MA] == 0
|
||
00011 DSZ M[MA] = M[MA] - 1, skip if M[MA] == 0
|
||
001'n LDA ACn = M[MA]
|
||
010'n STA M[MA] = ACn
|
||
|
||
<5:7> mode action
|
||
|
||
000 page zero direct MA = zext (IR<8:15>)
|
||
001 PC relative direct MA = PC + sext (IR<8:15>)
|
||
010 AC2 relative direct MA = AC2 + sext (IR<8:15>)
|
||
011 AC3 relative direct MA = AC3 + sext (IR<8:15>)
|
||
100 page zero indirect MA = M[zext (IR<8:15>)]
|
||
101 PC relative indirect MA = M[PC + sext (IR<8:15>)]
|
||
110 AC2 relative indirect MA = M[AC2 + sext (IR<8:15>)]
|
||
111 AC3 relative indirect MA = M[AC3 + sext (IR<8:15>)]
|
||
|
||
Memory reference instructions can access an address space of 32K words.
|
||
An instruction can directly reference the first 256 words of memory
|
||
(called page zero), as well as 256 words relative to the PC, AC2, or
|
||
AC3; it can indirectly access all 32K words. If an indirect address
|
||
is in locations 00020-00027, the indirect address is incremented and
|
||
rewritten to memory before use; if in 00030-00037, decremented and
|
||
rewritten.
|
||
*/
|
||
|
||
/* The I/O transfer format is:
|
||
|
||
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
|
||
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
|
||
| 0 1 1| AC | opcode |pulse| device | I/O transfer
|
||
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
|
||
|
||
The IOT instruction sends the opcode, pulse, and specified AC to the
|
||
specified I/O device. The device may accept data, provide data,
|
||
initiate or cancel operations, or skip on status.
|
||
|
||
The operate format is:
|
||
|
||
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
|
||
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
|
||
| 1|srcAC|dstAC| opcode |shift|carry|nl| skip | operate
|
||
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
|
||
\______/ \___/ \___/ | | | |
|
||
| | | | | | +--- reverse skip sense
|
||
| | | | | +--- skip if C == 0
|
||
| | | | +--- skip if result == 0
|
||
| | | +--- don't load result
|
||
| | +--- carry in (load as is,
|
||
| | set to Zero,
|
||
| | set to One,
|
||
| | load Complement)
|
||
| +--- shift (none,
|
||
| left one,
|
||
| right one,
|
||
| byte swap)
|
||
+--- operation (complement,
|
||
negate,
|
||
move,
|
||
increment,
|
||
add complement,
|
||
subtract,
|
||
add,
|
||
and)
|
||
|
||
The operate instruction can be microprogrammed to perform operations
|
||
on the source and destination AC's and the Carry flag.
|
||
|
||
Some notes from Bruce Ray:
|
||
|
||
1. DG uses the value of the autoindex location -before- the
|
||
modification to determine if additional indirect address
|
||
levels are to be performed. Most DG emulators conform to
|
||
this standard, but some vendor machines (i.e. Point 4 Mark 8)
|
||
do not.
|
||
|
||
2. Infinite indirect references may occur on unmapped systems
|
||
and can "hang" the hardware. Some DG diagnostics perform
|
||
10,000s of references during a single instruction.
|
||
|
||
3. Nova 3 adds the following instructions to the standard Nova
|
||
instruction set:
|
||
|
||
trap instructions
|
||
stack push/pop instructions
|
||
save/return instructions
|
||
stack register manipulation instructions
|
||
unsigned MUL/DIV
|
||
|
||
4. Nova 4 adds the following instructions to the Nova 3 instruction
|
||
set:
|
||
|
||
signed MUL/DIV
|
||
load/store byte
|
||
secret (undocumented) stack instructions [PSHN, SAVN]
|
||
|
||
5. Nova, Nova 3 and Nova 4 unsigned mul/div instructions are the
|
||
same instruction code values on all machines.
|
||
*/
|
||
|
||
/* This routine is the instruction decode routine for the NOVA.
|
||
It is called from the simulator control program to execute
|
||
instructions in simulated memory, starting at the simulated PC.
|
||
It runs until 'reason' is set non-zero.
|
||
|
||
General notes:
|
||
|
||
1. Reasons to stop. The simulator can be stopped by:
|
||
|
||
HALT instruction
|
||
breakpoint encountered
|
||
infinite indirection loop
|
||
unknown I/O device and STOP_DEV flag set
|
||
I/O error in I/O simulator
|
||
|
||
2. Interrupts. Interrupts are maintained by four parallel variables:
|
||
|
||
dev_done device done flags
|
||
dev_disable device interrupt disable flags
|
||
dev_busy device busy flags
|
||
int_req interrupt requests
|
||
|
||
In addition, int_req contains the interrupt enable and ION pending
|
||
flags. If ION and ION pending are set, and at least one interrupt
|
||
request is pending, then an interrupt occurs. Note that the 16b PIO
|
||
mask must be mapped to the simulator's device bit mapping.
|
||
|
||
3. Non-existent memory. On the NOVA, reads to non-existent memory
|
||
return zero, and writes are ignored. In the simulator, the
|
||
largest possible memory is instantiated and initialized to zero.
|
||
Thus, only writes need be checked against actual memory size.
|
||
|
||
4. Adding I/O devices. These modules must be modified:
|
||
|
||
nova_defs.h add interrupt request definition
|
||
nova_sys.c add sim_devices entry
|
||
*/
|
||
|
||
#include "nova_defs.h"
|
||
|
||
#define PCQ_SIZE 64 /* must be 2**n */
|
||
#define PCQ_MASK (PCQ_SIZE - 1)
|
||
#define PCQ_ENTRY pcq[pcq_p = (pcq_p - 1) & PCQ_MASK] = PC
|
||
|
||
#define INCA(x) (((x) + 1) & AMASK)
|
||
#define DECA(x) (((x) - 1) & AMASK)
|
||
#define SEXT(x) (((x) & SIGN)? ((x) | ~DMASK): (x))
|
||
#define STK_CHECK(x,y) if (((x) & 0377) < (y)) int_req = int_req | INT_STK
|
||
#define IND_STEP(x) M[x] & A_IND; \
|
||
if (((x) & 077770) == AUTO_INC) \
|
||
M[x] = (M[x] + 1) & 0177777; \
|
||
else if (((x) & 077770) == AUTO_DEC) \
|
||
M[x] = (M[x] - 1) & 0177777; \
|
||
x = M[x] & AMASK
|
||
|
||
#define UNIT_V_MDV (UNIT_V_UF + 0) /* MDV present */
|
||
#define UNIT_V_STK (UNIT_V_UF + 1) /* stack instr */
|
||
#define UNIT_V_BYT (UNIT_V_UF + 2) /* byte instr */
|
||
#define UNIT_V_MSIZE (UNIT_V_UF + 3) /* dummy mask */
|
||
#define UNIT_MDV (1 << UNIT_V_MDV)
|
||
#define UNIT_STK (1 << UNIT_V_STK)
|
||
#define UNIT_BYT (1 << UNIT_V_BYT)
|
||
#define UNIT_MSIZE (1 << UNIT_V_MSIZE)
|
||
#define UNIT_IOPT (UNIT_MDV | UNIT_STK | UNIT_BYT)
|
||
#define UNIT_NOVA3 (UNIT_MDV | UNIT_STK)
|
||
#define UNIT_NOVA4 (UNIT_MDV | UNIT_STK | UNIT_BYT)
|
||
|
||
uint16 M[MAXMEMSIZE] = { 0 }; /* memory */
|
||
int32 AC[4] = { 0 }; /* accumulators */
|
||
int32 C = 0; /* carry flag */
|
||
int32 saved_PC = 0; /* program counter */
|
||
int32 SP = 0; /* stack pointer */
|
||
int32 FP = 0; /* frame pointer */
|
||
int32 SR = 0; /* switch register */
|
||
int32 dev_done = 0; /* device done flags */
|
||
int32 dev_busy = 0; /* device busy flags */
|
||
int32 dev_disable = 0; /* int disable flags */
|
||
int32 int_req = 0; /* interrupt requests */
|
||
int32 pimask = 0; /* priority int mask */
|
||
int32 pwr_low = 0; /* power fail flag */
|
||
int32 ind_max = 16; /* iadr nest limit */
|
||
int32 stop_dev = 0; /* stop on ill dev */
|
||
uint16 pcq[PCQ_SIZE] = { 0 }; /* PC queue */
|
||
int32 pcq_p = 0; /* PC queue ptr */
|
||
REG *pcq_r = NULL; /* PC queue reg ptr */
|
||
struct ndev dev_table[64]; /* dispatch table */
|
||
|
||
extern int32 sim_int_char;
|
||
extern int32 sim_brk_types, sim_brk_dflt, sim_brk_summ; /* breakpoint info */
|
||
extern DEVICE *sim_devices[];
|
||
|
||
t_stat cpu_ex (t_value *vptr, t_addr addr, UNIT *uptr, int32 sw);
|
||
t_stat cpu_dep (t_value val, t_addr addr, UNIT *uptr, int32 sw);
|
||
t_stat cpu_reset (DEVICE *dptr);
|
||
t_stat cpu_set_size (UNIT *uptr, int32 val, char *cptr, void *desc);
|
||
t_stat cpu_boot (int32 unitno, DEVICE *dptr);
|
||
t_stat build_devtab (void);
|
||
|
||
/* CPU data structures
|
||
|
||
cpu_dev CPU device descriptor
|
||
cpu_unit CPU unit descriptor
|
||
cpu_reg CPU register list
|
||
cpu_mod CPU modifiers list
|
||
*/
|
||
|
||
UNIT cpu_unit = { UDATA (NULL, UNIT_FIX + UNIT_BINK + UNIT_MDV,
|
||
MAXMEMSIZE) };
|
||
|
||
REG cpu_reg[] = {
|
||
{ ORDATA (PC, saved_PC, 15) },
|
||
{ ORDATA (AC0, AC[0], 16) },
|
||
{ ORDATA (AC1, AC[1], 16) },
|
||
{ ORDATA (AC2, AC[2], 16) },
|
||
{ ORDATA (AC3, AC[3], 16) },
|
||
{ FLDATA (C, C, 16) },
|
||
{ ORDATA (SP, SP, 16) },
|
||
{ ORDATA (FP, FP, 16) },
|
||
{ ORDATA (SR, SR, 16) },
|
||
{ ORDATA (PI, pimask, 16) },
|
||
{ FLDATA (ION, int_req, INT_V_ION) },
|
||
{ FLDATA (ION_DELAY, int_req, INT_V_NO_ION_PENDING) },
|
||
{ FLDATA (STKOVF, int_req, INT_V_STK) },
|
||
{ FLDATA (PWR, pwr_low, 0) },
|
||
{ ORDATA (INT, int_req, INT_V_ION+1), REG_RO },
|
||
{ ORDATA (BUSY, dev_busy, INT_V_ION+1), REG_RO },
|
||
{ ORDATA (DONE, dev_done, INT_V_ION+1), REG_RO },
|
||
{ ORDATA (DISABLE, dev_disable, INT_V_ION+1), REG_RO },
|
||
{ FLDATA (STOP_DEV, stop_dev, 0) },
|
||
{ DRDATA (INDMAX, ind_max, 16), REG_NZ + PV_LEFT },
|
||
{ BRDATA (PCQ, pcq, 8, 16, PCQ_SIZE), REG_RO+REG_CIRC },
|
||
{ ORDATA (PCQP, pcq_p, 6), REG_HRO },
|
||
{ ORDATA (WRU, sim_int_char, 8) },
|
||
{ NULL } };
|
||
|
||
MTAB cpu_mod[] = {
|
||
{ UNIT_IOPT, UNIT_NOVA3, "NOVA3", "NOVA3", NULL },
|
||
{ UNIT_IOPT, UNIT_NOVA4, "NOVA4", "NOVA4", NULL },
|
||
{ UNIT_IOPT, UNIT_MDV, "MDV", "MDV", NULL },
|
||
{ UNIT_IOPT, 0, "none", "NONE", NULL },
|
||
{ UNIT_MSIZE, 4096, NULL, "4K", &cpu_set_size },
|
||
{ UNIT_MSIZE, 8192, NULL, "8K", &cpu_set_size },
|
||
{ UNIT_MSIZE, 12288, NULL, "12K", &cpu_set_size },
|
||
{ UNIT_MSIZE, 16384, NULL, "16K", &cpu_set_size },
|
||
{ UNIT_MSIZE, 20480, NULL, "20K", &cpu_set_size },
|
||
{ UNIT_MSIZE, 24576, NULL, "24K", &cpu_set_size },
|
||
{ UNIT_MSIZE, 28672, NULL, "28K", &cpu_set_size },
|
||
{ UNIT_MSIZE, 32768, NULL, "32K", &cpu_set_size },
|
||
{ 0 } };
|
||
|
||
DEVICE cpu_dev = {
|
||
"CPU", &cpu_unit, cpu_reg, cpu_mod,
|
||
1, 8, 15, 1, 8, 16,
|
||
&cpu_ex, &cpu_dep, &cpu_reset,
|
||
NULL, NULL, NULL };
|
||
|
||
t_stat sim_instr (void)
|
||
{
|
||
extern int32 sim_interval;
|
||
int32 PC, IR, i;
|
||
t_stat reason;
|
||
void mask_out (int32 mask);
|
||
extern int32 clk_sel, clk_time[4];
|
||
|
||
/* Restore register state */
|
||
|
||
if (build_devtab () != SCPE_OK) return SCPE_IERR; /* build dispatch */
|
||
PC = saved_PC & AMASK; /* load local PC */
|
||
C = C & CBIT;
|
||
mask_out (pimask); /* reset int system */
|
||
reason = 0;
|
||
sim_rtc_init (clk_time[clk_sel]); /* init calibration */
|
||
|
||
/* Main instruction fetch/decode loop */
|
||
|
||
while (reason == 0) { /* loop until halted */
|
||
if (sim_interval <= 0) { /* check clock queue */
|
||
if (reason = sim_process_event ()) break; }
|
||
|
||
if (int_req > INT_PENDING) { /* interrupt? */
|
||
int32 MA, indf;
|
||
int_req = int_req & ~INT_ION; /* intr off */
|
||
PCQ_ENTRY; /* save old PC */
|
||
M[INT_SAV] = PC;
|
||
if (int_req & INT_STK) { /* stack overflow? */
|
||
int_req = int_req & ~INT_STK; /* clear */
|
||
MA = STK_JMP; } /* jmp @3 */
|
||
else MA = INT_JMP; /* intr: jmp @1 */
|
||
for (i = 0, indf = 1; indf && (i < ind_max); i++) {
|
||
indf = IND_STEP (MA); } /* indirect loop */
|
||
if (i >= ind_max) {
|
||
reason = STOP_IND_INT;
|
||
break; }
|
||
PC = MA; } /* end interrupt */
|
||
|
||
if (sim_brk_summ && sim_brk_test (PC, SWMASK ('E'))) { /* breakpoint? */
|
||
reason = STOP_IBKPT; /* stop simulation */
|
||
break; }
|
||
|
||
IR = M[PC]; /* fetch instr */
|
||
PC = (PC + 1) & AMASK;
|
||
int_req = int_req | INT_NO_ION_PENDING; /* clear ION delay */
|
||
sim_interval = sim_interval - 1;
|
||
|
||
/* Operate instruction */
|
||
|
||
if (IR & I_OPR) { /* operate? */
|
||
int32 src, srcAC, dstAC;
|
||
srcAC = I_GETSRC (IR); /* get reg decodes */
|
||
dstAC = I_GETDST (IR);
|
||
switch (I_GETCRY (IR)) { /* decode carry */
|
||
case 0: /* load */
|
||
src = AC[srcAC] | C;
|
||
break;
|
||
case 1: /* clear */
|
||
src = AC[srcAC];
|
||
break;
|
||
case 2: /* set */
|
||
src = AC[srcAC] | CBIT;
|
||
break;
|
||
case 3: /* complement */
|
||
src = AC[srcAC] | (C ^ CBIT);
|
||
break; } /* end switch carry */
|
||
switch (I_GETALU (IR)) { /* decode ALU */
|
||
case 0: /* COM */
|
||
src = src ^ DMASK;
|
||
break;
|
||
case 1: /* NEG */
|
||
src = ((src ^ DMASK) + 1) & CMASK;
|
||
break;
|
||
case 2: /* MOV */
|
||
break;
|
||
case 3: /* INC */
|
||
src = (src + 1) & CMASK;
|
||
break;
|
||
case 4: /* ADC */
|
||
src = ((src ^ DMASK) + AC[dstAC]) & CMASK;
|
||
break;
|
||
case 5: /* SUB */
|
||
src = ((src ^ DMASK) + AC[dstAC] + 1) & CMASK;
|
||
break;
|
||
case 6: /* ADD */
|
||
src = (src + AC[dstAC]) & CMASK;
|
||
break;
|
||
case 7: /* AND */
|
||
src = src & (AC[dstAC] | CBIT);
|
||
break; } /* end switch oper */
|
||
|
||
/* Operate, continued */
|
||
|
||
switch (I_GETSHF (IR)) { /* decode shift */
|
||
case 0: /* nop */
|
||
break;
|
||
case 1: /* L */
|
||
src = ((src << 1) | (src >> 16)) & CMASK;
|
||
break;
|
||
case 2: /* R */
|
||
src = ((src >> 1) | (src << 16)) & CMASK;
|
||
break;
|
||
case 3: /* S */
|
||
src = ((src & 0377) << 8) | ((src >> 8) & 0377) |
|
||
(src & CBIT);
|
||
break; } /* end switch shift */
|
||
switch (I_GETSKP (IR)) { /* decode skip */
|
||
case 0: /* nop */
|
||
if ((IR & I_NLD) && (cpu_unit.flags & UNIT_STK)) {
|
||
int32 indf, MA; /* Nova 3 or 4 trap */
|
||
PCQ_ENTRY; /* save old PC */
|
||
M[TRP_SAV] = (PC - 1) & AMASK;
|
||
MA = TRP_JMP; /* jmp @47 */
|
||
for (i = 0, indf = 1; indf && (i < ind_max); i++) {
|
||
indf = IND_STEP (MA); } /* resolve ind */
|
||
if (i >= ind_max) { /* indirect loop? */
|
||
reason = STOP_IND_TRP;
|
||
break; }
|
||
PC = MA; /* new PC */
|
||
break; }
|
||
break;
|
||
case 1: /* SKP */
|
||
PC = (PC + 1) & AMASK;
|
||
break;
|
||
case 2: /* SZC */
|
||
if (src < CBIT) PC = (PC + 1) & AMASK;
|
||
break;
|
||
case 3: /* SNC */
|
||
if (src >= CBIT) PC = (PC + 1) & AMASK;
|
||
break;
|
||
case 4: /* SZR */
|
||
if ((src & DMASK) == 0) PC = (PC + 1) & AMASK;
|
||
break;
|
||
case 5: /* SNR */
|
||
if ((src & DMASK) != 0) PC = (PC + 1) & AMASK;
|
||
break;
|
||
case 6: /* SEZ */
|
||
if (src <= CBIT) PC = (PC + 1) & AMASK;
|
||
break;
|
||
case 7: /* SBN */
|
||
if (src > CBIT) PC = (PC + 1) & AMASK;
|
||
break; } /* end switch skip */
|
||
if ((IR & I_NLD) == 0) { /* load? */
|
||
AC[dstAC] = src & DMASK;
|
||
C = src & CBIT; } /* end if load */
|
||
} /* end if operate */
|
||
|
||
/* Memory reference instructions */
|
||
|
||
else if (IR < 060000) { /* mem ref? */
|
||
int32 src, MA, indf;
|
||
MA = I_GETDISP (IR); /* get disp */
|
||
switch (I_GETMODE (IR)) { /* decode mode */
|
||
case 0: /* page zero */
|
||
break;
|
||
case 1: /* PC relative */
|
||
if (MA & DISPSIGN) MA = 077400 | MA;
|
||
MA = (MA + PC - 1) & AMASK;
|
||
break;
|
||
case 2: /* AC2 relative */
|
||
if (MA & DISPSIGN) MA = 077400 | MA;
|
||
MA = (MA + AC[2]) & AMASK;
|
||
break;
|
||
case 3: /* AC3 relative */
|
||
if (MA & DISPSIGN) MA = 077400 | MA;
|
||
MA = (MA + AC[3]) & AMASK;
|
||
break; } /* end switch mode */
|
||
|
||
if (indf = IR & I_IND) { /* indirect? */
|
||
for (i = 0; indf && (i < ind_max); i++) { /* count */
|
||
indf = IND_STEP (MA); } /* resolve indirect */
|
||
if (i >= ind_max) { /* too many? */
|
||
reason = STOP_IND;
|
||
break; } }
|
||
|
||
/* Memory reference, continued */
|
||
|
||
switch (I_GETOPAC (IR)) { /* decode op + AC */
|
||
case 001: /* JSR */
|
||
AC[3] = PC;
|
||
case 000: /* JMP */
|
||
PCQ_ENTRY;
|
||
PC = MA;
|
||
break;
|
||
case 002: /* ISZ */
|
||
src = (M[MA] + 1) & DMASK;
|
||
if (MEM_ADDR_OK (MA)) M[MA] = src;
|
||
if (src == 0) PC = (PC + 1) & AMASK;
|
||
break;
|
||
case 003: /* DSZ */
|
||
src = (M[MA] - 1) & DMASK;
|
||
if (MEM_ADDR_OK (MA)) M[MA] = src;
|
||
if (src == 0) PC = (PC + 1) & AMASK;
|
||
break;
|
||
case 004: /* LDA 0 */
|
||
AC[0] = M[MA];
|
||
break;
|
||
case 005: /* LDA 1 */
|
||
AC[1] = M[MA];
|
||
break;
|
||
case 006: /* LDA 2 */
|
||
AC[2] = M[MA];
|
||
break;
|
||
case 007: /* LDA 3 */
|
||
AC[3] = M[MA];
|
||
break;
|
||
case 010: /* STA 0 */
|
||
if (MEM_ADDR_OK (MA)) M[MA] = AC[0];
|
||
break;
|
||
case 011: /* STA 1 */
|
||
if (MEM_ADDR_OK (MA)) M[MA] = AC[1];
|
||
break;
|
||
case 012: /* STA 2 */
|
||
if (MEM_ADDR_OK (MA)) M[MA] = AC[2];
|
||
break;
|
||
case 013: /* STA 3 */
|
||
if (MEM_ADDR_OK (MA)) M[MA] = AC[3];
|
||
break; } /* end switch */
|
||
} /* end mem ref */
|
||
|
||
/* IOT instruction */
|
||
|
||
else { /* IOT */
|
||
int32 dstAC, pulse, code, device, iodata;
|
||
dstAC = I_GETDST (IR); /* decode fields */
|
||
code = I_GETIOT (IR);
|
||
pulse = I_GETPULSE (IR);
|
||
device = I_GETDEV (IR);
|
||
if (code == ioSKP) { /* IO skip? */
|
||
switch (pulse) { /* decode IR<8:9> */
|
||
case 0: /* skip if busy */
|
||
if ((device == DEV_CPU)? (int_req & INT_ION) != 0:
|
||
(dev_busy & dev_table[device].mask) != 0)
|
||
PC = (PC + 1) & AMASK;
|
||
break;
|
||
case 1: /* skip if not busy */
|
||
if ((device == DEV_CPU)? (int_req & INT_ION) == 0:
|
||
(dev_busy & dev_table[device].mask) == 0)
|
||
PC = (PC + 1) & AMASK;
|
||
break;
|
||
case 2: /* skip if done */
|
||
if ((device == DEV_CPU)? pwr_low != 0:
|
||
(dev_done & dev_table[device].mask) != 0)
|
||
PC = (PC + 1) & AMASK;
|
||
break;
|
||
case 3: /* skip if not done */
|
||
if ((device == DEV_CPU)? pwr_low == 0:
|
||
(dev_done & dev_table[device].mask) == 0)
|
||
PC = (PC + 1) & AMASK;
|
||
break; } /* end switch */
|
||
} /* end IO skip */
|
||
|
||
/* IOT, continued */
|
||
|
||
else if (device == DEV_MDV) {
|
||
switch (code) { /* case on opcode */
|
||
case ioNIO: /* frame ptr */
|
||
if (cpu_unit.flags & UNIT_STK) {
|
||
if (pulse == iopN) FP = AC[dstAC] & AMASK;
|
||
if (pulse == iopC) AC[dstAC] = FP; }
|
||
break;
|
||
case ioDIA: /* load byte */
|
||
if (cpu_unit.flags & UNIT_BYT)
|
||
AC[dstAC] = (M[AC[pulse] >> 1] >>
|
||
((AC[pulse] & 1)? 0: 8)) & 0377;
|
||
else AC[dstAC] = 0;
|
||
break;
|
||
case ioDOA: /* stack ptr */
|
||
if (cpu_unit.flags & UNIT_STK) {
|
||
if (pulse == iopN) SP = AC[dstAC] & AMASK;
|
||
if (pulse == iopC) AC[dstAC] = SP; }
|
||
break;
|
||
case ioDIB: /* push, pop */
|
||
if (cpu_unit.flags & UNIT_STK) {
|
||
if (pulse == iopN) { /* push */
|
||
SP = INCA (SP);
|
||
if (MEM_ADDR_OK (SP)) M[SP] = AC[dstAC];
|
||
STK_CHECK (SP, 1); }
|
||
if (pulse == iopC) { /* pop */
|
||
AC[dstAC] = M[SP];
|
||
SP = DECA (SP); }
|
||
if ((pulse == iopP) && /* Nova 4 pshn */
|
||
(cpu_unit.flags & UNIT_BYT)) {
|
||
SP = INCA (SP);
|
||
if (MEM_ADDR_OK (SP)) M[SP] = AC[dstAC];
|
||
if (SP > M[042]) int_req = int_req | INT_STK ;
|
||
}
|
||
}
|
||
break;
|
||
case ioDOB: /* store byte */
|
||
if (cpu_unit.flags & UNIT_BYT) {
|
||
int32 MA, val;
|
||
MA = AC[pulse] >> 1;
|
||
val = AC[dstAC] & 0377;
|
||
if (MEM_ADDR_OK (MA)) M[MA] = (AC[pulse] & 1)?
|
||
((M[MA] & ~0377) | val):
|
||
((M[MA] & 0377) | (val << 8)); }
|
||
break;
|
||
case ioDIC: /* save, return */
|
||
if (cpu_unit.flags & UNIT_STK) {
|
||
if (pulse == iopN) { /* save */
|
||
SP = INCA (SP);
|
||
if (MEM_ADDR_OK (SP)) M[SP] = AC[0];
|
||
SP = INCA (SP);
|
||
if (MEM_ADDR_OK (SP)) M[SP] = AC[1];
|
||
SP = INCA (SP);
|
||
if (MEM_ADDR_OK (SP)) M[SP] = AC[2];
|
||
SP = INCA (SP);
|
||
if (MEM_ADDR_OK (SP)) M[SP] = FP;
|
||
SP = INCA (SP);
|
||
if (MEM_ADDR_OK (SP)) M[SP] = (C >> 1) |
|
||
(AC[3] & AMASK);
|
||
AC[3] = FP = SP & AMASK;
|
||
STK_CHECK (SP, 5); }
|
||
if (pulse == iopC) { /* retn */
|
||
PCQ_ENTRY;
|
||
SP = FP & AMASK;
|
||
C = (M[SP] << 1) & CBIT;
|
||
PC = M[SP] & AMASK;
|
||
SP = DECA (SP);
|
||
AC[3] = M[SP];
|
||
SP = DECA (SP);
|
||
AC[2] = M[SP];
|
||
SP = DECA (SP);
|
||
AC[1] = M[SP];
|
||
SP = DECA (SP);
|
||
AC[0] = M[SP];
|
||
SP = DECA (SP);
|
||
FP = AC[3] & AMASK; }
|
||
if ((pulse == iopP) && /* Nova 4 saven */
|
||
(cpu_unit.flags & UNIT_BYT)) {
|
||
int32 frameSz = M[PC] ;
|
||
PC = INCA (PC) ;
|
||
SP = INCA (SP);
|
||
if (MEM_ADDR_OK (SP)) M[SP] = AC[0];
|
||
SP = INCA (SP);
|
||
if (MEM_ADDR_OK (SP)) M[SP] = AC[1];
|
||
SP = INCA (SP);
|
||
if (MEM_ADDR_OK (SP)) M[SP] = AC[2];
|
||
SP = INCA (SP);
|
||
if (MEM_ADDR_OK (SP)) M[SP] = FP;
|
||
SP = INCA (SP);
|
||
if (MEM_ADDR_OK (SP)) M[SP] = (C >> 1) |
|
||
(AC[3] & AMASK);
|
||
AC[3] = FP = SP & AMASK ;
|
||
SP = (SP + frameSz) & AMASK ;
|
||
if (SP > M[042]) int_req = int_req | INT_STK;
|
||
}
|
||
}
|
||
break;
|
||
case ioDOC:
|
||
if ((dstAC == 2) && (cpu_unit.flags & UNIT_MDV)) {
|
||
uint32 mddata, uAC0, uAC1, uAC2;
|
||
uAC0 = (unsigned int32) AC[0];
|
||
uAC1 = (unsigned int32) AC[1];
|
||
uAC2 = (unsigned int32) AC[2];
|
||
if (pulse == iopP) { /* mul */
|
||
mddata = (uAC1 * uAC2) + uAC0;
|
||
AC[0] = (mddata >> 16) & DMASK;
|
||
AC[1] = mddata & DMASK; }
|
||
if (pulse == iopS) { /* div */
|
||
if ((uAC0 >= uAC2) || (uAC2 == 0)) C = CBIT;
|
||
else {
|
||
C = 0;
|
||
mddata = (uAC0 << 16) | uAC1;
|
||
AC[1] = mddata / uAC2;
|
||
AC[0] = mddata % uAC2; } } }
|
||
if ((dstAC == 3) && (cpu_unit.flags & UNIT_BYT)) {
|
||
int32 mddata;
|
||
if (pulse == iopC) { /* muls */
|
||
mddata = (SEXT (AC[1]) * SEXT (AC[2])) + SEXT (AC[0]);
|
||
AC[0] = (mddata >> 16) & DMASK;
|
||
AC[1] = mddata & DMASK; }
|
||
if (pulse == iopN) { /* divs */
|
||
if (AC[2] == 0) C = CBIT;
|
||
else {
|
||
mddata = (SEXT (AC[0]) << 16) | AC[1];
|
||
AC[1] = mddata / SEXT (AC[2]);
|
||
AC[0] = mddata % SEXT (AC[2]);
|
||
if ((AC[1] > 077777) || (AC[1] < -0100000))
|
||
C = CBIT;
|
||
else C = 0;
|
||
AC[0] = AC[0] & DMASK; } } }
|
||
break; } /* end case code */
|
||
} /* end if mul/div */
|
||
|
||
/* IOT, continued */
|
||
|
||
else if (device == DEV_CPU) { /* CPU control */
|
||
switch (code) { /* decode IR<5:7> */
|
||
case ioDIA: /* read switches */
|
||
AC[dstAC] = SR;
|
||
break;
|
||
case ioDIB: /* int ack */
|
||
AC[dstAC] = 0;
|
||
int_req = (int_req & ~INT_DEV) | (dev_done & ~dev_disable);
|
||
iodata = int_req & (-int_req);
|
||
for (i = DEV_LOW; i <= DEV_HIGH; i++) {
|
||
if (iodata & dev_table[i].mask) {
|
||
AC[dstAC] = i; break; } }
|
||
break;
|
||
case ioDOB: /* mask out */
|
||
mask_out (pimask = AC[dstAC]);
|
||
break;
|
||
case ioDIC: /* io reset */
|
||
reset_all (0); /* reset devices */
|
||
break;
|
||
case ioDOC: /* halt */
|
||
reason = STOP_HALT;
|
||
break; } /* end switch code */
|
||
switch (pulse) { /* decode IR<8:9> */
|
||
case iopS: /* ion */
|
||
int_req = (int_req | INT_ION) & ~INT_NO_ION_PENDING;
|
||
break;
|
||
case iopC: /* iof */
|
||
int_req = int_req & ~INT_ION;
|
||
break; } /* end switch pulse */
|
||
} /* end CPU control */
|
||
else if (dev_table[device].routine) { /* normal device */
|
||
iodata = dev_table[device].routine (pulse, code, AC[dstAC]);
|
||
reason = iodata >> IOT_V_REASON;
|
||
if (code & 1) AC[dstAC] = iodata & 0177777; }
|
||
else reason = stop_dev;
|
||
} /* end if IOT */
|
||
} /* end while */
|
||
|
||
/* Simulation halted */
|
||
|
||
saved_PC = PC;
|
||
pcq_r->qptr = pcq_p; /* update pc q ptr */
|
||
return reason;
|
||
}
|
||
|
||
/* New priority mask out */
|
||
|
||
void mask_out (int32 newmask)
|
||
{
|
||
int32 i;
|
||
|
||
dev_disable = 0;
|
||
for (i = DEV_LOW; i <= DEV_HIGH; i++) {
|
||
if (newmask & dev_table[i].pi)
|
||
dev_disable = dev_disable | dev_table[i].mask; }
|
||
int_req = (int_req & ~INT_DEV) | (dev_done & ~dev_disable);
|
||
return;
|
||
}
|
||
|
||
/* Reset routine */
|
||
|
||
t_stat cpu_reset (DEVICE *dptr)
|
||
{
|
||
int_req = int_req & ~(INT_ION | INT_STK);
|
||
pimask = 0;
|
||
dev_disable = 0;
|
||
pwr_low = 0;
|
||
pcq_r = find_reg ("PCQ", NULL, dptr);
|
||
if (pcq_r) pcq_r->qptr = 0;
|
||
else return SCPE_IERR;
|
||
sim_brk_types = sim_brk_dflt = SWMASK ('E');
|
||
return SCPE_OK;
|
||
}
|
||
|
||
/* Memory examine */
|
||
|
||
t_stat cpu_ex (t_value *vptr, t_addr addr, UNIT *uptr, int32 sw)
|
||
{
|
||
if (addr >= MEMSIZE) return SCPE_NXM;
|
||
if (vptr != NULL) *vptr = M[addr] & DMASK;
|
||
return SCPE_OK;
|
||
}
|
||
|
||
/* Memory deposit */
|
||
|
||
t_stat cpu_dep (t_value val, t_addr addr, UNIT *uptr, int32 sw)
|
||
{
|
||
if (addr >= MEMSIZE) return SCPE_NXM;
|
||
M[addr] = val & DMASK;
|
||
return SCPE_OK;
|
||
}
|
||
|
||
/* Alter memory size */
|
||
|
||
t_stat cpu_set_size (UNIT *uptr, int32 val, char *cptr, void *desc)
|
||
{
|
||
int32 mc = 0;
|
||
t_addr i;
|
||
|
||
if ((val <= 0) || (val > MAXMEMSIZE) || ((val & 07777) != 0))
|
||
return SCPE_ARG;
|
||
for (i = val; i < MEMSIZE; i++) mc = mc | M[i];
|
||
if ((mc != 0) && (!get_yn ("Really truncate memory [N]?", FALSE)))
|
||
return SCPE_OK;
|
||
MEMSIZE = val;
|
||
for (i = MEMSIZE; i < MAXMEMSIZE; i++) M[i] = 0;
|
||
return SCPE_OK;
|
||
}
|
||
|
||
/* Build dispatch table */
|
||
|
||
t_stat build_devtab (void)
|
||
{
|
||
DEVICE *dptr;
|
||
DIB *dibp;
|
||
int32 i, dn;
|
||
|
||
for (i = 0; i < 64; i++) { /* clr dev_table */
|
||
dev_table[i].mask = 0;
|
||
dev_table[i].pi = 0;
|
||
dev_table[i].routine = NULL; }
|
||
for (i = 0; (dptr = sim_devices[i]) != NULL; i++) { /* loop thru dev */
|
||
if (dibp = (DIB *) dptr->ctxt) { /* get DIB */
|
||
dn = dibp->dnum; /* get dev num */
|
||
dev_table[dn].mask = dibp->mask; /* copy entries */
|
||
dev_table[dn].pi = dibp->pi;
|
||
dev_table[dn].routine = dibp->routine; } }
|
||
return SCPE_OK;
|
||
}
|
||
|
||
/* Bootstrap routine for CPU */
|
||
|
||
#define BOOT_START 00000
|
||
#define BOOT_LEN (sizeof (boot_rom) / sizeof (int))
|
||
|
||
static const int32 boot_rom[] = {
|
||
0062677, /* IORST ;reset all I/O */
|
||
0060477, /* READS 0 ;read SR into AC0 */
|
||
0024026, /* LDA 1,C77 ;get dev mask */
|
||
0107400, /* AND 0,1 ;isolate dev code */
|
||
0124000, /* COM 1,1 ;- device code - 1 */
|
||
0010014, /* LOOP: ISZ OP1 ;device code to all */
|
||
0010030, /* ISZ OP2 ;I/O instructions */
|
||
0010032, /* ISZ OP3 */
|
||
0125404, /* INC 1,1,SZR ;done? */
|
||
0000005, /* JMP LOOP ;no, increment again */
|
||
0030016, /* LDA 2,C377 ;place JMP 377 into */
|
||
0050377, /* STA 2,377 ;location 377 */
|
||
0060077, /* OP1: 060077 ;start device (NIOS 0) */
|
||
00101102, /* MOVL 0,0,SZC ;test switch 0, low speed? */
|
||
0000377, /* C377: JMP 377 ;no - jmp 377 & wait */
|
||
0004030, /* LOOP2: JSR GET+1 ;get a frame */
|
||
0101065, /* MOVC 0,0,SNR ;is it non-zero? */
|
||
0000017, /* JMP LOOP2 ;no, ignore */
|
||
0004027, /* LOOP4: JSR GET ;yes, get full word */
|
||
0046026, /* STA 1,@C77 ;store starting at 100 */
|
||
/* ;2's complement of word ct */
|
||
0010100, /* ISZ 100 ;done? */
|
||
0000022, /* JMP LOOP4 ;no, get another */
|
||
0000077, /* C77: JMP 77 ;yes location ctr and */
|
||
/* ;jmp to last word */
|
||
0126420, /* GET: SUBZ 1,1 ; clr AC1, set carry */
|
||
/* OP2: */
|
||
0063577, /* LOOP3: 063577 ;done? (SKPDN 0) - 1 */
|
||
0000030, /* JMP LOOP3 ;no -- wait */
|
||
0060477, /* OP3: 060477 ;y -- read in ac0 (DIAS 0,0) */
|
||
0107363, /* ADDCS 0,1,SNC ;add 2 frames swapped - got 2nd? */
|
||
0000030, /* JMP LOOP3 ;no go back after it */
|
||
0125300, /* MOVS 1,1 ;yes swap them */
|
||
0001400, /* JMP 0,3 ;rtn with full word */
|
||
0000000 /* 0 ;padding */
|
||
};
|
||
|
||
t_stat cpu_boot (int32 unitno, DEVICE *dptr)
|
||
{
|
||
int32 i;
|
||
extern int32 saved_PC;
|
||
|
||
for (i = 0; i < BOOT_LEN; i++) M[BOOT_START + i] = boot_rom[i];
|
||
saved_PC = BOOT_START;
|
||
return SCPE_OK;
|
||
}
|
||
|
||
/* 1-to-1 map for I/O devices */
|
||
|
||
int32 MapAddr (int32 map, int32 addr)
|
||
{
|
||
return addr;
|
||
}
|