simh-testsetgenerator/PDP10/pdp10_pag.c
Bob Supnik 2bcd1e7c4c Notes For V2.10-2
1. New Features in 2.10-2

The build procedures have changed.  There is only one UNIX makefile.
To compile without Ethernet support, simply type

	gmake {target|all}

To compile with Ethernet support, type

	gmake USE_NETWORK=1 {target|all}

The Mingw batch files require Mingw release 2 and invoke the Unix
makefile.  There are still separate batch files for compilation
with or without Ethernet support.

1.1 SCP and Libraries

- The EVAL command will evaluate a symbolic type-in and display
  it in numeric form.
- The ! command (with no arguments) will launch the host operating
  system command shell.  The ! command (with an argument) executes
  the argument as a host operating system command.  (Code from
  Mark Pizzolato)
- Telnet sessions now recognize BREAK.  How a BREAK is transmitted
  dependent on the particular Telnet client.  (Code from Mark
  Pizzolato)
- The sockets library includes code for active connections as
  well as listening connections.
- The RESTORE command will restore saved memory size, if the
  simulator supports dynamic memory resizing.

1.2 PDP-1

- The PDP-1 supports the Type 24 serial drum (based on recently
  discovered documents).

1.3 18b PDP's

- The PDP-4 supports the Type 24 serial drum (based on recently
  discovered documents).

1.4 PDP-11

- The PDP-11 implements a stub DEUNA/DELUA (XU).  The real XU
  module will be included in a later release.

1.5 PDP-10

- The PDP-10 implements a stub DEUNA/DELUA (XU).  The real XU
  module will be included in a later release.

1.6 HP 2100

- The IOP microinstruction set is supported for the 21MX as well
  as the 2100.
- The HP2100 supports the Access Interprocessor Link (IPL).

1.7 VAX

- If the VAX console is attached to a Telnet session, BREAK is
  interpreted as console halt.
- The SET/SHOW HISTORY commands enable and display a history of
  the most recently executed instructions.  (Code from Mark
  Pizzolato)

1.8 Terminals Multiplexors

- BREAK detection was added to the HP, DEC, and Interdata terminal
  multiplexors.

1.9 Interdata 16b and 32b

- First release.  UNIX is not yet working.

1.10 SDS 940

- First release.

2. Bugs Fixed in 2.10-2

- PDP-11 console must default to 7b for early UNIX compatibility.
- PDP-11/VAX TMSCP emulator was using the wrong packet length for
  read/write end packets.
- Telnet IAC+IAC processing was fixed, both for input and output
  (found by Mark Pizzolato).
- PDP-11/VAX Ethernet setting flag bits wrong for chained
  descriptors (found by Mark Pizzolato).

3. New Features in 2.10 vs prior releases

3.1 SCP and Libraries

- The VT emulation package has been replaced by the capability
  to remote the console to a Telnet session.  Telnet clients
  typically have more complete and robust VT100 emulation.
- Simulated devices may now have statically allocated buffers,
  in addition to dynamically allocated buffers or disk-based
  data stores.
- The DO command now takes substitutable arguments (max 9).
  In command files, %n represents substitutable argument n.
- The initial command line is now interpreted as the command
  name and substitutable arguments for a DO command.  This is
  backward compatible to prior versions.
- The initial command line parses switches.  -Q is interpreted
  as quiet mode; informational messages are suppressed.
- The HELP command now takes an optional argument.  HELP <cmd>
  types help on the specified command.
- Hooks have been added for implementing GUI-based consoles,
  as well as simulator-specific command extensions.  A few
  internal data structures and definitions have changed.
- Two new routines (tmxr_open_master, tmxr_close_master) have
  been added to sim_tmxr.c.  The calling sequence for
  sim_accept_conn has been changed in sim_sock.c.
- The calling sequence for the VM boot routine has been modified
  to add an additional parameter.
- SAVE now saves, and GET now restores, controller and unit flags.
- Library sim_ether.c has been added for Ethernet support.

3.2 VAX

- Non-volatile RAM (NVR) can behave either like a memory or like
  a disk-based peripheral.  If unattached, it behaves like memory
  and is saved and restored by SAVE and RESTORE, respectively.
  If attached, its contents are loaded from disk by ATTACH and
  written back to disk at DETACH and EXIT.
- SHOW <device> VECTOR displays the device's interrupt vector.
  A few devices allow the vector to be changed with SET
  <device> VECTOR=nnn.
- SHOW CPU IOSPACE displays the I/O space address map.
- The TK50 (TMSCP tape) has been added.
- The DEQNA/DELQA (Qbus Ethernet controllers) have been added.
- Autoconfiguration support has been added.
- The paper tape reader has been removed from vax_stddev.c and
  now references a common implementation file, dec_pt.h.
- Examine and deposit switches now work on all devices, not just
  the CPU.
- Device address conflicts are not detected until simulation starts.

3.3 PDP-11

- SHOW <device> VECTOR displays the device's interrupt vector.
  Most devices allow the vector to be changed with SET
  <device> VECTOR=nnn.
- SHOW CPU IOSPACE displays the I/O space address map.
- The TK50 (TMSCP tape), RK611/RK06/RK07 (cartridge disk),
  RX211 (double density floppy), and KW11P programmable clock
  have been added.
- The DEQNA/DELQA (Qbus Ethernet controllers) have been added.
- Autoconfiguration support has been added.
- The paper tape reader has been removed from pdp11_stddev.c and
  now references a common implementation file, dec_pt.h.
- Device bootstraps now use the actual CSR specified by the
  SET ADDRESS command, rather than just the default CSR.  Note
  that PDP-11 operating systems may NOT support booting with
  non-standard addresses.
- Specifying more than 256KB of memory, or changing the bus
  configuration, causes all peripherals that are not compatible
  with the current bus configuration to be disabled.
- Device address conflicts are not detected until simulation starts.

3.4 PDP-10

- SHOW <device> VECTOR displays the device's interrupt vector.
  A few devices allow the vector to be changed with SET
  <device> VECTOR=nnn.
- SHOW CPU IOSPACE displays the I/O space address map.
- The RX211 (double density floppy) has been added; it is off
  by default.
- The paper tape now references a common implementation file,
  dec_pt.h.
- Device address conflicts are not detected until simulation starts.

3.5 PDP-1

- DECtape (then known as MicroTape) support has been added.
- The line printer and DECtape can be disabled and enabled.

3.6 PDP-8

- The RX28 (double density floppy) has been added as an option to
  the existing RX8E controller.
- SHOW <device> DEVNO displays the device's device number.  Most
  devices allow the device number to be changed with SET <device>
  DEVNO=nnn.
- Device number conflicts are not detected until simulation starts.

3.7 IBM 1620

- The IBM 1620 simulator has been released.

3.8 AltairZ80

- A hard drive has been added for increased storage.
- Several bugs have been fixed.

3.9 HP 2100

- The 12845A has been added and made the default line printer (LPT).
  The 12653A has been renamed LPS and is off by default.  It also
  supports the diagnostic functions needed to run the DCPC and DMS
  diagnostics.
- The 12557A/13210A disk defaults to the 13210A (7900/7901).
- The 12559A magtape is off by default.
- New CPU options (EAU/NOEAU) enable/disable the extended arithmetic
  instructions for the 2116.  These instructions are standard on
  the 2100 and 21MX.
- New CPU options (MPR/NOMPR) enable/disable memory protect for the
  2100 and 21MX.
- New CPU options (DMS/NODMS) enable/disable the dynamic mapping
  instructions for the 21MX.
- The 12539 timebase generator autocalibrates.

3.10 Simulated Magtapes

- Simulated magtapes recognize end of file and the marker
  0xFFFFFFFF as end of medium.  Only the TMSCP tape simulator
  can generate an end of medium marker.
- The error handling in simulated magtapes was overhauled to be
  consistent through all simulators.

3.11 Simulated DECtapes

- Added support for RT11 image file format (256 x 16b) to DECtapes.

4. Bugs Fixed in 2.10 vs prior releases

- TS11/TSV05 was not simulating the XS0_MOT bit, causing failures
  under VMS.  In addition, two of the CTL options were coded
  interchanged.
- IBM 1401 tape was not setting a word mark under group mark for
  load mode reads.  This caused the diagnostics to crash.
- SCP bugs in ssh_break and set_logon were fixed (found by Dave
  Hittner).
- Numerous bugs in the HP 2100 extended arithmetic, floating point,
  21MX, DMS, and IOP instructions were fixed.  Bugs were also fixed
  in the memory protect and DMS functions.  The moving head disks
  (DP, DQ) were revised to simulate the hardware more accurately.
  Missing functions in DQ (address skip, read address) were added.
- PDP-10 tape wouldn't boot, and then wouldn't read (reported by
  Michael Thompson and Harris Newman, respectively)
- PDP-1 typewriter is half duplex, with only one shift state for
  both input and output (found by Derek Peschel)

5. General Notes

WARNING: V2.10 has reorganized and renamed some of the definition
files for the PDP-10, PDP-11, and VAX.  Be sure to delete all
previous source files before you unpack the Zip archive, or
unpack it into a new directory structure.

WARNING: V2.10 has a new, more comprehensive save file format.
Restoring save files from previous releases will cause 'invalid
register' errors and loss of CPU option flags, device enable/
disable flags, unit online/offline flags, and unit writelock
flags.

WARNING: If you are using Visual Studio .NET through the IDE,
be sure to turn off the /Wp64 flag in the project settings, or
dozens of spurious errors will be generated.

WARNING: Compiling Ethernet support under Windows requires
extra steps; see the Ethernet readme file.  Ethernet support is
currently available only for Windows, Linux, NetBSD, and OpenBSD.
2011-04-15 08:33:56 -07:00

801 lines
25 KiB
C
Raw Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/* pdp10_pag.c: PDP-10 paging subsystem simulator
Copyright (c) 1993-2002, Robert M Supnik
Permission is hereby granted, free of charge, to any person obtaining a
copy of this software and associated documentation files (the "Software"),
to deal in the Software without restriction, including without limitation
the rights to use, copy, modify, merge, publish, distribute, sublicense,
and/or sell copies of the Software, and to permit persons to whom the
Software is furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
ROBERT M SUPNIK BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
Except as contained in this notice, the name of Robert M Supnik shall not
be used in advertising or otherwise to promote the sale, use or other dealings
in this Software without prior written authorization from Robert M Supnik.
pag KS10 pager
02-Dec-01 RMS Fixed bug in ITS LPMR (found by Dave Conroy)
21-Aug-01 RMS Fixed bug in ITS paging (found by Miriam Lennox)
Removed register from declarations
19-May-01 RMS Added workaround for TOPS-20 V4.1 boot bug
03-May-01 RMS Fixed bug in indirect page table pointer processing
29-Apr-01 RMS Added CLRCSH for ITS, fixed LPMR
The pager consists of a standard hardware part (the translation
tables) and an operating-system specific page table fill routine.
There are two translation tables, one for executive mode and one
for user mode. Each table consists of 512 page table entries,
one for each page in the 18b virtual address space. Each pte
contains (in the hardware) a valid bit, a writeable bit, an
address space bit (executive or user), and a cacheable bit, plus
the physical page number corresponding to the virtual page. In
the simulator, the pte is expanded for rapid processing of normal
reads and writes. An expanded pte contains a valid bit, a writeable
bit, and the physical page number shifted left by the page size.
Expanded pte meaning
0 invalid
>0 read only
<0 read write
There is a third, physical table, which is used in place of the
executive and user tables if paging is off. Its entries are always
valid and always writeable.
To translate a virtual to physical address, the simulator uses
the virtual page number to index into the appropriate page table.
If the page table entry (pte) is not valid, the page fill routine
is called to see if the entry is merely not filled or is truly
inaccessible. If the pte is valid but not writeable, and the
reference is a write reference, the page fill routine is also
called to see if the reference can be resolved.
The page fill routine is operating system dependent. Three styles
of paging are supported:
TOPS10 known in the KS10 microcode as KI10 paging,
used by earlier versions of TOPS10
TOPS20 known in the KS10 microcode as KL10 paging,
used by later versions of TOPS10, and TOPS20
ITS used only by ITS
TOPS10 vs TOPS20 is selected by a bit in the EBR; ITS paging is
"hardwired" (it required different microcode).
*/
#include "pdp10_defs.h"
#include <setjmp.h>
/* Page table (contains expanded pte's) */
#define PTBL_ASIZE PAG_N_VPN
#define PTBL_MEMSIZE (1 << PTBL_ASIZE) /* page table size */
#define PTBL_AMASK (PTBL_MEMSIZE - 1)
#define PTBL_M (1u << 31) /* must be sign bit */
#define PTBL_V (1u << 30)
#define PTBL_MASK (PAG_PPN | PTBL_M | PTBL_V)
/* NXM processing */
#define REF_V 0 /* ref is virt */
#define REF_P 1 /* ref is phys */
#define PF_OK 0 /* pfail ok */
#define PF_TR 1 /* pfail trap */
extern d10 *M;
extern d10 acs[AC_NBLK * AC_NUM];
extern d10 *ac_cur, *ac_prv, *last_pa;
extern a10 epta, upta;
extern int32 flags;
extern d10 pager_word;
extern int32 apr_flg;
extern d10 ebr, ubr, hsb;
extern d10 spt, cst, cstm, pur;
extern a10 dbr1, dbr2, dbr3, dbr4;
extern d10 pcst, quant;
extern t_bool paging;
extern UNIT cpu_unit;
extern jmp_buf save_env;
extern int32 test_int (void);
extern int32 pi_eval (void);
int32 eptbl[PTBL_MEMSIZE]; /* exec page table */
int32 uptbl[PTBL_MEMSIZE]; /* user page table */
int32 physptbl[PTBL_MEMSIZE]; /* phys page table */
int32 *ptbl_cur, *ptbl_prv;
int32 save_ea;
int32 ptbl_fill (a10 ea, int32 *ptbl, int32 mode);
t_stat pag_ex (t_value *vptr, t_addr addr, UNIT *uptr, int32 sw);
t_stat pag_dep (t_value val, t_addr addr, UNIT *uptr, int32 sw);
t_stat pag_reset (DEVICE *dptr);
void pag_nxm (a10 pa, int32 phys, int32 trap);
/* Pager data structures
pag_dev pager device descriptor
pag_unit pager units
pager_reg pager register list
*/
UNIT pag_unit[] = {
{ UDATA (NULL, UNIT_FIX, PTBL_MEMSIZE) },
{ UDATA (NULL, UNIT_FIX, PTBL_MEMSIZE) } };
REG pag_reg[] = {
{ ORDATA (PANIC_EA, save_ea, PASIZE), REG_HRO },
{ NULL } };
DEVICE pag_dev = {
"PAG", pag_unit, pag_reg, NULL,
2, 8, PTBL_ASIZE, 1, 8, 32,
&pag_ex, &pag_dep, &pag_reset,
NULL, NULL, NULL,
NULL, 0 };
/* Memory read and write routines
Read - read current or previous, read checking
ReadM - read current or previous, write checking
ReadE - read exec
ReadP - read physical
Write - write current or previous
WriteE - write exec
WriteP - write physical
AccChk - test accessibility of virtual address
*/
d10 Read (a10 ea, int32 prv)
{
int32 pa, vpn, xpte;
if (ea < AC_NUM) return (prv? ac_prv[ea]: ac_cur[ea]); /* AC request */
vpn = PAG_GETVPN (ea); /* get page num */
xpte = prv? ptbl_prv[vpn]: ptbl_cur[vpn]; /* get exp pte */
if (xpte == 0) xpte = ptbl_fill (ea, prv? ptbl_prv: ptbl_cur, PTF_RD);
pa = PAG_XPTEPA (xpte, ea); /* calc phys addr */
if (MEM_ADDR_NXM (pa)) pag_nxm (pa, REF_V, PF_TR); /* process nxm */
return M[pa]; /* return data */
}
d10 ReadM (a10 ea, int32 prv)
{
int32 pa, vpn, xpte;
if (ea < AC_NUM) return (prv? ac_prv[ea]: ac_cur[ea]); /* AC request */
vpn = PAG_GETVPN (ea); /* get page num */
xpte = prv? ptbl_prv[vpn]: ptbl_cur[vpn]; /* get exp pte */
if (xpte >= 0) xpte = ptbl_fill (ea, prv? ptbl_prv: ptbl_cur, PTF_WR);
pa = PAG_XPTEPA (xpte, ea); /* calc phys addr */
if (MEM_ADDR_NXM (pa)) pag_nxm (pa, REF_V, PF_TR); /* process nxm */
return M[pa]; /* return data */
}
d10 ReadE (a10 ea)
{
int32 pa, vpn, xpte;
if (ea < AC_NUM) return AC(ea); /* AC? use current */
if (!PAGING) return M[ea]; /* phys? no mapping */
vpn = PAG_GETVPN (ea); /* get page num */
xpte = eptbl[vpn]; /* get exp pte, exec tbl */
if (xpte == 0) xpte = ptbl_fill (ea, eptbl, PTF_RD);
pa = PAG_XPTEPA (xpte, ea); /* calc phys addr */
if (MEM_ADDR_NXM (pa)) pag_nxm (pa, REF_V, PF_TR); /* process nxm */
return M[pa]; /* return data */
}
d10 ReadP (a10 ea)
{
if (ea < AC_NUM) return AC(ea); /* AC request */
if (MEM_ADDR_NXM (ea)) pag_nxm (ea, REF_P, PF_TR); /* process nxm */
return M[ea]; /* return data */
}
void Write (a10 ea, d10 val, int32 prv)
{
int32 pa, vpn, xpte;
if (ea < AC_NUM) { /* AC request */
if (prv) ac_prv[ea] = val; /* write AC */
else ac_cur[ea] = val; }
else { vpn = PAG_GETVPN (ea); /* get page num */
xpte = prv? ptbl_prv[vpn]: ptbl_cur[vpn]; /* get exp pte */
if (xpte >= 0) xpte = ptbl_fill (ea, prv? ptbl_prv: ptbl_cur, PTF_WR);
pa = PAG_XPTEPA (xpte, ea); /* calc phys addr */
if (MEM_ADDR_NXM (pa)) pag_nxm (pa, REF_V, PF_TR); /* process nxm */
else M[pa] = val; } /* write data */
return;
}
void WriteE (a10 ea, d10 val)
{
int32 pa, vpn, xpte;
if (ea < AC_NUM) AC(ea) = val; /* AC? use current */
else if (!PAGING) M[ea] = val; /* phys? no mapping */
else { vpn = PAG_GETVPN (ea); /* get page num */
xpte = eptbl[vpn]; /* get exp pte, exec tbl */
if (xpte >= 0) xpte = ptbl_fill (ea, eptbl, PTF_WR);
pa = PAG_XPTEPA (xpte, ea); /* calc phys addr */
if (MEM_ADDR_NXM (pa)) pag_nxm (pa, REF_V, PF_TR); /* process nxm */
else M[pa] = val; } /* write data */
return;
}
void WriteP (a10 ea, d10 val)
{
if (ea < AC_NUM) AC(ea) = val; /* AC request */
else { if (MEM_ADDR_NXM (ea)) pag_nxm (ea, REF_P, PF_TR); /* process nxm */
M[ea] = val; } /* memory */
return;
}
t_bool AccViol (a10 ea, int32 prv, int32 mode)
{
int32 vpn, xpte;
if (ea < AC_NUM) return FALSE; /* AC request */
vpn = PAG_GETVPN (ea); /* get page num */
xpte = prv? ptbl_prv[vpn]: ptbl_cur[vpn]; /* get exp pte */
if ((xpte == 0) || ((mode & PTF_WR) && (xpte > 0))) /* not accessible? */
xpte = ptbl_fill (ea, prv? ptbl_prv: ptbl_cur, mode | PTF_MAP);
if (xpte) return FALSE; /* accessible */
return TRUE; /* not accessible */
}
void pag_nxm (a10 pa, int32 phys, int32 trap)
{
apr_flg = apr_flg | APRF_NXM; /* set APR flag */
pi_eval (); /* eval intr */
pager_word = PF_NXM | (phys? PF_NXMP: 0) |
(TSTF (F_USR)? PF_USER: 0) | ((d10) pa);
if (PAGING && trap) ABORT (PAGE_FAIL); /* trap? */
return;
}
/* Page table fill
This routine is called if the page table is invalid, or on a write
reference if the page table is read only. If the access is allowed
it stores the pte in the page table entry and returns an expanded
pte for use by the caller. Otherwise, it generates a page fail.
Notes:
- If called from the console, invalid references return a pte
of 0, and the page table entry is not filled.
- If called from MAP, invalid references return a pte of 0. The
page fail word is properly set up.
*/
#define PAGE_FAIL_TRAP if (mode & (PTF_CON | PTF_MAP)) return 0; \
ABORT (PAGE_FAIL)
#define READPT(x,y) if (MEM_ADDR_NXM (y)) { \
pag_nxm (y, REF_P, PF_OK); \
PAGE_FAIL_TRAP; } \
x = ReadP (y)
int32 ptbl_fill (a10 ea, int32 *tbl, int32 mode)
{
/* ITS paging is based on conventional page tables. ITS divides each address
space into a 128K high and low section, and uses different descriptor base
pointers (dbr) for each. ITS pages are twice the size of DEC standard;
therefore, the fill routine fills two page table entries and returns the pte
that maps the correct ITS half page. This allows the DEC paging macros to
be used in the normal path read-write routines.
ITS has no MAP instruction, therefore, physical NXM traps are ok.
*/
if (ITS) { /* ITS paging */
int32 acc, decvpn, pte, vpn, ptead, xpte;
d10 ptewd;
vpn = ITS_GETVPN (ea); /* get ITS pagno */
if (tbl == uptbl)
ptead = ((ea & RSIGN)? dbr2: dbr1) + ((vpn >> 1) & 077);
else ptead = ((ea & RSIGN)? dbr3: dbr4) + ((vpn >> 1) & 077);
ptewd = ReadP (ptead); /* get PTE pair */
pte = (int32) ((ptewd >> ((vpn & 1)? 0: 18)) & RMASK);
acc = ITS_GETACC (pte); /* get access */
pager_word = PF_VIRT | ea | ((tbl == uptbl)? PF_USER: 0) |
((mode & PTF_WR)? PF_ITS_WRITE: 0) | (acc << PF_ITS_V_ACC);
if ((acc != ITS_ACC_NO) && (!(mode & PTF_WR) || (acc == ITS_ACC_RW))) {
pte = pte & ~PTE_ITS_AGE; /* clear age */
if (vpn & 1) WriteP (ptead, (ptewd & LMASK) | pte);
else WriteP (ptead, (ptewd & RMASK) | (((d10) pte) << 18));
xpte = ((pte & PTE_ITS_PPMASK) << ITS_V_PN) | PTBL_V |
((acc == ITS_ACC_RW)? PTBL_M: 0);
decvpn = PAG_GETVPN (ea); /* get tlb idx */
if (!(mode & PTF_CON)) {
tbl[decvpn & ~1] = xpte; /* map lo ITS page */
tbl[decvpn | 1] = xpte + PAG_SIZE; } /* map hi */
return (xpte + ((decvpn & 1)? PAG_SIZE: 0)); }
PAGE_FAIL_TRAP;
} /* end ITS paging */
/* TOPS-10 paging - checked against KS10 microcode
TOPS-10 paging is also based on conventional page tables. The user page
tables are arranged contiguously at the beginning of the user process table;
however, the executive page tables are scattered through the executive and
user process tables.
*/
else if (!T20) { /* TOPS-10 paging */
int32 pte, vpn, ptead, xpte;
d10 ptewd;
vpn = PAG_GETVPN (ea); /* get virt page num */
if (tbl == uptbl) ptead = upta + UPT_T10_UMAP + (vpn >> 1);
else if (vpn < 0340) ptead = epta + EPT_T10_X000 + (vpn >> 1);
else if (vpn < 0400) ptead = upta + UPT_T10_X340 + ((vpn - 0340) >> 1);
else ptead = epta + EPT_T10_X400 + ((vpn - 0400) >> 1);
READPT (ptewd, ptead); /* get PTE pair */
pte = (int32) ((ptewd >> ((vpn & 1)? 0: 18)) & RMASK);
pager_word = PF_VIRT | ea | ((tbl == uptbl)? PF_USER: 0) |
((mode & PTF_WR)? PF_WRITE: 0) |
((pte & PTE_T10_A)? PF_T10_A |
((pte & PTE_T10_S)? PF_T10_S: 0): 0);
if (mode & PTF_MAP) pager_word = pager_word | /* map? add to pf wd */
((pte & PTE_T10_W)? PF_T10_W: 0) | /* W, S, C bits */
((pte & PTE_T10_S)? PF_T10_S: 0) |
((pte & PTE_T10_C)? PF_C: 0);
if ((pte & PTE_T10_A) && (!(mode & PTF_WR) || (pte & PTE_T10_W))) {
xpte = ((pte & PTE_PPMASK) << PAG_V_PN) | /* calc exp pte */
PTBL_V | ((pte & PTE_T10_W)? PTBL_M: 0);
if (!(mode & PTF_CON)) tbl[vpn] = xpte; /* set tbl if ~cons */
return xpte; }
PAGE_FAIL_TRAP;
} /* end TOPS10 paging */
/* TOPS-20 paging - checked against KS10 ucode.
TOPS-20 paging has three phases:
1. Starting at EPT/UPT + 540 + section number, chase section pointers to
get the pointer to the section page table. In the KS10, because there
is only one section, the microcode caches the result of this evaluation.
Also, the evaluation of indirect pointers is simplified, as the section
table index is ignored.
2. Starting with the page map pointer, chase page pointers to get the
pointer to the page. The KS10 allows the operating system to inhibit
updating of the CST (base address = 0).
3. Use the page pointer to get the CST entry. If a write reference to
a writeable page, set CST_M. If CST_M is set, set M in page table.
*/
else { /* TOPS-20 paging */
int32 pmi, vpn, xpte;
int32 flg, t;
t_bool stop;
a10 pa, csta;
d10 ptr, cste;
d10 acc = PTE_T20_W | PTE_T20_C; /* init access bits */
pager_word = PF_VIRT | ea | ((tbl == uptbl)? PF_USER: 0) |
((mode & PTF_WR)? PF_WRITE: 0); /* set page fail word */
/* First phase - evaluate section pointers - returns a ptr to a page map
As a single section machine, the KS10 short circuits this part of the
process. In particular, the indirect pointer calculation assumes that
the section table index will be 0. It adds the full pointer (not just
the right half) to the SPT base. If the section index is > 0, the
result is a physical memory address > 256KW. Depending on the size of
memory, the SPT fetch may or may not generate a NXM page fail. The
KS10 then ignores the section table index in fetching the next pointer.
The KS10 KL10 memory management diagnostic (dskec.sav) tests for this
behavior with a section index of 3. However, this would be a legal
physical address in a system with 1MW. Accordingly, the simulator
special cases non-zero section indices (which can't work in any case)
to generate the right behavior for the diagnostic.
*/
vpn = PAG_GETVPN (ea); /* get virt page num */
pa = (tbl == uptbl)? upta + UPT_T20_SCTN: epta + EPT_T20_SCTN;
READPT (ptr, pa & PAMASK); /* get section 0 ptr */
for (stop = FALSE, flg = 0; !stop; flg++) { /* eval section ptrs */
acc = acc & ptr; /* cascade acc bits */
switch (T20_GETTYP (ptr)) { /* case on ptr type */
case T20_NOA: /* no access */
default: /* undefined type */
PAGE_FAIL_TRAP; /* page fail */
case T20_IMM: /* immediate */
stop = TRUE; /* exit */
break;
case T20_SHR: /* shared */
pa = (int32) (spt + (ptr & RMASK)); /* get SPT idx */
READPT (ptr, pa & PAMASK); /* get SPT entry */
stop = TRUE; /* exit */
break;
case T20_IND: /* indirect */
if (flg && (t = test_int ())) ABORT (t);
pmi = T20_GETPMI (ptr); /* get sect tbl idx */
pa = (int32) (spt + (ptr & RMASK)); /* get SPT idx */
if (pmi) { /* for dskec */
pag_nxm ((pmi << 18) | pa, REF_P, PF_OK);
PAGE_FAIL_TRAP; }
READPT (ptr, pa & PAMASK); /* get SPT entry */
if (ptr & PTE_T20_STM) { PAGE_FAIL_TRAP; }
pa = PAG_PTEPA (ptr, pmi); /* index off page */
READPT (ptr, pa & PAMASK); /* get pointer */
break; /* continue in loop */
} /* end case */
} /* end for */
/* Second phase - found page map ptr, evaluate page pointers */
pa = PAG_PTEPA (ptr, vpn); /* get ptbl address */
for (stop = FALSE, flg = 0; !stop; flg++) { /* eval page ptrs */
if (ptr & PTE_T20_STM) { PAGE_FAIL_TRAP; } /* non-res? */
if (cst) { /* cst really there? */
csta = (int32) ((cst + (ptr & PTE_PPMASK)) & PAMASK);
READPT (cste, csta); /* get CST entry */
if ((cste & CST_AGE) == 0) { PAGE_FAIL_TRAP; }
cste = (cste & cstm) | pur; /* update entry */
WriteP (csta, cste); } /* rewrite */
READPT (ptr, pa & PAMASK); /* get pointer */
acc = acc & ptr; /* cascade acc bits */
switch (T20_GETTYP (ptr)) { /* case on ptr type */
case T20_NOA: /* no access */
default: /* undefined type */
PAGE_FAIL_TRAP; /* page fail */
case T20_IMM: /* immediate */
stop = TRUE; /* exit */
break;
case T20_SHR: /* shared */
pa = (int32) (spt + (ptr & RMASK)); /* get SPT idx */
READPT (ptr, pa & PAMASK); /* get SPT entry */
stop = TRUE; /* exit */
break;
case T20_IND: /* indirect */
if (flg && (t = test_int ())) ABORT (t);
pmi = T20_GETPMI (ptr); /* get section index */
pa = (int32) (spt + (ptr & RMASK)); /* get SPT idx */
READPT (ptr, pa & PAMASK); /* get SPT entry */
pa = PAG_PTEPA (ptr, pmi); /* index off page */
break; /* continue in loop */
} /* end case */
} /* end for */
/* Last phase - have final page pointer, check modifiability */
if (ptr & PTE_T20_STM) { PAGE_FAIL_TRAP; } /* non-resident? */
if (cst) { /* CST really there? */
csta = (int32) ((cst + (ptr & PTE_PPMASK)) & PAMASK);
READPT (cste, csta); /* get CST entry */
if ((cste & CST_AGE) == 0) { PAGE_FAIL_TRAP; }
cste = (cste & cstm) | pur; } /* update entry */
else cste = 0; /* no, entry = 0 */
pager_word = pager_word | PF_T20_DN; /* set eval done */
xpte = ((int32) ((ptr & PTE_PPMASK) << PAG_V_PN)) | PTBL_V;
if (mode & PTF_WR) { /* write? */
if (acc & PTE_T20_W) { /* writable? */
xpte = xpte | PTBL_M; /* set PTE M */
cste = cste | CST_M; } /* set CST M */
else { PAGE_FAIL_TRAP; } } /* no, trap */
if (cst) WriteP (csta, cste); /* write CST entry */
if (mode & PTF_MAP) pager_word = pager_word | /* map? more in pf wd */
((xpte & PTBL_M)? PF_T20_M: 0) | /* M, W, C bits */
((acc & PTE_T20_W)? PF_T20_W: 0) |
((acc & PTE_T20_C)? PF_C: 0);
if (!(mode & PTF_CON)) tbl[vpn] = xpte; /* set tbl if ~cons */
return xpte;
} /* end TOPS20 paging */
}
/* Set up pointers for AC, memory, and process table access */
void set_dyn_ptrs (void)
{
int32 t;
if (PAGING) {
ac_cur = &acs[UBR_GETCURAC (ubr) * AC_NUM];
ac_prv = &acs[UBR_GETPRVAC (ubr) * AC_NUM];
if (TSTF (F_USR)) ptbl_cur = ptbl_prv = &uptbl[0];
else {
ptbl_cur = &eptbl[0];
ptbl_prv = TSTF (F_UIO)? &uptbl[0]: &eptbl[0]; } }
else { ac_cur = ac_prv = &acs[0];
ptbl_cur = ptbl_prv = &physptbl[0]; }
t = EBR_GETEBR (ebr);
epta = t << PAG_V_PN;
if (ITS) upta = (int32) ubr & PAMASK;
else { t = UBR_GETUBR (ubr);
upta = t << PAG_V_PN; }
return;
}
/* MAP instruction, TOPS-10 and TOPS-20 only
According to the KS-10 ucode, map with paging disabled sets
"accessible, writeable, software", regardless of whether
TOPS-10 or TOPS-20 paging is implemented
*/
d10 map (a10 ea, int32 prv)
{
int32 xpte;
d10 val = (TSTF (F_USR)? PF_USER: 0);
if (!PAGING) return (val | PF_T10_A | PF_T10_W | PF_T10_S | ea);
xpte = ptbl_fill (ea, prv? ptbl_prv: ptbl_cur, PTF_MAP); /* get exp pte */
if (xpte) val = (pager_word & ~PAMASK) | PAG_XPTEPA (xpte, ea);
else { if (pager_word & PF_HARD) val = pager_word; /* hard error */
else val = val | PF_VIRT | ea; } /* inaccessible */
return val;
}
/* Mapping routine for console */
a10 conmap (a10 ea, int32 mode, int32 sw)
{
int32 xpte, *tbl;
if (!PAGING) return ea;
set_dyn_ptrs (); /* in case changed */
if (sw & SWMASK ('E')) tbl = eptbl;
else if (sw & SWMASK ('U')) tbl = uptbl;
else tbl = ptbl_cur;
xpte = ptbl_fill (ea, tbl, mode);
if (xpte) return PAG_XPTEPA (xpte, ea);
else return MAXMEMSIZE;
}
/* Common pager instructions */
t_bool clrpt (a10 ea, int32 prv)
{
int32 vpn = PAG_GETVPN (ea); /* get page num */
if (ITS) { /* ITS? */
uptbl[vpn & ~1] = 0; /* clear double size */
uptbl[vpn | 1] = 0; /* entries in */
eptbl[vpn & ~1] = 0; /* both page tables */
eptbl[vpn | 1] = 0; }
else { uptbl[vpn] = 0; /* clear entries in */
eptbl[vpn] = 0; } /* both page tables */
return FALSE;
}
t_bool wrebr (a10 ea, int32 prv)
{
ebr = ea & EBR_MASK; /* store EBR */
pag_reset (&pag_dev); /* clear page tables */
set_dyn_ptrs (); /* set dynamic ptrs */
return FALSE;
}
t_bool rdebr (a10 ea, int32 prv)
{
Write (ea, (ebr & EBR_MASK), prv);
return FALSE;
}
t_bool wrubr (a10 ea, int32 prv)
{
d10 val = Read (ea, prv);
d10 ubr_mask = (ITS)? PAMASK: UBR_UBRMASK; /* ITS: ubr is wd addr */
if (val & UBR_SETACB) ubr = ubr & ~UBR_ACBMASK; /* set AC's? */
else val = val & ~UBR_ACBMASK; /* no, keep old val */
if (val & UBR_SETUBR) { /* set UBR? */
ubr = ubr & ~ubr_mask;
pag_reset (&pag_dev); } /* yes, clr pg tbls */
else val = val & ~ubr_mask; /* no, keep old val */
ubr = (ubr | val) & (UBR_ACBMASK | ubr_mask);
set_dyn_ptrs ();
return FALSE;
}
t_bool rdubr (a10 ea, int32 prv)
{
ubr = ubr & (UBR_ACBMASK | (ITS? PAMASK: UBR_UBRMASK));
Write (ea, UBRWORD, prv);
return FALSE;
}
t_bool wrhsb (a10 ea, int32 prv)
{
hsb = Read (ea, prv) & PAMASK;
return FALSE;
}
t_bool rdhsb (a10 ea, int32 prv)
{
Write (ea, hsb, prv);
return FALSE;
}
/* TOPS20 pager instructions */
t_bool wrspb (a10 ea, int32 prv)
{
spt = Read (ea, prv);
return FALSE;
}
t_bool rdspb (a10 ea, int32 prv)
{
Write (ea, spt, prv);
return FALSE;
}
t_bool wrcsb (a10 ea, int32 prv)
{
cst = Read (ea, prv);
return FALSE;
}
t_bool rdcsb (a10 ea, int32 prv)
{
Write (ea, cst, prv);
return FALSE;
}
t_bool wrpur (a10 ea, int32 prv)
{
pur = Read (ea, prv);
return FALSE;
}
t_bool rdpur (a10 ea, int32 prv)
{
Write (ea, pur, prv);
return FALSE;
}
t_bool wrcstm (a10 ea, int32 prv)
{
cstm = Read (ea, prv);
if ((cpu_unit.flags & UNIT_T20V41) && (ea == 040127))
cstm = 0770000000000;
return FALSE;
}
t_bool rdcstm (a10 ea, int32 prv)
{
Write (ea, cstm, prv);
return FALSE;
}
/* ITS pager instructions
The KS10 does not implement the JPC option.
*/
t_bool clrcsh (a10 ea, int32 prv)
{
return FALSE;
}
t_bool ldbr1 (a10 ea, int32 prv)
{
dbr1 = ea;
pag_reset (&pag_dev);
return FALSE;
}
t_bool sdbr1 (a10 ea, int32 prv)
{
Write (ea, dbr1, prv);
return FALSE;
}
t_bool ldbr2 (a10 ea, int32 prv)
{
dbr2 = ea;
pag_reset (&pag_dev);
return FALSE;
}
t_bool sdbr2 (a10 ea, int32 prv)
{
Write (ea, dbr2, prv);
return FALSE;
}
t_bool ldbr3 (a10 ea, int32 prv)
{
dbr3 = ea;
pag_reset (&pag_dev);
return FALSE;
}
t_bool sdbr3 (a10 ea, int32 prv)
{
Write (ea, dbr3, prv);
return FALSE;
}
t_bool ldbr4 (a10 ea, int32 prv)
{
dbr4 = ea;
pag_reset (&pag_dev);
return FALSE;
}
t_bool sdbr4 (a10 ea, int32 prv)
{
Write (ea, dbr4, prv);
return FALSE;
}
t_bool wrpcst (a10 ea, int32 prv)
{
pcst = Read (ea, prv);
return FALSE;
}
t_bool rdpcst (a10 ea, int32 prv)
{
Write (ea, pcst, prv);
return FALSE;
}
t_bool lpmr (a10 ea, int32 prv)
{
d10 val;
val = Read (ADDA (ea, 2), prv);
dbr1 = (a10) (Read (ea, prv) & AMASK);
dbr2 = (a10) (Read (ADDA (ea, 1), prv) & AMASK);
quant = val;
pag_reset (&pag_dev);
return FALSE;
}
t_bool spm (a10 ea, int32 prv)
{
ReadM (ADDA (ea, 2), prv);
Write (ea, dbr1, prv);
Write (ADDA (ea, 1), dbr2, prv);
Write (ADDA (ea, 2), quant, prv);
return FALSE;
}
t_stat pag_ex (t_value *vptr, t_addr addr, UNIT *uptr, int32 sw)
{
int32 tbln = uptr - pag_unit;
if (addr >= PTBL_MEMSIZE) return SCPE_NXM;
*vptr = tbln? uptbl[addr]: eptbl[addr];;
return SCPE_OK;
}
t_stat pag_dep (t_value val, t_addr addr, UNIT *uptr, int32 sw)
{
int32 tbln = uptr - pag_unit;
if (addr >= PTBL_MEMSIZE) return SCPE_NXM;
if (tbln) uptbl[addr] = (int32) val & PTBL_MASK;
else eptbl[addr] = (int32) val & PTBL_MASK;
return SCPE_OK;
}
t_stat pag_reset (DEVICE *dptr)
{
int32 i;
for (i = 0; i < PTBL_MEMSIZE; i++) {
eptbl[i] = uptbl[i] = 0;
physptbl[i] = (i << PAG_V_PN) + PTBL_M + PTBL_V; }
return SCPE_OK;
}