simh-testsetgenerator/PDP11/pdp11_tc.c
Bob Supnik 2bcd1e7c4c Notes For V2.10-2
1. New Features in 2.10-2

The build procedures have changed.  There is only one UNIX makefile.
To compile without Ethernet support, simply type

	gmake {target|all}

To compile with Ethernet support, type

	gmake USE_NETWORK=1 {target|all}

The Mingw batch files require Mingw release 2 and invoke the Unix
makefile.  There are still separate batch files for compilation
with or without Ethernet support.

1.1 SCP and Libraries

- The EVAL command will evaluate a symbolic type-in and display
  it in numeric form.
- The ! command (with no arguments) will launch the host operating
  system command shell.  The ! command (with an argument) executes
  the argument as a host operating system command.  (Code from
  Mark Pizzolato)
- Telnet sessions now recognize BREAK.  How a BREAK is transmitted
  dependent on the particular Telnet client.  (Code from Mark
  Pizzolato)
- The sockets library includes code for active connections as
  well as listening connections.
- The RESTORE command will restore saved memory size, if the
  simulator supports dynamic memory resizing.

1.2 PDP-1

- The PDP-1 supports the Type 24 serial drum (based on recently
  discovered documents).

1.3 18b PDP's

- The PDP-4 supports the Type 24 serial drum (based on recently
  discovered documents).

1.4 PDP-11

- The PDP-11 implements a stub DEUNA/DELUA (XU).  The real XU
  module will be included in a later release.

1.5 PDP-10

- The PDP-10 implements a stub DEUNA/DELUA (XU).  The real XU
  module will be included in a later release.

1.6 HP 2100

- The IOP microinstruction set is supported for the 21MX as well
  as the 2100.
- The HP2100 supports the Access Interprocessor Link (IPL).

1.7 VAX

- If the VAX console is attached to a Telnet session, BREAK is
  interpreted as console halt.
- The SET/SHOW HISTORY commands enable and display a history of
  the most recently executed instructions.  (Code from Mark
  Pizzolato)

1.8 Terminals Multiplexors

- BREAK detection was added to the HP, DEC, and Interdata terminal
  multiplexors.

1.9 Interdata 16b and 32b

- First release.  UNIX is not yet working.

1.10 SDS 940

- First release.

2. Bugs Fixed in 2.10-2

- PDP-11 console must default to 7b for early UNIX compatibility.
- PDP-11/VAX TMSCP emulator was using the wrong packet length for
  read/write end packets.
- Telnet IAC+IAC processing was fixed, both for input and output
  (found by Mark Pizzolato).
- PDP-11/VAX Ethernet setting flag bits wrong for chained
  descriptors (found by Mark Pizzolato).

3. New Features in 2.10 vs prior releases

3.1 SCP and Libraries

- The VT emulation package has been replaced by the capability
  to remote the console to a Telnet session.  Telnet clients
  typically have more complete and robust VT100 emulation.
- Simulated devices may now have statically allocated buffers,
  in addition to dynamically allocated buffers or disk-based
  data stores.
- The DO command now takes substitutable arguments (max 9).
  In command files, %n represents substitutable argument n.
- The initial command line is now interpreted as the command
  name and substitutable arguments for a DO command.  This is
  backward compatible to prior versions.
- The initial command line parses switches.  -Q is interpreted
  as quiet mode; informational messages are suppressed.
- The HELP command now takes an optional argument.  HELP <cmd>
  types help on the specified command.
- Hooks have been added for implementing GUI-based consoles,
  as well as simulator-specific command extensions.  A few
  internal data structures and definitions have changed.
- Two new routines (tmxr_open_master, tmxr_close_master) have
  been added to sim_tmxr.c.  The calling sequence for
  sim_accept_conn has been changed in sim_sock.c.
- The calling sequence for the VM boot routine has been modified
  to add an additional parameter.
- SAVE now saves, and GET now restores, controller and unit flags.
- Library sim_ether.c has been added for Ethernet support.

3.2 VAX

- Non-volatile RAM (NVR) can behave either like a memory or like
  a disk-based peripheral.  If unattached, it behaves like memory
  and is saved and restored by SAVE and RESTORE, respectively.
  If attached, its contents are loaded from disk by ATTACH and
  written back to disk at DETACH and EXIT.
- SHOW <device> VECTOR displays the device's interrupt vector.
  A few devices allow the vector to be changed with SET
  <device> VECTOR=nnn.
- SHOW CPU IOSPACE displays the I/O space address map.
- The TK50 (TMSCP tape) has been added.
- The DEQNA/DELQA (Qbus Ethernet controllers) have been added.
- Autoconfiguration support has been added.
- The paper tape reader has been removed from vax_stddev.c and
  now references a common implementation file, dec_pt.h.
- Examine and deposit switches now work on all devices, not just
  the CPU.
- Device address conflicts are not detected until simulation starts.

3.3 PDP-11

- SHOW <device> VECTOR displays the device's interrupt vector.
  Most devices allow the vector to be changed with SET
  <device> VECTOR=nnn.
- SHOW CPU IOSPACE displays the I/O space address map.
- The TK50 (TMSCP tape), RK611/RK06/RK07 (cartridge disk),
  RX211 (double density floppy), and KW11P programmable clock
  have been added.
- The DEQNA/DELQA (Qbus Ethernet controllers) have been added.
- Autoconfiguration support has been added.
- The paper tape reader has been removed from pdp11_stddev.c and
  now references a common implementation file, dec_pt.h.
- Device bootstraps now use the actual CSR specified by the
  SET ADDRESS command, rather than just the default CSR.  Note
  that PDP-11 operating systems may NOT support booting with
  non-standard addresses.
- Specifying more than 256KB of memory, or changing the bus
  configuration, causes all peripherals that are not compatible
  with the current bus configuration to be disabled.
- Device address conflicts are not detected until simulation starts.

3.4 PDP-10

- SHOW <device> VECTOR displays the device's interrupt vector.
  A few devices allow the vector to be changed with SET
  <device> VECTOR=nnn.
- SHOW CPU IOSPACE displays the I/O space address map.
- The RX211 (double density floppy) has been added; it is off
  by default.
- The paper tape now references a common implementation file,
  dec_pt.h.
- Device address conflicts are not detected until simulation starts.

3.5 PDP-1

- DECtape (then known as MicroTape) support has been added.
- The line printer and DECtape can be disabled and enabled.

3.6 PDP-8

- The RX28 (double density floppy) has been added as an option to
  the existing RX8E controller.
- SHOW <device> DEVNO displays the device's device number.  Most
  devices allow the device number to be changed with SET <device>
  DEVNO=nnn.
- Device number conflicts are not detected until simulation starts.

3.7 IBM 1620

- The IBM 1620 simulator has been released.

3.8 AltairZ80

- A hard drive has been added for increased storage.
- Several bugs have been fixed.

3.9 HP 2100

- The 12845A has been added and made the default line printer (LPT).
  The 12653A has been renamed LPS and is off by default.  It also
  supports the diagnostic functions needed to run the DCPC and DMS
  diagnostics.
- The 12557A/13210A disk defaults to the 13210A (7900/7901).
- The 12559A magtape is off by default.
- New CPU options (EAU/NOEAU) enable/disable the extended arithmetic
  instructions for the 2116.  These instructions are standard on
  the 2100 and 21MX.
- New CPU options (MPR/NOMPR) enable/disable memory protect for the
  2100 and 21MX.
- New CPU options (DMS/NODMS) enable/disable the dynamic mapping
  instructions for the 21MX.
- The 12539 timebase generator autocalibrates.

3.10 Simulated Magtapes

- Simulated magtapes recognize end of file and the marker
  0xFFFFFFFF as end of medium.  Only the TMSCP tape simulator
  can generate an end of medium marker.
- The error handling in simulated magtapes was overhauled to be
  consistent through all simulators.

3.11 Simulated DECtapes

- Added support for RT11 image file format (256 x 16b) to DECtapes.

4. Bugs Fixed in 2.10 vs prior releases

- TS11/TSV05 was not simulating the XS0_MOT bit, causing failures
  under VMS.  In addition, two of the CTL options were coded
  interchanged.
- IBM 1401 tape was not setting a word mark under group mark for
  load mode reads.  This caused the diagnostics to crash.
- SCP bugs in ssh_break and set_logon were fixed (found by Dave
  Hittner).
- Numerous bugs in the HP 2100 extended arithmetic, floating point,
  21MX, DMS, and IOP instructions were fixed.  Bugs were also fixed
  in the memory protect and DMS functions.  The moving head disks
  (DP, DQ) were revised to simulate the hardware more accurately.
  Missing functions in DQ (address skip, read address) were added.
- PDP-10 tape wouldn't boot, and then wouldn't read (reported by
  Michael Thompson and Harris Newman, respectively)
- PDP-1 typewriter is half duplex, with only one shift state for
  both input and output (found by Derek Peschel)

5. General Notes

WARNING: V2.10 has reorganized and renamed some of the definition
files for the PDP-10, PDP-11, and VAX.  Be sure to delete all
previous source files before you unpack the Zip archive, or
unpack it into a new directory structure.

WARNING: V2.10 has a new, more comprehensive save file format.
Restoring save files from previous releases will cause 'invalid
register' errors and loss of CPU option flags, device enable/
disable flags, unit online/offline flags, and unit writelock
flags.

WARNING: If you are using Visual Studio .NET through the IDE,
be sure to turn off the /Wp64 flag in the project settings, or
dozens of spurious errors will be generated.

WARNING: Compiling Ethernet support under Windows requires
extra steps; see the Ethernet readme file.  Ethernet support is
currently available only for Windows, Linux, NetBSD, and OpenBSD.
2011-04-15 08:33:56 -07:00

1181 lines
42 KiB
C
Raw Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/* pdp11_tc.c: PDP-11 DECtape simulator
Copyright (c) 1993-2002, Robert M Supnik
Permission is hereby granted, free of charge, to any person obtaining a
copy of this software and associated documentation files (the "Software"),
to deal in the Software without restriction, including without limitation
the rights to use, copy, modify, merge, publish, distribute, sublicense,
and/or sell copies of the Software, and to permit persons to whom the
Software is furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
ROBERT M SUPNIK BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
Except as contained in this notice, the name of Robert M Supnik shall not
be used in advertising or otherwise to promote the sale, use or other dealings
in this Software without prior written authorization from Robert M Supnik.
tc TC11/TU56 DECtape
29-Sep-02 RMS Added variable address support to bootstrap
Added vector change/display support
Added 16b format support
New data structures
30-May-02 RMS Widened POS to 32b
26-Jan-02 RMS Revised bootstrap to conform to M9312
06-Jan-02 RMS Revised enable/disable support
30-Nov-01 RMS Added read only unit, extended SET/SHOW support
24-Nov-01 RMS Converted POS, STATT, LASTT to arrays
09-Nov-01 RMS Added bus map support
15-Sep-01 RMS Integrated debug logging
27-Sep-01 RMS Fixed interrupt after stop for RSTS/E
07-Sep-01 RMS Revised device disable and interrupt mechanisms
29-Aug-01 RMS Added casts to PDP-8 unpack routine
17-Jul-01 RMS Moved function prototype
11-May-01 RMS Fixed bug in reset
26-Apr-01 RMS Added device enable/disable support
18-Apr-01 RMS Changed to rewind tape before boot
16-Mar-01 RMS Fixed bug in interrupt after stop
15-Mar-01 RMS Added 129th word to PDP-8 format
PDP-11 DECtapes are represented in memory by fixed length buffer of 32b words.
Three file formats are supported:
18b/36b 256 words per block [256 x 18b]
16b 256 words per block [256 x 16b]
12b 129 words per block [129 x 12b]
When a 16b or 12b DECtape file is read in, it is converted to 18b/36b format.
DECtape motion is measured in 3b lines. Time between lines is 33.33us.
Tape density is nominally 300 lines per inch. The format of a DECtape is
reverse end zone 36000 lines ~ 10 feet
block 0
:
block n
forward end zone 36000 lines ~ 10 feet
A block consists of five 18b header words, a tape-specific number of data
words, and five 18b trailer words. All systems except the PDP-8 use a
standard block length of 256 words; the PDP-8 uses a standard block length
of 86 words (x 18b = 129 words x 12b).
Because a DECtape file only contains data, the simulator cannot support
write timing and mark track and can only do a limited implementation
of read all and write all. Read all assumes that the tape has been
conventionally written forward:
header word 0 0
header word 1 block number (for forward reads)
header words 2,3 0
header word 4 0
:
trailer word 4 checksum
trailer words 3,2 0
trailer word 1 block number (for reverse reads)
trailer word 0 0
Write all writes only the data words and dumps the interblock words in the
bit bucket.
*/
#include "pdp11_defs.h"
#define DT_NUMDR 8 /* #drives */
#define DT_M_NUMDR (DT_NUMDR - 1)
#define UNIT_V_WLK (UNIT_V_UF + 0) /* write locked */
#define UNIT_V_8FMT (UNIT_V_UF + 1) /* 12b format */
#define UNIT_V_11FMT (UNIT_V_UF + 2) /* 16b format */
#define UNIT_WLK (1 << UNIT_V_WLK)
#define UNIT_8FMT (1 << UNIT_V_8FMT)
#define UNIT_11FMT (1 << UNIT_V_11FMT)
#define STATE u3 /* unit state */
#define LASTT u4 /* last time update */
#define UNIT_WPRT (UNIT_WLK | UNIT_RO) /* write protect */
/* System independent DECtape constants */
#define DT_EZLIN 36000 /* end zone length */
#define DT_HTLIN 30 /* header/trailer lines */
#define DT_BLKLN 6 /* blk no line in h/t */
#define DT_CSMLN 24 /* checksum line in h/t */
#define DT_HTWRD (DT_HTLIN / DT_WSIZE) /* header/trailer words */
#define DT_BLKWD (DT_BLKLN / DT_WSIZE) /* blk no word in h/t */
#define DT_CSMWD (DT_CSMLN / DT_WSIZE) /* checksum word in h/t */
/* 16b, 18b, 36b DECtape constants */
#define D18_WSIZE 6 /* word size in lines */
#define D18_BSIZE 256 /* block size in 18b */
#define D18_TSIZE 578 /* tape size */
#define D18_LPERB (DT_HTLIN + (D18_BSIZE * DT_WSIZE) + DT_HTLIN)
#define D18_FWDEZ (DT_EZLIN + (D18_LPERB * D18_TSIZE))
#define D18_CAPAC (D18_TSIZE * D18_BSIZE) /* tape capacity */
#define D16_FILSIZ (D18_TSIZE * D18_BSIZE * sizeof (int16))
/* 12b DECtape constants */
#define D8_WSIZE 4 /* word size in lines */
#define D8_BSIZE 86 /* block size in 18b */
#define D8_TSIZE 1474 /* tape size */
#define D8_LPERB (DT_HTLIN + (D8_BSIZE * DT_WSIZE) + DT_HTLIN)
#define D8_FWDEZ (DT_EZLIN + (D8_LPERB * D8_TSIZE))
#define D8_CAPAC (D8_TSIZE * D8_BSIZE) /* tape capacity */
#define D8_NBSIZE ((D8_BSIZE * D18_WSIZE) / D8_WSIZE)
#define D8_FILSIZ (D8_NBSIZE * D8_TSIZE * sizeof (int16))
/* This controller */
#define DT_CAPAC D18_CAPAC /* default */
#define DT_WSIZE D18_WSIZE
/* Calculated constants, per unit */
#define DTU_BSIZE(u) (((u)->flags & UNIT_8FMT)? D8_BSIZE: D18_BSIZE)
#define DTU_TSIZE(u) (((u)->flags & UNIT_8FMT)? D8_TSIZE: D18_TSIZE)
#define DTU_LPERB(u) (((u)->flags & UNIT_8FMT)? D8_LPERB: D18_LPERB)
#define DTU_FWDEZ(u) (((u)->flags & UNIT_8FMT)? D8_FWDEZ: D18_FWDEZ)
#define DTU_CAPAC(u) (((u)->flags & UNIT_8FMT)? D8_CAPAC: D18_CAPAC)
#define DT_LIN2BL(p,u) (((p) - DT_EZLIN) / DTU_LPERB (u))
#define DT_LIN2OF(p,u) (((p) - DT_EZLIN) % DTU_LPERB (u))
#define DT_LIN2WD(p,u) ((DT_LIN2OF (p,u) - DT_HTLIN) / DT_WSIZE)
#define DT_BLK2LN(p,u) (((p) * DTU_LPERB (u)) + DT_EZLIN)
#define DT_QREZ(u) (((u)->pos) < DT_EZLIN)
#define DT_QFEZ(u) (((u)->pos) >= ((uint32) DTU_FWDEZ (u)))
#define DT_QEZ(u) (DT_QREZ (u) || DT_QFEZ (u))
/* TCST - 177340 - status register */
#define STA_END 0100000 /* end zone */
#define STA_PAR 0040000 /* parity err */
#define STA_MRK 0020000 /* mark trk err */
#define STA_ILO 0010000 /* illegal op */
#define STA_SEL 0004000 /* select err */
#define STA_BLKM 0002000 /* block miss err */
#define STA_DATM 0001000 /* data miss err */
#define STA_NXM 0000400 /* nx mem err */
#define STA_UPS 0000200 /* up to speed */
#define STA_V_XD 0 /* extended data */
#define STA_M_XD 03
#define STA_ALLERR (STA_END | STA_PAR | STA_MRK | STA_ILO | \
STA_SEL | STA_BLKM | STA_DATM | STA_NXM )
#define STA_RWERR (STA_END | STA_PAR | STA_MRK | \
STA_BLKM | STA_DATM | STA_NXM )
#define STA_RW 0000003
#define STA_GETXD(x) (((x) >> STA_V_XD) & STA_M_XD)
/* TCCM - 177342 - command register */
/* #define CSR_ERR 0100000 */
#define CSR_MNT 0020000 /* maint (unimpl) */
#define CSR_INH 0010000 /* delay inhibit */
#define CSR_DIR 0004000 /* reverse */
#define CSR_V_UNIT 8 /* unit select */
#define CSR_M_UNIT 07
#define CSR_UNIT (CSR_M_UNIT << CSR_V_UNIT)
/* #define CSR_DONE 0000200 */
/* #define CSR_IE 0000100 */
#define CSR_V_MEX 4 /* mem extension */
#define CSR_M_MEX 03
#define CSR_MEX (CSR_M_MEX << CSR_V_MEX)
#define CSR_V_FNC 1 /* function */
#define CSR_M_FNC 07
#define FNC_STOP 00 /* stop all */
#define FNC_SRCH 01 /* search */
#define FNC_READ 02 /* read */
#define FNC_RALL 03 /* read all */
#define FNC_SSEL 04 /* stop selected */
#define FNC_WMRK 05 /* write */
#define FNC_WRIT 06 /* write all */
#define FNC_WALL 07 /* write timing */
/* define CSR_GO 0000001 */
#define CSR_RW 0117576 /* read/write */
#define CSR_GETUNIT(x) (((x) >> CSR_V_UNIT) & CSR_M_UNIT)
#define CSR_GETMEX(x) (((x) >> CSR_V_MEX) & CSR_M_MEX)
#define CSR_GETFNC(x) (((x) >> CSR_V_FNC) & CSR_M_FNC)
#define CSR_INCMEX(x) (((x) & ~CSR_MEX) | (((x) + (1 << CSR_V_MEX)) & CSR_MEX))
/* TCWC - 177344 - word count */
/* TCBA - 177346 - bus address */
/* TCDT - 177350 - data */
/* DECtape state */
#define DTS_V_MOT 3 /* motion */
#define DTS_M_MOT 07
#define DTS_STOP 0 /* stopped */
#define DTS_DECF 2 /* decel, fwd */
#define DTS_DECR 3 /* decel, rev */
#define DTS_ACCF 4 /* accel, fwd */
#define DTS_ACCR 5 /* accel, rev */
#define DTS_ATSF 6 /* @speed, fwd */
#define DTS_ATSR 7 /* @speed, rev */
#define DTS_DIR 01 /* dir mask */
#define DTS_V_FNC 0 /* function */
#define DTS_M_FNC 07
#define DTS_OFR FNC_WMRK /* "off reel" */
#define DTS_GETMOT(x) (((x) >> DTS_V_MOT) & DTS_M_MOT)
#define DTS_GETFNC(x) (((x) >> DTS_V_FNC) & DTS_M_FNC)
#define DTS_V_2ND 6 /* next state */
#define DTS_V_3RD (DTS_V_2ND + DTS_V_2ND) /* next next */
#define DTS_STA(y,z) (((y) << DTS_V_MOT) | ((z) << DTS_V_FNC))
#define DTS_SETSTA(y,z) uptr->STATE = DTS_STA (y, z)
#define DTS_SET2ND(y,z) uptr->STATE = (uptr->STATE & 077) | \
((DTS_STA (y, z)) << DTS_V_2ND)
#define DTS_SET3RD(y,z) uptr->STATE = (uptr->STATE & 07777) | \
((DTS_STA (y, z)) << DTS_V_3RD)
#define DTS_NXTSTA(x) (x >> DTS_V_2ND)
/* Logging */
#define LOG_MS 001 /* move, search */
#define LOG_RW 002 /* read, write */
#define LOG_RA 004 /* read all */
#define LOG_BL 010 /* block # lblk */
#define DT_SETDONE tccm = tccm | CSR_DONE; \
if (tccm & CSR_IE) SET_INT (DTA)
#define DT_CLRDONE tccm = tccm & ~CSR_DONE; \
CLR_INT (DTA)
#define ABS(x) (((x) < 0)? (-(x)): (x))
extern uint16 *M; /* memory */
extern int32 int_req[IPL_HLVL];
extern int32 int_vec[IPL_HLVL][32];
extern UNIT cpu_unit;
extern int32 sim_switches;
extern int32 cpu_log;
extern FILE *sim_log;
int32 tcst = 0; /* status */
int32 tccm = 0; /* command */
int32 tcwc = 0; /* word count */
int32 tcba = 0; /* bus address */
int32 tcdt = 0; /* data */
int32 dt_ctime = 100; /* fast cmd time */
int32 dt_ltime = 12; /* interline time */
int32 dt_actime = 54000; /* accel time */
int32 dt_dctime = 72000; /* decel time */
int32 dt_substate = 0;
int32 dt_logblk = 0;
DEVICE dt_dev;
t_stat dt_rd (int32 *data, int32 PA, int32 access);
t_stat dt_wr (int32 data, int32 PA, int32 access);
t_stat dt_svc (UNIT *uptr);
t_stat dt_svcdone (UNIT *uptr);
t_stat dt_reset (DEVICE *dptr);
t_stat dt_attach (UNIT *uptr, char *cptr);
t_stat dt_detach (UNIT *uptr);
t_stat dt_boot (int32 unitno, DEVICE *dptr);
void dt_deselect (int32 oldf);
void dt_newsa (int32 newf);
void dt_newfnc (UNIT *uptr, int32 newsta);
t_bool dt_setpos (UNIT *uptr);
void dt_schedez (UNIT *uptr, int32 dir);
void dt_seterr (UNIT *uptr, int32 e);
void dt_stopunit (UNIT *uptr);
int32 dt_comobv (int32 val);
int32 dt_csum (UNIT *uptr, int32 blk);
int32 dt_gethdr (UNIT *uptr, int32 blk, int32 relpos);
extern int32 sim_is_running;
/* DT data structures
dt_dev DT device descriptor
dt_unit DT unit list
dt_reg DT register list
dt_mod DT modifier list
*/
DIB dt_dib = { IOBA_TC, IOLN_TC, &dt_rd, &dt_wr,
1, IVCL (DTA), VEC_DTA, { NULL } };
UNIT dt_unit[] = {
{ UDATA (&dt_svc, UNIT_FIX+UNIT_ATTABLE+UNIT_DISABLE+
UNIT_ROABLE+UNIT_11FMT, DT_CAPAC) },
{ UDATA (&dt_svc, UNIT_FIX+UNIT_ATTABLE+UNIT_DISABLE+
UNIT_ROABLE+UNIT_11FMT, DT_CAPAC) },
{ UDATA (&dt_svc, UNIT_FIX+UNIT_ATTABLE+UNIT_DISABLE+
UNIT_ROABLE+UNIT_11FMT, DT_CAPAC) },
{ UDATA (&dt_svc, UNIT_FIX+UNIT_ATTABLE+UNIT_DISABLE+
UNIT_ROABLE+UNIT_11FMT, DT_CAPAC) },
{ UDATA (&dt_svc, UNIT_FIX+UNIT_ATTABLE+UNIT_DISABLE+
UNIT_ROABLE+UNIT_11FMT, DT_CAPAC) },
{ UDATA (&dt_svc, UNIT_FIX+UNIT_ATTABLE+UNIT_DISABLE+
UNIT_ROABLE+UNIT_11FMT, DT_CAPAC) },
{ UDATA (&dt_svc, UNIT_FIX+UNIT_ATTABLE+UNIT_DISABLE+
UNIT_ROABLE+UNIT_11FMT, DT_CAPAC) },
{ UDATA (&dt_svc, UNIT_FIX+UNIT_ATTABLE+UNIT_DISABLE+
UNIT_ROABLE+UNIT_11FMT, DT_CAPAC) },
{ UDATA (&dt_svcdone, UNIT_DIS, 0) } };
#define DT_TIMER (DT_NUMDR)
REG dt_reg[] = {
{ ORDATA (TCST, tcst, 16) },
{ ORDATA (TCCM, tccm, 16) },
{ ORDATA (TCWC, tcwc, 16) },
{ ORDATA (TCBA, tcba, 16) },
{ ORDATA (TCDT, tcdt, 16) },
{ FLDATA (INT, IREQ (DTA), INT_V_DTA) },
{ FLDATA (ERR, tccm, CSR_V_ERR) },
{ FLDATA (DONE, tccm, CSR_V_DONE) },
{ FLDATA (IE, tccm, CSR_V_DONE) },
{ DRDATA (CTIME, dt_ctime, 31), REG_NZ },
{ DRDATA (LTIME, dt_ltime, 31), REG_NZ },
{ DRDATA (ACTIME, dt_actime, 31), REG_NZ },
{ DRDATA (DCTIME, dt_dctime, 31), REG_NZ },
{ ORDATA (SUBSTATE, dt_substate, 1) },
{ DRDATA (LBLK, dt_logblk, 12), REG_HIDDEN },
{ URDATA (POS, dt_unit[0].pos, 10, 32, 0,
DT_NUMDR, PV_LEFT | REG_RO) },
{ URDATA (STATT, dt_unit[0].STATE, 8, 18, 0,
DT_NUMDR, REG_RO) },
{ URDATA (LASTT, dt_unit[0].LASTT, 10, 32, 0,
DT_NUMDR, REG_HRO) },
{ ORDATA (DEVADDR, dt_dib.ba, 32), REG_HRO },
{ ORDATA (DEVVEC, dt_dib.vec, 16), REG_HRO },
{ NULL } };
MTAB dt_mod[] = {
{ UNIT_WLK, 0, "write enabled", "WRITEENABLED", NULL },
{ UNIT_WLK, UNIT_WLK, "write locked", "LOCKED", NULL },
{ UNIT_8FMT + UNIT_11FMT, 0, "18b", NULL, NULL },
{ UNIT_8FMT + UNIT_11FMT, UNIT_8FMT, "12b", NULL, NULL },
{ UNIT_8FMT + UNIT_11FMT, UNIT_11FMT, "16b", NULL, NULL },
{ MTAB_XTD|MTAB_VDV, 004, "ADDRESS", "ADDRESS",
&set_addr, &show_addr, NULL },
{ MTAB_XTD|MTAB_VDV, 0, "VECTOR", "VECTOR",
&set_vec, &show_vec, NULL },
{ 0 } };
DEVICE dt_dev = {
"TC", dt_unit, dt_reg, dt_mod,
DT_NUMDR + 1, 8, 24, 1, 8, 18,
NULL, NULL, &dt_reset,
&dt_boot, &dt_attach, &dt_detach,
&dt_dib, DEV_DISABLE | DEV_UBUS };
/* IO dispatch routines, I/O addresses 17777340 - 17777350 */
t_stat dt_rd (int32 *data, int32 PA, int32 access)
{
int32 j, unum, mot, fnc;
j = (PA >> 1) & 017; /* get reg offset */
unum = CSR_GETUNIT (tccm); /* get drive */
switch (j) {
case 000: /* TCST */
mot = DTS_GETMOT (dt_unit[unum].STATE); /* get motion */
if (mot >= DTS_ATSF) tcst = tcst | STA_UPS; /* set/clr speed */
else tcst = tcst & ~STA_UPS;
*data = tcst;
break;
case 001: /* TCCM */
if (tcst & STA_ALLERR) tccm = tccm | CSR_ERR; /* set/clr error */
else tccm = tccm & ~CSR_ERR;
*data = tccm;
break;
case 002: /* TCWC */
*data = tcwc;
break;
case 003: /* TCBA */
*data = tcba;
break;
case 004: /* TCDT */
fnc = DTS_GETFNC (dt_unit[unum].STATE); /* get function */
if (fnc == FNC_RALL) { /* read all? */
DT_CLRDONE; } /* clear done */
*data = tcdt;
break; }
return SCPE_OK;
}
t_stat dt_wr (int32 data, int32 PA, int32 access)
{
int32 i, j, unum, old_tccm, fnc;
UNIT *uptr;
j = (PA >> 1) & 017; /* get reg offset */
switch (j) {
case 000: /* TCST */
if ((access == WRITEB) && (PA & 1)) break;
tcst = (tcst & ~STA_RW) | (data & STA_RW);
break;
case 001: /* TCCM */
old_tccm = tccm; /* save prior */
if (access == WRITEB) data = (PA & 1)?
(tccm & 0377) | (data << 8): (tccm & ~0377) | data;
if ((data & CSR_IE) == 0) CLR_INT (DTA);
else if ((((tccm & CSR_IE) == 0) && (tccm & CSR_DONE)) ||
(data & CSR_DONE)) SET_INT (DTA);
tccm = (tccm & ~CSR_RW) | (data & CSR_RW);
if ((data & CSR_GO) && (tccm & CSR_DONE)) { /* new cmd? */
tcst = tcst & ~STA_ALLERR; /* clear errors */
tccm = tccm & ~(CSR_ERR | CSR_DONE); /* clear done, err */
CLR_INT (DTA); /* clear int */
if ((old_tccm ^ tccm) & CSR_UNIT) dt_deselect (old_tccm);
unum = CSR_GETUNIT (tccm); /* get drive */
fnc = CSR_GETFNC (tccm); /* get function */
if (fnc == FNC_STOP) { /* stop all? */
sim_activate (&dt_dev.units[DT_TIMER], dt_ctime);
for (i = 0; i < DT_NUMDR; i++)
dt_stopunit (dt_dev.units + i); /* stop unit */
break; }
uptr = dt_dev.units + unum;
if (uptr->flags & UNIT_DIS) /* disabled? */
dt_seterr (uptr, STA_SEL); /* select err */
if ((fnc == FNC_WMRK) || /* write mark? */
((fnc == FNC_WALL) && (uptr->flags & UNIT_WPRT)) ||
((fnc == FNC_WRIT) && (uptr->flags & UNIT_WPRT)))
dt_seterr (uptr, STA_ILO); /* illegal op */
if (!(tccm & CSR_ERR)) dt_newsa (tccm); }
else if ((tccm & CSR_ERR) == 0) { /* clear err? */
tcst = tcst & ~STA_RWERR;
if (tcst & STA_ALLERR) tccm = tccm | CSR_ERR; }
break;
case 002: /* TCWC */
tcwc = data; /* word write only! */
break;
case 003: /* TCBA */
tcba = data; /* word write only! */
break;
case 004: /* TCDT */
unum = CSR_GETUNIT (tccm); /* get drive */
fnc = DTS_GETFNC (dt_unit[unum].STATE); /* get function */
if (fnc == FNC_WALL) { /* write all? */
DT_CLRDONE; } /* clear done */
tcdt = data; /* word write only! */
break; }
return SCPE_OK;
}
/* Unit deselect */
void dt_deselect (int32 oldf)
{
int32 old_unit = CSR_GETUNIT (oldf);
UNIT *uptr = dt_dev.units + old_unit;
int32 old_mot = DTS_GETMOT (uptr->STATE);
if (old_mot >= DTS_ATSF) /* at speed? */
dt_newfnc (uptr, DTS_STA (old_mot, DTS_OFR));
else if (old_mot >= DTS_ACCF) /* accelerating? */
DTS_SET2ND (DTS_ATSF | (old_mot & DTS_DIR), DTS_OFR);
return; }
/* New operation
1. If function = stop
- if not already stopped or decelerating, schedule deceleration
- schedule command completion
2. If change in direction,
- if not decelerating, schedule deceleration
- set accelerating (other dir) as next state
- set function as next next state
3. If not accelerating or at speed,
- schedule acceleration
- set function as next state
4. If not yet at speed,
- set function as next state
5. If at speed,
- set function as current state, schedule function
*/
void dt_newsa (int32 newf)
{
int32 new_unit, prev_mot, new_fnc;
int32 prev_dir, new_dir;
UNIT *uptr;
new_unit = CSR_GETUNIT (newf); /* new, old units */
uptr = dt_dev.units + new_unit;
if ((uptr->flags & UNIT_ATT) == 0) { /* new unit attached? */
dt_seterr (uptr, STA_SEL); /* no, error */
return; }
prev_mot = DTS_GETMOT (uptr->STATE); /* previous motion */
prev_dir = prev_mot & DTS_DIR; /* previous dir */
new_fnc = CSR_GETFNC (newf); /* new function */
new_dir = (newf & CSR_DIR) != 0; /* new di? */
if (new_fnc == FNC_SSEL) { /* stop unit? */
sim_activate (&dt_dev.units[DT_TIMER], dt_ctime); /* sched done */
dt_stopunit (uptr); /* stop unit */
return; }
if (prev_mot == DTS_STOP) { /* start? */
if (dt_setpos (uptr)) return; /* update pos */
sim_cancel (uptr); /* stop current */
sim_activate (uptr, dt_actime); /* schedule accel */
DTS_SETSTA (DTS_ACCF | new_dir, 0); /* state = accel */
DTS_SET2ND (DTS_ATSF | new_dir, new_fnc); /* next = fnc */
return; }
if (prev_dir ^ new_dir) { /* dir chg? */
dt_stopunit (uptr); /* stop unit */
DTS_SET2ND (DTS_ACCF | new_dir, 0); /* next = accel */
DTS_SET3RD (DTS_ATSF | new_dir, new_fnc); /* next next = fnc */
return; }
if (prev_mot < DTS_ACCF) { /* not accel/at speed? */
if (dt_setpos (uptr)) return; /* update pos */
sim_cancel (uptr); /* cancel cur */
sim_activate (uptr, dt_actime); /* schedule accel */
DTS_SETSTA (DTS_ACCF | new_dir, 0); /* state = accel */
DTS_SET2ND (DTS_ATSF | new_dir, new_fnc); /* next = fnc */
return; }
if (prev_mot < DTS_ATSF) { /* not at speed? */
DTS_SET2ND (DTS_ATSF | new_dir, new_fnc); /* next = fnc */
return; }
dt_newfnc (uptr, DTS_STA (DTS_ATSF | new_dir, new_fnc));/* state = fnc */
return;
}
/* Schedule new DECtape function
This routine is only called if
- the selected unit is attached
- the selected unit is at speed (forward or backward)
This routine
- updates the selected unit's position
- updates the selected unit's state
- schedules the new operation
*/
void dt_newfnc (UNIT *uptr, int32 newsta)
{
int32 fnc, dir, blk, unum, relpos, newpos;
uint32 oldpos;
oldpos = uptr->pos; /* save old pos */
if (dt_setpos (uptr)) return; /* update pos */
uptr->STATE = newsta; /* update state */
fnc = DTS_GETFNC (uptr->STATE); /* set variables */
dir = DTS_GETMOT (uptr->STATE) & DTS_DIR;
unum = uptr - dt_dev.units;
if (oldpos == uptr->pos)
uptr->pos = uptr->pos + (dir? -1: 1);
blk = DT_LIN2BL (uptr->pos, uptr);
if (dir? DT_QREZ (uptr): DT_QFEZ (uptr)) { /* wrong ez? */
dt_seterr (uptr, STA_END); /* set ez flag, stop */
return; }
dt_substate = 0; /* substate = normal */
sim_cancel (uptr); /* cancel cur op */
switch (fnc) { /* case function */
case DTS_OFR: /* off reel */
if (dir) newpos = -1000; /* rev? < start */
else newpos = DTU_FWDEZ (uptr) + DT_EZLIN + 1000; /* fwd? > end */
break;
case FNC_SRCH: /* search */
if (dir) newpos = DT_BLK2LN ((DT_QFEZ (uptr)?
DTU_TSIZE (uptr): blk), uptr) - DT_BLKLN - DT_WSIZE;
else newpos = DT_BLK2LN ((DT_QREZ (uptr)?
0: blk + 1), uptr) + DT_BLKLN + (DT_WSIZE - 1);
if (DBG_LOG (LOG_TC_MS)) fprintf (sim_log, ">>DT%d: searching %s\n",
unum, (dir? "backward": "forward"));
break;
case FNC_WRIT: /* write */
case FNC_READ: /* read */
if (DT_QEZ (uptr)) { /* in "ok" end zone? */
if (dir) newpos = DTU_FWDEZ (uptr) - DT_HTLIN - DT_WSIZE;
else newpos = DT_EZLIN + DT_HTLIN + (DT_WSIZE - 1);
break; }
relpos = DT_LIN2OF (uptr->pos, uptr); /* cur pos in blk */
if ((relpos >= DT_HTLIN) && /* in data zone? */
(relpos < (DTU_LPERB (uptr) - DT_HTLIN))) {
dt_seterr (uptr, STA_BLKM);
return; }
if (dir) newpos = DT_BLK2LN (((relpos >= (DTU_LPERB (uptr) - DT_HTLIN))?
blk + 1: blk), uptr) - DT_HTLIN - DT_WSIZE;
else newpos = DT_BLK2LN (((relpos < DT_HTLIN)?
blk: blk + 1), uptr) + DT_HTLIN + (DT_WSIZE - 1);
if (DBG_LOG (LOG_TC_RW) || (DBG_LOG (LOG_TC_BL) && (blk == dt_logblk)))
fprintf (sim_log, ">>DT%d: %s block %d %s\n",
unum, ((fnc == FNC_READ)? "read": "write"),
blk, (dir? "backward": "forward"));
break;
case FNC_RALL: /* read all */
case FNC_WALL: /* write all */
if (DT_QEZ (uptr)) { /* in "ok" end zone? */
if (dir) newpos = DTU_FWDEZ (uptr) - DT_WSIZE;
else newpos = DT_EZLIN + (DT_WSIZE - 1); }
else {
relpos = DT_LIN2OF (uptr->pos, uptr); /* cur pos in blk */
if (dir? (relpos < (DTU_LPERB (uptr) - DT_CSMLN)): /* switch in time? */
(relpos >= DT_CSMLN)) {
dt_seterr (uptr, STA_BLKM);
return; }
if (dir) newpos = DT_BLK2LN (blk + 1, uptr) - DT_CSMLN - DT_WSIZE;
else newpos = DT_BLK2LN (blk, uptr) + DT_CSMLN + (DT_WSIZE - 1); }
if (fnc == FNC_WALL) sim_activate /* write all? */
(&dt_dev.units[DT_TIMER], dt_ctime); /* sched done */
if (DBG_LOG (LOG_TC_RW) || (DBG_LOG (LOG_TC_BL) && (blk == dt_logblk)))
fprintf (sim_log, ">>DT%d: read all block %d %s\n",
unum, blk, (dir? "backward": "forward"));
break;
default:
dt_seterr (uptr, STA_SEL); /* bad state */
return; }
sim_activate (uptr, ABS (newpos - ((int32) uptr->pos)) * dt_ltime);
return;
}
/* Update DECtape position
DECtape motion is modeled as a constant velocity, with linear
acceleration and deceleration. The motion equations are as follows:
t = time since operation started
tmax = time for operation (accel, decel only)
v = at speed velocity in lines (= 1/dt_ltime)
Then:
at speed dist = t * v
accel dist = (t^2 * v) / (2 * tmax)
decel dist = (((2 * t * tmax) - t^2) * v) / (2 * tmax)
This routine uses the relative (integer) time, rather than the absolute
(floating point) time, to allow save and restore of the start times.
*/
t_bool dt_setpos (UNIT *uptr)
{
uint32 new_time, ut, ulin, udelt;
int32 mot = DTS_GETMOT (uptr->STATE);
int32 unum, delta;
new_time = sim_grtime (); /* current time */
ut = new_time - uptr->LASTT; /* elapsed time */
if (ut == 0) return FALSE; /* no time gone? exit */
uptr->LASTT = new_time; /* update last time */
switch (mot & ~DTS_DIR) { /* case on motion */
case DTS_STOP: /* stop */
delta = 0;
break;
case DTS_DECF: /* slowing */
ulin = ut / (uint32) dt_ltime; udelt = dt_dctime / dt_ltime;
delta = ((ulin * udelt * 2) - (ulin * ulin)) / (2 * udelt);
break;
case DTS_ACCF: /* accelerating */
ulin = ut / (uint32) dt_ltime; udelt = dt_actime / dt_ltime;
delta = (ulin * ulin) / (2 * udelt);
break;
case DTS_ATSF: /* at speed */
delta = ut / (uint32) dt_ltime;
break; }
if (mot & DTS_DIR) uptr->pos = uptr->pos - delta; /* update pos */
else uptr->pos = uptr->pos + delta;
if (((int32) uptr->pos < 0) ||
((int32) uptr->pos > (DTU_FWDEZ (uptr) + DT_EZLIN))) {
detach_unit (uptr); /* off reel? */
uptr->STATE = uptr->pos = 0;
unum = uptr - dt_dev.units;
if ((unum == CSR_GETUNIT (tccm)) && (CSR_GETFNC (tccm) != FNC_STOP))
dt_seterr (uptr, STA_SEL); /* error */
return TRUE; }
return FALSE;
}
/* Command timer service after stop - set done */
t_stat dt_svcdone (UNIT *uptr)
{
DT_SETDONE;
return SCPE_OK;
}
/* Unit service
Unit must be attached, detach cancels operation
*/
t_stat dt_svc (UNIT *uptr)
{
int32 mot = DTS_GETMOT (uptr->STATE);
int32 dir = mot & DTS_DIR;
int32 fnc = DTS_GETFNC (uptr->STATE);
int32 *bptr = uptr->filebuf;
int32 blk, wrd, relpos, dat;
t_addr ma, mma, ba;
/* Motion cases
Decelerating - if next state != stopped, must be accel reverse
Accelerating - next state must be @speed, schedule function
At speed - do functional processing
*/
switch (mot) {
case DTS_DECF: case DTS_DECR: /* decelerating */
if (dt_setpos (uptr)) return SCPE_OK; /* update pos */
uptr->STATE = DTS_NXTSTA (uptr->STATE); /* advance state */
if (uptr->STATE) /* not stopped? */
sim_activate (uptr, dt_actime); /* must be reversing */
return SCPE_OK;
case DTS_ACCF: case DTS_ACCR: /* accelerating */
dt_newfnc (uptr, DTS_NXTSTA (uptr->STATE)); /* adv state, sched */
return SCPE_OK;
case DTS_ATSF: case DTS_ATSR: /* at speed */
break; /* check function */
default: /* other */
dt_seterr (uptr, STA_SEL); /* state error */
return SCPE_OK; }
/* Functional cases
Search - transfer block number, schedule next block
Off reel - detach unit (it must be deselected)
*/
if (dt_setpos (uptr)) return SCPE_OK; /* update pos */
if (DT_QEZ (uptr)) { /* in end zone? */
dt_seterr (uptr, STA_END); /* end zone error */
return SCPE_OK; }
blk = DT_LIN2BL (uptr->pos, uptr); /* get block # */
switch (fnc) { /* at speed, check fnc */
case FNC_SRCH: /* search */
tcdt = blk; /* set block # */
dt_schedez (uptr, dir); /* sched end zone */
DT_SETDONE; /* set done */
break;
case DTS_OFR: /* off reel */
detach_unit (uptr); /* must be deselected */
uptr->STATE = uptr->pos = 0; /* no visible action */
break;
/* Read
If wc ovf has not occurred, inc ma, wc and copy word from tape to memory
If wc ovf, set flag
If not end of block, schedule next word
If end of block and not wc ovf, schedule next block
If end of block and wc ovf, set done, schedule end zone
*/
case FNC_READ: /* read */
wrd = DT_LIN2WD (uptr->pos, uptr); /* get word # */
if (!dt_substate) { /* !wc ovf? */
tcwc = tcwc & DMASK; /* incr MA, WC */
tcba = tcba & DMASK;
ma = (CSR_GETMEX (tccm) << 16) | tcba; /* form 18b addr */
if (!Map_Addr (ma, &mma) || /* map addr */
!ADDR_IS_MEM (mma)) { /* nx mem? */
dt_seterr (uptr, STA_NXM);
break; }
ba = (blk * DTU_BSIZE (uptr)) + wrd; /* buffer ptr */
M[mma >> 1] = tcdt = bptr[ba] & DMASK; /* read word */
tcwc = (tcwc + 1) & DMASK; /* incr MA, WC */
tcba = (tcba + 2) & DMASK;
if (tcba <= 1) tccm = CSR_INCMEX (tccm);
if (tcwc == 0) dt_substate = 1; }
if (wrd != (dir? 0: DTU_BSIZE (uptr) - 1)) /* not end blk? */
sim_activate (uptr, DT_WSIZE * dt_ltime);
else if (dt_substate) { /* wc ovf? */
dt_schedez (uptr, dir); /* sched end zone */
DT_SETDONE; } /* set done */
else sim_activate (uptr, ((2 * DT_HTLIN) + DT_WSIZE) * dt_ltime);
break;
/* Write
If wc ovf has not occurred, inc ma, wc
Copy word from memory (or 0, to fill block) to tape
If wc ovf, set flag
If not end of block, schedule next word
If end of block and not wc ovf, schedule next block
If end of block and wc ovf, set done, schedule end zone
*/
case FNC_WRIT: /* write */
wrd = DT_LIN2WD (uptr->pos, uptr); /* get word # */
if (dt_substate) tcdt = 0; /* wc ovf? fill */
else {
ma = (CSR_GETMEX (tccm) << 16) | tcba; /* form 18b addr */
if (!Map_Addr (ma, &mma) || /* map addr */
!ADDR_IS_MEM (mma)) { /* nx mem? */
dt_seterr (uptr, STA_NXM);
break; }
else tcdt = M[mma >> 1]; /* get word */
tcwc = (tcwc + 1) & DMASK; /* incr MA, WC */
tcba = (tcba + 2) & DMASK;
if (tcba <= 1) tccm = CSR_INCMEX (tccm); }
ba = (blk * DTU_BSIZE (uptr)) + wrd; /* buffer ptr */
bptr[ba] = tcdt; /* write word */
if (ba >= uptr->hwmark) uptr->hwmark = ba + 1;
if (tcwc == 0) dt_substate = 1;
if (wrd != (dir? 0: DTU_BSIZE (uptr) - 1)) /* not end blk? */
sim_activate (uptr, DT_WSIZE * dt_ltime);
else if (dt_substate) { /* wc ovf? */
dt_schedez (uptr, dir); /* sched end zone */
DT_SETDONE; }
else sim_activate (uptr, ((2 * DT_HTLIN) + DT_WSIZE) * dt_ltime);
break;
/* Read all - read current header or data word */
case FNC_RALL:
if (tccm & CSR_DONE) { /* done set? */
dt_seterr (uptr, STA_DATM); /* data miss */
break; }
relpos = DT_LIN2OF (uptr->pos, uptr); /* cur pos in blk */
if ((relpos >= DT_HTLIN) && /* in data zone? */
(relpos < (DTU_LPERB (uptr) - DT_HTLIN))) {
wrd = DT_LIN2WD (uptr->pos, uptr);
ba = (blk * DTU_BSIZE (uptr)) + wrd; /* buffer ptr */
dat = bptr[ba]; } /* get tape word */
else dat = dt_gethdr (uptr, blk, relpos); /* get hdr */
if (dir) dat = dt_comobv (dat); /* rev? comp obv */
tcdt = dat & DMASK; /* low 16b */
tcst = (tcst & ~STA_M_XD) | ((dat >> 16) & STA_M_XD);
sim_activate (uptr, DT_WSIZE * dt_ltime);
DT_SETDONE; /* set done */
break;
/* Write all - write current header or data word */
case FNC_WALL:
if (tccm & CSR_DONE) { /* done set? */
dt_seterr (uptr, STA_DATM); /* data miss */
break; }
relpos = DT_LIN2OF (uptr->pos, uptr); /* cur pos in blk */
if ((relpos >= DT_HTLIN) && /* in data zone? */
(relpos < (DTU_LPERB (uptr) - DT_HTLIN))) {
wrd = DT_LIN2WD (uptr->pos, uptr);
dat = (STA_GETXD (tcst) << 16) | tcdt; /* get data word */
if (dir) dat = dt_comobv (dat); /* rev? comp obv */
ba = (blk * DTU_BSIZE (uptr)) + wrd; /* buffer ptr */
bptr[ba] = dat; /* write word */
if (ba >= uptr->hwmark) uptr->hwmark = ba + 1; }
/* else /* ignore hdr */
sim_activate (uptr, DT_WSIZE * dt_ltime);
DT_SETDONE; /* set done */
break;
default:
dt_seterr (uptr, STA_SEL); /* impossible state */
break; }
return SCPE_OK;
}
/* Utility routines */
/* Set error flag */
void dt_seterr (UNIT *uptr, int32 e)
{
int32 mot = DTS_GETMOT (uptr->STATE);
tcst = tcst | e; /* set error flag */
tccm = tccm | CSR_ERR;
if (!(tccm & CSR_DONE)) { /* not done? */
DT_SETDONE; }
if (mot >= DTS_ACCF) { /* ~stopped or stopping? */
sim_cancel (uptr); /* cancel activity */
if (dt_setpos (uptr)) return; /* update position */
sim_activate (uptr, dt_dctime); /* sched decel */
DTS_SETSTA (DTS_DECF | (mot & DTS_DIR), 0); } /* state = decel */
return;
}
/* Stop unit */
void dt_stopunit (UNIT *uptr)
{
int32 mot = DTS_GETMOT (uptr->STATE);
int32 dir = mot & DTS_DIR;
if (mot == DTS_STOP) return; /* already stopped? */
if ((mot & ~DTS_DIR) != DTS_DECF) { /* !already stopping? */
if (dt_setpos (uptr)) return; /* update pos */
sim_cancel (uptr); /* stop current */
sim_activate (uptr, dt_dctime); } /* schedule decel */
DTS_SETSTA (DTS_DECF | dir, 0); /* state = decel */
return;
}
/* Schedule end zone */
void dt_schedez (UNIT *uptr, int32 dir)
{
int32 newpos;
if (dir) newpos = DT_EZLIN - DT_WSIZE; /* rev? rev ez */
else newpos = DTU_FWDEZ (uptr) + DT_WSIZE; /* fwd? fwd ez */
sim_activate (uptr, ABS (newpos - ((int32) uptr->pos)) * dt_ltime);
return;
}
/* Complement obverse routine (18b) */
int32 dt_comobv (int32 dat)
{
dat = dat ^ 0777777; /* compl obverse */
dat = ((dat >> 15) & 07) | ((dat >> 9) & 070) |
((dat >> 3) & 0700) | ((dat & 0700) << 3) |
((dat & 070) << 9) | ((dat & 07) << 15);
return dat;
}
/* Checksum routine */
int32 dt_csum (UNIT *uptr, int32 blk)
{
int32 *bptr = uptr->filebuf;
int32 ba = blk * DTU_BSIZE (uptr);
int32 i, csum, wrd;
csum = 077; /* init csum */
for (i = 0; i < DTU_BSIZE (uptr); i++) { /* loop thru buf */
wrd = bptr[ba + i] ^ 0777777; /* get ~word */
csum = csum ^ (wrd >> 12) ^ (wrd >> 6) ^ wrd; }
return (csum & 077);
}
/* Get header word (18b) */
int32 dt_gethdr (UNIT *uptr, int32 blk, int32 relpos)
{
int32 wrd = relpos / DT_WSIZE;
if (wrd == DT_BLKWD) return blk; /* fwd blknum */
if (wrd == (2 * DT_HTWRD + DTU_BSIZE (uptr) - DT_CSMWD - 1)) /* fwd csum */
return (dt_csum (uptr, blk) << 12);
if (wrd == (2 * DT_HTWRD + DTU_BSIZE (uptr) - DT_BLKWD - 1)) /* rev blkno */
return dt_comobv (blk);
return 0; /* all others */
}
/* Reset routine */
t_stat dt_reset (DEVICE *dptr)
{
int32 i, prev_mot;
UNIT *uptr;
for (i = 0; i < DT_NUMDR; i++) { /* stop all activity */
uptr = dt_dev.units + i;
if (sim_is_running) { /* RESET? */
prev_mot = DTS_GETMOT (uptr->STATE); /* get motion */
if ((prev_mot & ~DTS_DIR) > DTS_DECF) { /* accel or spd? */
if (dt_setpos (uptr)) continue; /* update pos */
sim_cancel (uptr);
sim_activate (uptr, dt_dctime); /* sched decel */
DTS_SETSTA (DTS_DECF | (prev_mot & DTS_DIR), 0);
} }
else {
sim_cancel (uptr); /* sim reset */
uptr->STATE = 0;
uptr->LASTT = sim_grtime (); } }
tcst = tcwc = tcba = tcdt = 0; /* clear reg */
tccm = CSR_DONE;
CLR_INT (DTA); /* clear int req */
return SCPE_OK;
}
/* Device bootstrap */
#define BOOT_START 02000 /* start */
#define BOOT_ENTRY (BOOT_START + 002) /* entry */
#define BOOT_UNIT (BOOT_START + 010) /* unit number */
#define BOOT_CSR (BOOT_START + 020) /* CSR */
#define BOOT_LEN (sizeof (boot_rom) / sizeof (int16))
static const uint16 boot_rom[] = {
0042124, /* "TD" */
0012706, BOOT_START, /* MOV #boot_start, SP */
0012700, 0000000, /* MOV #unit, R0 ; unit number */
0010003, /* MOV R0, R3 */
0000303, /* SWAB R3 */
0012701, 0177342, /* MOV #TCCM, R1 ; csr */
0012702, 0004003, /* RW: MOV #4003, R2 ; rev+rnum+go */
0050302, /* BIS R3, R2 */
0010211, /* MOV R2, (R1) ; load csr */
0032711, 0100200, /* BIT #100200, (R1) ; wait */
0001775, /* BEQ .-4 */
0100370, /* BPL RW ; no err, cont */
0005761, 0177776, /* TST -2(R1) ; end zone? */
0100036, /* BPL ER ; no, err */
0012702, 0000003, /* MOV #3, R2 ; rnum+go */
0050302, /* BIS R3, R2 */
0010211, /* MOV R2, (R1) ; load csr */
0032711, 0100200, /* BIT #100200, (R1) ; wait */
0001775, /* BEQ .-4 */
0100426, /* BMI ER ; err, die */
0005761, 0000006, /* TST 6(R1) ; blk 0? */
0001023, /* BNE ER ; no, die */
0012761, 0177000, 0000002, /* MOV #-256.*2, 2(R1) ; load wc */
0005061, 0000004, /* CLR 4(R1) ; clear ba */
0012702, 0000005, /* MOV #READ+GO, R2 ; read & go */
0050302, /* BIS R3, R2 */
0010211, /* MOV R2, (R1) ; load csr */
0005002, /* CLR R2 */
0005003, /* CLR R3 */
0012704, BOOT_START+020, /* MOV #START+20, R4 */
0005005, /* CLR R5 */
0032711, 0100200, /* BIT #100200, (R1) ; wait */
0001775, /* BEQ .-4 */
0100401, /* BMI ER ; err, die */
0005007, /* CLR PC */
0012711, 0000001, /* ER: MOV #1, (R1) ; stop all */
0000000 /* HALT */
};
t_stat dt_boot (int32 unitno, DEVICE *dptr)
{
int32 i;
extern int32 saved_PC;
dt_unit[unitno].pos = DT_EZLIN;
for (i = 0; i < BOOT_LEN; i++) M[(BOOT_START >> 1) + i] = boot_rom[i];
M[BOOT_UNIT >> 1] = unitno & DT_M_NUMDR;
M[BOOT_CSR >> 1] = (dt_dib.ba & DMASK) + 02;
saved_PC = BOOT_ENTRY;
return SCPE_OK;
}
/* Attach routine
Determine 12b, 16b, or 18b/36b format
Allocate buffer
If 12b, read 12b format and convert to 18b in buffer
If 16b, read 16b format and convert to 18b in buffer
If 18b/36b, read data into buffer
*/
t_stat dt_attach (UNIT *uptr, char *cptr)
{
uint16 pdp8b[D8_NBSIZE];
uint16 pdp11b[D18_BSIZE];
uint32 k, p, *bptr;
t_stat r;
t_addr ba;
r = attach_unit (uptr, cptr); /* attach */
if (r != SCPE_OK) return r; /* fail? */
uptr->flags = (uptr->flags | UNIT_11FMT) & ~UNIT_8FMT; /* default 16b */
if (sim_switches & SWMASK ('R')) /* att 12b? */
uptr->flags = (uptr->flags | UNIT_8FMT) & ~UNIT_11FMT;
else if (sim_switches & SWMASK ('T')) /* att 18b? */
uptr->flags = uptr->flags & ~(UNIT_8FMT | UNIT_11FMT);
else if (!(sim_switches & SWMASK ('S')) && /* autosize? */
(fseek (uptr->fileref, 0, SEEK_END) == 0) &&
((p = ftell (uptr->fileref)) > D16_FILSIZ)) {
if (p <= D8_FILSIZ)
uptr->flags = (uptr->flags | UNIT_8FMT) & ~UNIT_11FMT;
else uptr->flags = uptr->flags & ~(UNIT_8FMT | UNIT_11FMT); }
uptr->capac = DTU_CAPAC (uptr); /* set capacity */
uptr->filebuf = calloc (uptr->capac, sizeof (int32));
if (uptr->filebuf == NULL) { /* can't alloc? */
detach_unit (uptr);
return SCPE_MEM; }
bptr = uptr->filebuf; /* file buffer */
if (uptr->flags & UNIT_8FMT) printf ("TC: 12b format");
else if (uptr->flags & UNIT_11FMT) printf ("TC: 16b format");
else printf ("TC: 18b/36b format");
printf (", buffering file in memory\n");
rewind (uptr->fileref); /* start of file */
if (uptr->flags & UNIT_8FMT) { /* 12b? */
for (ba = 0; ba < uptr->capac; ) { /* loop thru file */
k = fxread (pdp8b, sizeof (int16), D8_NBSIZE, uptr->fileref);
if (k == 0) break;
for ( ; k < D8_NBSIZE; k++) pdp8b[k] = 0;
for (k = 0; k < D8_NBSIZE; k = k + 3) { /* loop thru blk */
bptr[ba] = ((uint32) (pdp8b[k] & 07777) << 6) |
((uint32) (pdp8b[k + 1] >> 6) & 077);
bptr[ba + 1] = ((pdp8b[k + 1] & 077) << 12) |
((uint32) (pdp8b[k + 2] & 07777));
ba = ba + 2; } /* end blk loop */
} /* end file loop */
uptr->hwmark = ba; } /* end if */
else if (uptr->flags & UNIT_11FMT) { /* 16b? */
for (ba = 0; ba < uptr->capac; ) { /* loop thru file */
k = fxread (pdp11b, sizeof (int16), D18_BSIZE, uptr->fileref);
if (k == 0) break;
for ( ; k < D18_BSIZE; k++) pdp11b[k] = 0;
for (k = 0; k < D18_BSIZE; k++)
bptr[ba++] = pdp11b[k]; }
uptr->hwmark = ba; } /* end elif */
else uptr->hwmark = fxread (uptr->filebuf, sizeof (int32),
uptr->capac, uptr->fileref);
uptr->flags = uptr->flags | UNIT_BUF; /* set buf flag */
uptr->pos = DT_EZLIN; /* beyond leader */
uptr->LASTT = sim_grtime (); /* last pos update */
return SCPE_OK;
}
/* Detach routine
Cancel in progress operation
If 12b, convert 18b buffer to 12b and write to file
If 16b, convert 18b buffer to 16b and write to file
If 18b/36b, write buffer to file
Deallocate buffer
*/
t_stat dt_detach (UNIT* uptr)
{
uint16 pdp8b[D8_NBSIZE];
uint16 pdp11b[D18_BSIZE];
uint32 k, *bptr;
int32 unum = uptr - dt_dev.units;
t_addr ba;
if (!(uptr->flags & UNIT_ATT)) return SCPE_OK;
if (sim_is_active (uptr)) { /* active? cancel op */
sim_cancel (uptr);
if ((unum == CSR_GETUNIT (tccm)) && ((tccm & CSR_DONE) == 0)) {
tcst = tcst | STA_SEL;
tccm = tccm | CSR_ERR | CSR_DONE;
if (tccm & CSR_IE) SET_INT (DTA); }
uptr->STATE = uptr->pos = 0; }
bptr = uptr->filebuf; /* file buffer */
if (uptr->hwmark && ((uptr->flags & UNIT_RO) == 0)) { /* any data? */
printf ("TC: writing buffer to file\n");
rewind (uptr->fileref); /* start of file */
if (uptr->flags & UNIT_8FMT) { /* 12b? */
for (ba = 0; ba < uptr->hwmark; ) { /* loop thru file */
for (k = 0; k < D8_NBSIZE; k = k + 3) { /* loop blk */
pdp8b[k] = (bptr[ba] >> 6) & 07777;
pdp8b[k + 1] = ((bptr[ba] & 077) << 6) |
((bptr[ba + 1] >> 12) & 077);
pdp8b[k + 2] = bptr[ba + 1] & 07777;
ba = ba + 2; } /* end loop blk */
fxwrite (pdp8b, sizeof (int16), D8_NBSIZE, uptr->fileref);
if (ferror (uptr->fileref)) break; } /* end loop file */
} /* end if 12b */
else if (uptr->flags & UNIT_11FMT) { /* 16b? */
for (ba = 0; ba < uptr->hwmark; ) { /* loop thru file */
for (k = 0; k < D18_BSIZE; k++) /* loop blk */
pdp11b[k] = bptr[ba++] & DMASK;
fxwrite (pdp11b, sizeof (int16), D18_BSIZE, uptr->fileref);
if (ferror (uptr->fileref)) break; } /* end loop file */
} /* end if 16b */
else fxwrite (uptr->filebuf, sizeof (int32), /* write file */
uptr->hwmark, uptr->fileref);
if (ferror (uptr->fileref)) perror ("I/O error"); } /* end if hwmark */
free (uptr->filebuf); /* release buf */
uptr->flags = uptr->flags & ~UNIT_BUF; /* clear buf flag */
uptr->filebuf = NULL; /* clear buf ptr */
uptr->flags = (uptr->flags | UNIT_11FMT) & ~UNIT_8FMT; /* default fmt */
uptr->capac = DT_CAPAC; /* default size */
return detach_unit (uptr);
}