1. New Features in 2.10-2 The build procedures have changed. There is only one UNIX makefile. To compile without Ethernet support, simply type gmake {target|all} To compile with Ethernet support, type gmake USE_NETWORK=1 {target|all} The Mingw batch files require Mingw release 2 and invoke the Unix makefile. There are still separate batch files for compilation with or without Ethernet support. 1.1 SCP and Libraries - The EVAL command will evaluate a symbolic type-in and display it in numeric form. - The ! command (with no arguments) will launch the host operating system command shell. The ! command (with an argument) executes the argument as a host operating system command. (Code from Mark Pizzolato) - Telnet sessions now recognize BREAK. How a BREAK is transmitted dependent on the particular Telnet client. (Code from Mark Pizzolato) - The sockets library includes code for active connections as well as listening connections. - The RESTORE command will restore saved memory size, if the simulator supports dynamic memory resizing. 1.2 PDP-1 - The PDP-1 supports the Type 24 serial drum (based on recently discovered documents). 1.3 18b PDP's - The PDP-4 supports the Type 24 serial drum (based on recently discovered documents). 1.4 PDP-11 - The PDP-11 implements a stub DEUNA/DELUA (XU). The real XU module will be included in a later release. 1.5 PDP-10 - The PDP-10 implements a stub DEUNA/DELUA (XU). The real XU module will be included in a later release. 1.6 HP 2100 - The IOP microinstruction set is supported for the 21MX as well as the 2100. - The HP2100 supports the Access Interprocessor Link (IPL). 1.7 VAX - If the VAX console is attached to a Telnet session, BREAK is interpreted as console halt. - The SET/SHOW HISTORY commands enable and display a history of the most recently executed instructions. (Code from Mark Pizzolato) 1.8 Terminals Multiplexors - BREAK detection was added to the HP, DEC, and Interdata terminal multiplexors. 1.9 Interdata 16b and 32b - First release. UNIX is not yet working. 1.10 SDS 940 - First release. 2. Bugs Fixed in 2.10-2 - PDP-11 console must default to 7b for early UNIX compatibility. - PDP-11/VAX TMSCP emulator was using the wrong packet length for read/write end packets. - Telnet IAC+IAC processing was fixed, both for input and output (found by Mark Pizzolato). - PDP-11/VAX Ethernet setting flag bits wrong for chained descriptors (found by Mark Pizzolato). 3. New Features in 2.10 vs prior releases 3.1 SCP and Libraries - The VT emulation package has been replaced by the capability to remote the console to a Telnet session. Telnet clients typically have more complete and robust VT100 emulation. - Simulated devices may now have statically allocated buffers, in addition to dynamically allocated buffers or disk-based data stores. - The DO command now takes substitutable arguments (max 9). In command files, %n represents substitutable argument n. - The initial command line is now interpreted as the command name and substitutable arguments for a DO command. This is backward compatible to prior versions. - The initial command line parses switches. -Q is interpreted as quiet mode; informational messages are suppressed. - The HELP command now takes an optional argument. HELP <cmd> types help on the specified command. - Hooks have been added for implementing GUI-based consoles, as well as simulator-specific command extensions. A few internal data structures and definitions have changed. - Two new routines (tmxr_open_master, tmxr_close_master) have been added to sim_tmxr.c. The calling sequence for sim_accept_conn has been changed in sim_sock.c. - The calling sequence for the VM boot routine has been modified to add an additional parameter. - SAVE now saves, and GET now restores, controller and unit flags. - Library sim_ether.c has been added for Ethernet support. 3.2 VAX - Non-volatile RAM (NVR) can behave either like a memory or like a disk-based peripheral. If unattached, it behaves like memory and is saved and restored by SAVE and RESTORE, respectively. If attached, its contents are loaded from disk by ATTACH and written back to disk at DETACH and EXIT. - SHOW <device> VECTOR displays the device's interrupt vector. A few devices allow the vector to be changed with SET <device> VECTOR=nnn. - SHOW CPU IOSPACE displays the I/O space address map. - The TK50 (TMSCP tape) has been added. - The DEQNA/DELQA (Qbus Ethernet controllers) have been added. - Autoconfiguration support has been added. - The paper tape reader has been removed from vax_stddev.c and now references a common implementation file, dec_pt.h. - Examine and deposit switches now work on all devices, not just the CPU. - Device address conflicts are not detected until simulation starts. 3.3 PDP-11 - SHOW <device> VECTOR displays the device's interrupt vector. Most devices allow the vector to be changed with SET <device> VECTOR=nnn. - SHOW CPU IOSPACE displays the I/O space address map. - The TK50 (TMSCP tape), RK611/RK06/RK07 (cartridge disk), RX211 (double density floppy), and KW11P programmable clock have been added. - The DEQNA/DELQA (Qbus Ethernet controllers) have been added. - Autoconfiguration support has been added. - The paper tape reader has been removed from pdp11_stddev.c and now references a common implementation file, dec_pt.h. - Device bootstraps now use the actual CSR specified by the SET ADDRESS command, rather than just the default CSR. Note that PDP-11 operating systems may NOT support booting with non-standard addresses. - Specifying more than 256KB of memory, or changing the bus configuration, causes all peripherals that are not compatible with the current bus configuration to be disabled. - Device address conflicts are not detected until simulation starts. 3.4 PDP-10 - SHOW <device> VECTOR displays the device's interrupt vector. A few devices allow the vector to be changed with SET <device> VECTOR=nnn. - SHOW CPU IOSPACE displays the I/O space address map. - The RX211 (double density floppy) has been added; it is off by default. - The paper tape now references a common implementation file, dec_pt.h. - Device address conflicts are not detected until simulation starts. 3.5 PDP-1 - DECtape (then known as MicroTape) support has been added. - The line printer and DECtape can be disabled and enabled. 3.6 PDP-8 - The RX28 (double density floppy) has been added as an option to the existing RX8E controller. - SHOW <device> DEVNO displays the device's device number. Most devices allow the device number to be changed with SET <device> DEVNO=nnn. - Device number conflicts are not detected until simulation starts. 3.7 IBM 1620 - The IBM 1620 simulator has been released. 3.8 AltairZ80 - A hard drive has been added for increased storage. - Several bugs have been fixed. 3.9 HP 2100 - The 12845A has been added and made the default line printer (LPT). The 12653A has been renamed LPS and is off by default. It also supports the diagnostic functions needed to run the DCPC and DMS diagnostics. - The 12557A/13210A disk defaults to the 13210A (7900/7901). - The 12559A magtape is off by default. - New CPU options (EAU/NOEAU) enable/disable the extended arithmetic instructions for the 2116. These instructions are standard on the 2100 and 21MX. - New CPU options (MPR/NOMPR) enable/disable memory protect for the 2100 and 21MX. - New CPU options (DMS/NODMS) enable/disable the dynamic mapping instructions for the 21MX. - The 12539 timebase generator autocalibrates. 3.10 Simulated Magtapes - Simulated magtapes recognize end of file and the marker 0xFFFFFFFF as end of medium. Only the TMSCP tape simulator can generate an end of medium marker. - The error handling in simulated magtapes was overhauled to be consistent through all simulators. 3.11 Simulated DECtapes - Added support for RT11 image file format (256 x 16b) to DECtapes. 4. Bugs Fixed in 2.10 vs prior releases - TS11/TSV05 was not simulating the XS0_MOT bit, causing failures under VMS. In addition, two of the CTL options were coded interchanged. - IBM 1401 tape was not setting a word mark under group mark for load mode reads. This caused the diagnostics to crash. - SCP bugs in ssh_break and set_logon were fixed (found by Dave Hittner). - Numerous bugs in the HP 2100 extended arithmetic, floating point, 21MX, DMS, and IOP instructions were fixed. Bugs were also fixed in the memory protect and DMS functions. The moving head disks (DP, DQ) were revised to simulate the hardware more accurately. Missing functions in DQ (address skip, read address) were added. - PDP-10 tape wouldn't boot, and then wouldn't read (reported by Michael Thompson and Harris Newman, respectively) - PDP-1 typewriter is half duplex, with only one shift state for both input and output (found by Derek Peschel) 5. General Notes WARNING: V2.10 has reorganized and renamed some of the definition files for the PDP-10, PDP-11, and VAX. Be sure to delete all previous source files before you unpack the Zip archive, or unpack it into a new directory structure. WARNING: V2.10 has a new, more comprehensive save file format. Restoring save files from previous releases will cause 'invalid register' errors and loss of CPU option flags, device enable/ disable flags, unit online/offline flags, and unit writelock flags. WARNING: If you are using Visual Studio .NET through the IDE, be sure to turn off the /Wp64 flag in the project settings, or dozens of spurious errors will be generated. WARNING: Compiling Ethernet support under Windows requires extra steps; see the Ethernet readme file. Ethernet support is currently available only for Windows, Linux, NetBSD, and OpenBSD.
1247 lines
42 KiB
C
1247 lines
42 KiB
C
/* sds_cpu.c: SDS 940 CPU simulator
|
||
|
||
Copyright (c) 2001-2002, Robert M. Supnik
|
||
|
||
Permission is hereby granted, free of charge, to any person obtaining a
|
||
copy of this software and associated documentation files (the "Software"),
|
||
to deal in the Software without restriction, including without limitation
|
||
the rights to use, copy, modify, merge, publish, distribute, sublicense,
|
||
and/or sell copies of the Software, and to permit persons to whom the
|
||
Software is furnished to do so, subject to the following conditions:
|
||
|
||
The above copyright notice and this permission notice shall be included in
|
||
all copies or substantial portions of the Software.
|
||
|
||
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
||
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
||
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
|
||
ROBERT M SUPNIK BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
|
||
IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
|
||
CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
|
||
|
||
Except as contained in this notice, the name of Robert M Supnik shall not
|
||
be used in advertising or otherwise to promote the sale, use or other dealings
|
||
in this Software without prior written authorization from Robert M Supnik.
|
||
|
||
The system state for the SDS 940 is:
|
||
|
||
A<0:23> A register
|
||
B<0:23> B register
|
||
X<0:23> X (index) register
|
||
OV overflow indicator
|
||
P<0:13> program counter
|
||
nml_mode compatible (1) vs 940 (0) mode
|
||
usr_mode user (1) vs monitor (0) mode
|
||
RL1<0:23> user map low
|
||
RL2<0:23> user map high
|
||
RL4<12:23> monitor map high
|
||
EM2<0:2> memory extension, block 2
|
||
EM3<0:2> memory extension, block 3
|
||
bpt breakpoint switches
|
||
|
||
cpu central processor
|
||
rtc real time clock
|
||
*/
|
||
|
||
/* The SDS 940 has three instruction format -- memory reference, register change,
|
||
and I/O. The memory reference format is:
|
||
|
||
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 23 23
|
||
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
|
||
| U| X| P| opcode |IN| address |
|
||
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
|
||
|
||
U force user mode addressing (monitor mode only)
|
||
X indexed
|
||
P opcode is a programmed operator
|
||
opcode opcode
|
||
IN indirect addressing
|
||
address virtual address
|
||
|
||
Virtual addresses are 14b. Depending on the operating mode (normal, user,
|
||
or monitor), virtual addresses are translated to 15b or 16b physical addresses.
|
||
|
||
normal virtual [000000:017777] are unmapped
|
||
EM2 and EM3 extend virtual [020000:037777] to 15b
|
||
user RL1 and RL2 map virtual [000000:037777] to 16b
|
||
monitor virtual [000000:017777] are unmapped
|
||
EM2 extends virtual [020000:027777] to 15b
|
||
RL4 maps virtual [030000:037777] to 16b
|
||
|
||
The register change format is:
|
||
|
||
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 23 23
|
||
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
|
||
| 0| m| 0| opcode | microcoded register change instruction |
|
||
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
|
||
|
||
The I/O format is:
|
||
|
||
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 23 23
|
||
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
|
||
| 0|CH| 0| opcode |mode | I/O function |
|
||
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
|
||
*/
|
||
|
||
/* This routine is the instruction decode routine for the SDS 940.
|
||
It is called from the simulator control program to execute
|
||
instructions in simulated memory, starting at the simulated PC.
|
||
It runs until 'reason' is set non-zero.
|
||
|
||
General notes:
|
||
|
||
1. Reasons to stop. The simulator can be stopped by:
|
||
|
||
HALT instruction
|
||
breakpoint encountered
|
||
invalid instruction and stop_invins flag set
|
||
invalid I/O device and stop_invdev flag set
|
||
invalid I/O operation and stop_inviop flag set
|
||
I/O error in I/O simulator
|
||
indirect loop exceeding limit
|
||
EXU loop exceeding limit
|
||
mapping exception in interrupt or trap instruction
|
||
|
||
2. Interrupts. The interrupt structure consists of the following:
|
||
|
||
int_req interrupt requests (low bit reserved)
|
||
api_lvl active interrupt levels
|
||
int_reqhi highest interrupt request
|
||
api_lvlhi highest interrupt service (0 if none)
|
||
ion interrupt enable
|
||
ion_defer interrupt defer (one instruction)
|
||
|
||
3. Channels. The SDS 940 has a channel-based I/O structure. Each
|
||
channel is represented by a set of registers. Channels test the
|
||
I/O transfer requests from devices, which are kept in xfr_req.
|
||
|
||
4. Non-existent memory. On the SDS 940, reads to non-existent memory
|
||
return zero, and writes are ignored. In the simulator, the
|
||
largest possible memory is instantiated and initialized to zero.
|
||
Thus, only writes need be checked against actual memory size.
|
||
|
||
5. Adding I/O devices. These modules must be modified:
|
||
|
||
sds_defs.h add interrupt, transfer, and alert definitions
|
||
sds_io.c add alert dispatches aldisp
|
||
sds_sys.c add pointer to data structures to sim_devices
|
||
*/
|
||
|
||
#include "sds_defs.h"
|
||
|
||
#define PCQ_SIZE 64 /* must be 2**n */
|
||
#define PCQ_MASK (PCQ_SIZE - 1)
|
||
#define PCQ_ENTRY pcq[pcq_p = (pcq_p - 1) & PCQ_MASK] = pc
|
||
#define UNIT_V_MSIZE (UNIT_V_GENIE + 1) /* dummy mask */
|
||
#define UNIT_MSIZE (1 << UNIT_V_MSIZE)
|
||
|
||
uint32 M[MAXMEMSIZE] = { 0 }; /* memory */
|
||
uint32 A, B, X; /* registers */
|
||
uint32 P; /* program counter */
|
||
uint32 OV; /* overflow */
|
||
uint32 xfr_req = 0; /* xfr req */
|
||
uint32 ion = 0; /* int enable */
|
||
uint32 ion_defer = 0; /* int defer */
|
||
uint32 int_req = 0; /* int requests */
|
||
uint32 int_reqhi = 0; /* highest int request */
|
||
uint32 api_lvl = 0; /* api active */
|
||
uint32 api_lvlhi = 0; /* highest api active */
|
||
t_bool chan_req; /* chan request */
|
||
uint32 nml_mode = 1; /* normal mode */
|
||
uint32 usr_mode = 0; /* user mode */
|
||
uint32 mon_usr_trap = 0; /* mon-user trap */
|
||
uint32 EM2 = 2, EM3 = 3; /* extension registers */
|
||
uint32 RL1, RL2, RL4; /* relocation maps */
|
||
uint32 bpt; /* breakpoint switches */
|
||
uint32 alert; /* alert dispatch */
|
||
uint32 em2_dyn, em3_dyn; /* extensions, dynamic */
|
||
uint32 usr_map[8]; /* user map, dynamic */
|
||
uint32 mon_map[8]; /* mon map, dynamic */
|
||
int32 ind_lim = 32; /* indirect limit */
|
||
int32 exu_lim = 32; /* EXU limit */
|
||
int32 cpu_genie = 0; /* Genie flag */
|
||
int32 cpu_astop = 0; /* address stop */
|
||
int32 stop_invins = 1; /* stop inv inst */
|
||
int32 stop_invdev = 1; /* stop inv dev */
|
||
int32 stop_inviop = 1; /* stop inv io op */
|
||
uint16 pcq[PCQ_SIZE] = { 0 }; /* PC queue */
|
||
int32 pcq_p = 0; /* PC queue ptr */
|
||
REG *pcq_r = NULL; /* PC queue reg ptr */
|
||
int32 rtc_pie = 0; /* rtc pulse ie */
|
||
int32 rtc_tps = 60; /* rtc ticks/sec */
|
||
|
||
extern int32 sim_int_char;
|
||
extern int32 sim_brk_types, sim_brk_dflt, sim_brk_summ; /* breakpoint info */
|
||
extern UNIT mux_unit;
|
||
|
||
t_stat cpu_ex (t_value *vptr, t_addr addr, UNIT *uptr, int32 sw);
|
||
t_stat cpu_dep (t_value val, t_addr addr, UNIT *uptr, int32 sw);
|
||
t_stat cpu_reset (DEVICE *dptr);
|
||
t_stat cpu_set_size (UNIT *uptr, int32 val, char *cptr, void *desc);
|
||
t_stat cpu_set_type (UNIT *uptr, int32 val, char *cptr, void *desc);
|
||
t_stat Ea (uint32 wd, uint32 *va);
|
||
t_stat EaSh (uint32 wd, uint32 *va);
|
||
t_stat Read (uint32 va, uint32 *dat);
|
||
t_stat Write (uint32 va, uint32 dat);
|
||
void set_dyn_map (void);
|
||
uint32 api_findreq (void);
|
||
void api_dismiss (void);
|
||
uint32 Add24 (uint32 s1, uint32 s2, uint32 cin);
|
||
uint32 AddM24 (uint32 s1, uint32 s2);
|
||
void Mul48 (uint32 mplc, uint32 mplr);
|
||
void Div48 (uint32 dvdh, uint32 dvdl, uint32 dvr);
|
||
void RotR48 (uint32 sc);
|
||
void ShfR48 (uint32 sc, uint32 sgn);
|
||
t_stat one_inst (uint32 inst, uint32 pc, uint32 mode);
|
||
t_stat rtc_inst (uint32 inst);
|
||
t_stat rtc_svc (UNIT *uptr);
|
||
t_stat rtc_reset (DEVICE *dptr);
|
||
extern t_bool io_init (void);
|
||
extern t_stat op_wyim (uint32 inst, uint32 *dat);
|
||
extern t_stat op_miwy (uint32 inst, uint32 dat);
|
||
extern t_stat op_pin (uint32 *dat);
|
||
extern t_stat op_pot (uint32 dat);
|
||
extern t_stat op_eomd (uint32 inst);
|
||
extern t_stat op_sks (uint32 inst, uint32 *skp);
|
||
|
||
/* CPU data structures
|
||
|
||
cpu_dev CPU device descriptor
|
||
cpu_unit CPU unit descriptor
|
||
cpu_reg CPU register list
|
||
cpu_mod CPU modifiers list
|
||
*/
|
||
|
||
UNIT cpu_unit = { UDATA (NULL, UNIT_FIX + UNIT_BINK, MAXMEMSIZE) };
|
||
|
||
REG cpu_reg[] = {
|
||
{ ORDATA (P, P, 14) },
|
||
{ ORDATA (A, A, 24) },
|
||
{ ORDATA (B, B, 24) },
|
||
{ ORDATA (X, X, 24) },
|
||
{ FLDATA (OV, OV, 0) },
|
||
{ ORDATA (EM2, EM2, 3) },
|
||
{ ORDATA (EM3, EM3, 3) },
|
||
{ ORDATA (RL1, RL1, 24) },
|
||
{ ORDATA (RL2, RL2, 24) },
|
||
{ ORDATA (RL4, RL4, 12) },
|
||
{ FLDATA (NML, nml_mode, 0) },
|
||
{ FLDATA (USR, usr_mode, 0) },
|
||
{ FLDATA (MONUSR, mon_usr_trap, 0) },
|
||
{ FLDATA (ION, ion, 0) },
|
||
{ FLDATA (INTDEF, ion_defer, 0) },
|
||
{ ORDATA (INTREQ, int_req, 32) },
|
||
{ ORDATA (APILVL, api_lvl, 32) },
|
||
{ DRDATA (INTRHI, int_reqhi, 5) },
|
||
{ DRDATA (APILHI, api_lvlhi, 5), REG_RO },
|
||
{ ORDATA (XFRREQ, xfr_req, 32) },
|
||
{ FLDATA (BPT1, bpt, 3) },
|
||
{ FLDATA (BPT2, bpt, 2) },
|
||
{ FLDATA (BPT3, bpt, 1) },
|
||
{ FLDATA (BPT4, bpt, 0) },
|
||
{ ORDATA (ALERT, alert, 6) },
|
||
{ FLDATA (STOP_INVINS, stop_invins, 0) },
|
||
{ FLDATA (STOP_INVDEV, stop_invdev, 0) },
|
||
{ FLDATA (STOP_INVIOP, stop_inviop, 0) },
|
||
{ DRDATA (INDLIM, ind_lim, 8), REG_NZ+PV_LEFT },
|
||
{ DRDATA (EXULIM, exu_lim, 8), REG_NZ+PV_LEFT },
|
||
{ BRDATA (PCQ, pcq, 8, 14, PCQ_SIZE), REG_RO+REG_CIRC },
|
||
{ ORDATA (PCQP, pcq_p, 6), REG_HRO },
|
||
{ ORDATA (WRU, sim_int_char, 8) },
|
||
{ NULL } };
|
||
|
||
MTAB cpu_mod[] = {
|
||
{ UNIT_GENIE, 0, "standard peripherals", "SDS", &cpu_set_type },
|
||
{ UNIT_GENIE, UNIT_GENIE, "Genie peripherals", "GENIE", &cpu_set_type },
|
||
{ UNIT_MSIZE, 16384, NULL, "16K", &cpu_set_size },
|
||
{ UNIT_MSIZE, 32768, NULL, "32K", &cpu_set_size },
|
||
{ UNIT_MSIZE, 49152, NULL, "48K", &cpu_set_size },
|
||
{ UNIT_MSIZE, 65536, NULL, "64K", &cpu_set_size },
|
||
{ 0 } };
|
||
|
||
DEVICE cpu_dev = {
|
||
"CPU", &cpu_unit, cpu_reg, cpu_mod,
|
||
1, 8, 16, 1, 8, 24,
|
||
&cpu_ex, &cpu_dep, &cpu_reset,
|
||
NULL, NULL, NULL,
|
||
NULL, 0 };
|
||
|
||
/* Clock data structures
|
||
|
||
rtc_dev RTC device descriptor
|
||
rtc_unit RTC unit
|
||
rtc_reg RTC register list
|
||
*/
|
||
|
||
UNIT rtc_unit = { UDATA (&rtc_svc, 0, 0), 16000 };
|
||
|
||
REG rtc_reg[] = {
|
||
{ FLDATA (PIE, rtc_pie, 0) },
|
||
{ DRDATA (TIME, rtc_unit.wait, 24), REG_NZ + PV_LEFT },
|
||
{ DRDATA (TPS, rtc_tps, 8), REG_NZ + PV_LEFT },
|
||
{ NULL } };
|
||
|
||
DEVICE rtc_dev = {
|
||
"RTC", &rtc_unit, rtc_reg, NULL,
|
||
1, 8, 8, 1, 8, 8,
|
||
NULL, NULL, &rtc_reset,
|
||
NULL, NULL, NULL };
|
||
|
||
/* Interrupt tables */
|
||
|
||
static const uint32 api_mask[32] = {
|
||
0xFFFFFFFE, 0xFFFFFFFC, 0xFFFFFFF8, 0xFFFFFFF0,
|
||
0xFFFFFFE0, 0xFFFFFFC0, 0xFFFFFF80, 0xFFFFFF00,
|
||
0xFFFFFE00, 0xFFFFFC00, 0xFFFFF800, 0xFFFFF000,
|
||
0xFFFFE000, 0xFFFFC000, 0xFFFF8000, 0xFFFF0000,
|
||
0xFFFE0000, 0xFFFC0000, 0xFFF80000, 0xFFF00000,
|
||
0xFFE00000, 0xFFC00000, 0xFF800000, 0xFF000000,
|
||
0xFE000000, 0xFC000000, 0xF8000000, 0xF0000000,
|
||
0xE0000000, 0xC0000000, 0x80000000, 0x00000000 };
|
||
|
||
static const uint32 int_vec[32] = {
|
||
0, 0, 0, 0,
|
||
VEC_FORK, VEC_DRM, VEC_MUXCF,VEC_MUXCO,
|
||
VEC_MUXT, VEC_MUXR, VEC_HEOR, VEC_HZWC,
|
||
VEC_GEOR, VEC_GZWC, VEC_FEOR, VEC_FZWC,
|
||
VEC_EEOR, VEC_EZWC, VEC_DEOR, VEC_DZWC,
|
||
VEC_CEOR, VEC_CZWC, VEC_WEOR, VEC_YEOR,
|
||
VEC_WZWC, VEC_YZWC, VEC_RTCP, VEC_RTCS,
|
||
VEC_IPAR, VEC_CPAR, VEC_PWRF, VEC_PWRO };
|
||
|
||
t_stat sim_instr (void)
|
||
{
|
||
extern int32 sim_interval;
|
||
uint32 inst, tinst, pa, save_P, save_mode;
|
||
t_stat reason, tr;
|
||
|
||
/* Restore register state */
|
||
|
||
if (io_init ()) return SCPE_STOP; /* init IO; conflict? */
|
||
reason = 0;
|
||
xfr_req = xfr_req & ~1; /* <0> reserved */
|
||
int_req = int_req & ~1; /* <0> reserved */
|
||
api_lvl = api_lvl & ~1; /* <0> reserved */
|
||
set_dyn_map (); /* set up mapping */
|
||
int_reqhi = api_findreq (); /* recalc int req */
|
||
chan_req = chan_testact (); /* recalc chan act */
|
||
sim_rtcn_init (rtc_unit.wait, TMR_RTC); /* init calibration */
|
||
sim_rtcn_init (mux_unit.wait, TMR_MUX); /* init calibration */
|
||
|
||
/* Main instruction fetch/decode loop */
|
||
|
||
while (reason == 0) { /* loop until halted */
|
||
|
||
if (cpu_astop) { /* debug stop? */
|
||
cpu_astop = 0;
|
||
return SCPE_STOP; }
|
||
|
||
if (sim_interval <= 0) { /* event queue? */
|
||
if (reason = sim_process_event ()) break; /* process */
|
||
int_reqhi = api_findreq (); /* recalc int req */
|
||
chan_req = chan_testact (); /* recalc chan act */
|
||
}
|
||
|
||
if (chan_req) { /* channel request? */
|
||
if (reason = chan_process ()) break; /* process */
|
||
int_reqhi = api_findreq (); /* recalc int req */
|
||
chan_req = chan_testact (); /* recalc chan act */
|
||
}
|
||
|
||
sim_interval = sim_interval - 1; /* count down */
|
||
if (ion && !ion_defer && int_reqhi) { /* int request? */
|
||
pa = int_vec[int_reqhi]; /* get vector */
|
||
if (pa == 0) { /* bad value? */
|
||
reason = STOP_ILLVEC;
|
||
break; }
|
||
tinst = ReadP (pa); /* get inst */
|
||
save_mode = usr_mode; /* save mode */
|
||
usr_mode = 0; /* switch to mon */
|
||
if (pa != VEC_RTCP) { /* normal intr? */
|
||
tr = one_inst (tinst, P, save_mode); /* exec intr inst */
|
||
if (tr) { /* stop code? */
|
||
usr_mode = save_mode; /* restore mode */
|
||
reason = (tr > 0)? tr: STOP_MMINT;
|
||
break; }
|
||
api_lvl = api_lvl | (1u << int_reqhi); /* set level active */
|
||
api_lvlhi = int_reqhi; } /* elevate api */
|
||
else { /* clock intr */
|
||
tr = rtc_inst (tinst); /* exec RTC inst */
|
||
usr_mode = save_mode; /* restore mode */
|
||
if (tr) { /* stop code? */
|
||
reason = (tr > 0)? tr: STOP_MMINT;
|
||
break; }
|
||
int_req = int_req & ~INT_RTCP; } /* clr clkp intr */
|
||
int_reqhi = api_findreq (); /* recalc int req */
|
||
}
|
||
else { /* normal instr */
|
||
if (sim_brk_summ && sim_brk_test (P, SWMASK ('E'))) { /* breakpoint? */
|
||
reason = STOP_IBKPT; /* stop simulation */
|
||
break; }
|
||
reason = Read (save_P = P, &inst); /* get instr */
|
||
P = (P + 1) & VA_MASK; /* incr PC */
|
||
if (reason == SCPE_OK) { /* fetch ok? */
|
||
ion_defer = 0; /* clear ion */
|
||
reason = one_inst (inst, save_P, usr_mode); /* exec inst */
|
||
if (reason > 0) { /* stop code? */
|
||
if (reason != STOP_HALT) P = save_P;
|
||
if (reason == STOP_IONRDY) reason = 0; }
|
||
} /* end if r == 0 */
|
||
if (reason < 0) { /* mm (fet or ex)? */
|
||
pa = -reason; /* get vector */
|
||
reason = 0; /* defang */
|
||
tinst = ReadP (pa); /* get inst */
|
||
if (I_GETOP (tinst) != BRM) { /* not BRM? */
|
||
reason = STOP_TRPINS; /* fatal err */
|
||
break; }
|
||
save_mode = usr_mode; /* save mode */
|
||
usr_mode = 0; /* switch to mon */
|
||
mon_usr_trap = 0;
|
||
tr = one_inst (tinst, save_P, save_mode); /* trap inst */
|
||
if (tr) { /* stop code? */
|
||
usr_mode = save_mode; /* restore mode */
|
||
P = save_P; /* restore PC */
|
||
reason = (tr > 0)? tr: STOP_MMTRP;
|
||
break; }
|
||
} /* end if reason */
|
||
} /* end else int */
|
||
} /* end while */
|
||
|
||
/* Simulation halted */
|
||
|
||
pcq_r->qptr = pcq_p; /* update pc q ptr */
|
||
return reason;
|
||
}
|
||
|
||
/* Simulate one instruction */
|
||
|
||
t_stat one_inst (uint32 inst, uint32 pc, uint32 mode)
|
||
{
|
||
uint32 op, shf_op, va, dat;
|
||
uint32 old_A, old_B, old_X;
|
||
int32 i, exu_cnt, sc;
|
||
t_stat r;
|
||
|
||
exu_cnt = 0; /* init EXU count */
|
||
EXU_LOOP:
|
||
op = I_GETOP (inst); /* get opcode */
|
||
if (inst & I_POP) { /* POP? */
|
||
dat = (EM3 << 18) | (EM2 << 15) | I_IND | pc; /* data to save */
|
||
if (nml_mode) { /* normal mode? */
|
||
dat = (OV << 23) | dat; /* ov in <0> */
|
||
WriteP (0, dat); }
|
||
else if (usr_mode) { /* user mode? */
|
||
if (inst & I_USR) { /* SYSPOP? */
|
||
dat = I_USR | (OV << 21) | dat; /* ov in <2> */
|
||
WriteP (0, dat);
|
||
usr_mode = 0; } /* set mon mode */
|
||
else { /* normal POP */
|
||
dat = (OV << 23) | dat; /* ov in <0> */
|
||
if (r = Write (0, dat)) return r; } }
|
||
else { /* mon mode */
|
||
dat = (OV << 21) | dat; /* ov in <2> */
|
||
WriteP (0, dat); } /* store return */
|
||
PCQ_ENTRY; /* save PC */
|
||
P = 0100 | op; /* new PC */
|
||
OV = 0; /* clear ovflo */
|
||
return SCPE_OK; } /* end POP */
|
||
switch (op) { /* case on opcode */
|
||
|
||
/* Loads and stores */
|
||
|
||
case LDA:
|
||
if (r = Ea (inst, &va)) return r; /* decode eff addr */
|
||
if (r = Read (va, &A)) return r; /* get operand */
|
||
break;
|
||
case LDB:
|
||
if (r = Ea (inst, &va)) return r; /* decode eff addr */
|
||
if (r = Read (va, &B)) return r; /* get operand */
|
||
break;
|
||
case LDX:
|
||
if (r = Ea (inst, &va)) return r; /* decode eff addr */
|
||
if (r = Read (va, &X)) return r; /* get operand */
|
||
break;
|
||
case STA:
|
||
if (r = Ea (inst, &va)) return r; /* decode eff addr */
|
||
if (r = Write (va, A)) return r; /* write operand */
|
||
break;
|
||
case STB:
|
||
if (r = Ea (inst, &va)) return r; /* decode eff addr */
|
||
if (r = Write (va, B)) return r; /* write operand */
|
||
break;
|
||
case STX:
|
||
if (r = Ea (inst, &va)) return r; /* decode eff addr */
|
||
if (r = Write (va, X)) return r; /* write operand */
|
||
break;
|
||
case EAX:
|
||
if (r = Ea (inst, &va)) return r; /* decode eff addr */
|
||
if (nml_mode || usr_mode) /* normal or user? */
|
||
X = (X & ~VA_MASK) | (va & VA_MASK); /* only 14b */
|
||
else X = (X & ~XVA_MASK) | (va & XVA_MASK); /* mon, 15b */
|
||
break;
|
||
case XMA:
|
||
if (r = Ea (inst, &va)) return r; /* decode eff addr */
|
||
if (r = Read (va, &dat)) return r; /* get operand */
|
||
if (r = Write (va, A)) return r; /* write A */
|
||
A = dat; /* load A */
|
||
break;
|
||
|
||
/* Arithmetic and logical */
|
||
|
||
case ADD:
|
||
if (r = Ea (inst, &va)) return r; /* decode eff addr */
|
||
if (r = Read (va, &dat)) return r; /* get operand */
|
||
A = Add24 (A, dat, 0); /* add */
|
||
break;
|
||
case ADC:
|
||
if (r = Ea (inst, &va)) return r; /* decode eff addr */
|
||
if (r = Read (va, &dat)) return r; /* get operand */
|
||
OV = 0; /* clear overflow */
|
||
A = Add24 (A, dat, X >> 23); /* add with carry */
|
||
break;
|
||
case SUB:
|
||
if (r = Ea (inst, &va)) return r; /* decode eff addr */
|
||
if (r = Read (va, &dat)) return r; /* get operand */
|
||
A = Add24 (A, dat ^ DMASK, 1); /* subtract */
|
||
break;
|
||
case SUC:
|
||
if (r = Ea (inst, &va)) return r; /* decode eff addr */
|
||
if (r = Read (va, &dat)) return r; /* get operand */
|
||
OV = 0; /* clear overflow */
|
||
A = Add24 (A, dat ^ DMASK, X >> 23); /* sub with carry */
|
||
break;
|
||
case ADM:
|
||
if (r = Ea (inst, &va)) return r; /* decode eff addr */
|
||
if (r = Read (va, &dat)) return r; /* get operand */
|
||
dat = AddM24 (dat, A); /* mem + A */
|
||
if (r = Write (va, dat)) return r; /* rewrite */
|
||
break;
|
||
case MIN:
|
||
if (r = Ea (inst, &va)) return r; /* decode eff addr */
|
||
if (r = Read (va, &dat)) return r; /* get operand */
|
||
dat = AddM24 (dat, 1); /* mem + 1 */
|
||
if (r = Write (va, dat)) return r; /* rewrite */
|
||
break;
|
||
case MUL:
|
||
if (r = Ea (inst, &va)) return r; /* decode eff addr */
|
||
if (r = Read (va, &dat)) return r; /* get operand */
|
||
Mul48 (A, dat); /* multiply */
|
||
break;
|
||
case DIV:
|
||
if (r = Ea (inst, &va)) return r; /* decode eff addr */
|
||
if (r = Read (va, &dat)) return r; /* get operand */
|
||
Div48 (A, B, dat); /* divide */
|
||
break;
|
||
case ETR:
|
||
if (r = Ea (inst, &va)) return r; /* decode eff addr */
|
||
if (r = Read (va, &dat)) return r; /* get operand */
|
||
A = A & dat; /* and */
|
||
break;
|
||
case MRG:
|
||
if (r = Ea (inst, &va)) return r; /* decode eff addr */
|
||
if (r = Read (va, &dat)) return r; /* get operand */
|
||
A = A | dat; /* or */
|
||
break;
|
||
case EOR:
|
||
if (r = Ea (inst, &va)) return r; /* decode eff addr */
|
||
if (r = Read (va, &dat)) return r; /* get operand */
|
||
A = A ^ dat; /* xor */
|
||
break;
|
||
|
||
/* Skips */
|
||
|
||
case SKE:
|
||
if (r = Ea (inst, &va)) return r; /* decode eff addr */
|
||
if (r = Read (va, &dat)) return r; /* get operand */
|
||
if (A == dat) P = (P + 1) & VA_MASK; /* if A = op, skip */
|
||
break;
|
||
case SKG:
|
||
if (r = Ea (inst, &va)) return r; /* decode eff addr */
|
||
if (r = Read (va, &dat)) return r; /* get operand */
|
||
if (SXT (A) > SXT (dat)) P = (P + 1) & VA_MASK; /* if A > op, skip */
|
||
break;
|
||
case SKM:
|
||
if (r = Ea (inst, &va)) return r; /* decode eff addr */
|
||
if (r = Read (va, &dat)) return r; /* get operand */
|
||
if (((A ^ dat) & B) == 0) P = (P + 1) & VA_MASK; /* if A = op masked */
|
||
break;
|
||
case SKA:
|
||
if (r = Ea (inst, &va)) return r; /* decode eff addr */
|
||
if (r = Read (va, &dat)) return r; /* get operand */
|
||
if ((A & dat) == 0) P = (P + 1) & VA_MASK; /* if !(A & op), skip */
|
||
break;
|
||
case SKB:
|
||
if (r = Ea (inst, &va)) return r; /* decode eff addr */
|
||
if (r = Read (va, &dat)) return r; /* get operand */
|
||
if ((B & dat) == 0) P = (P + 1) & VA_MASK; /* if !(B & op), skip */
|
||
break;
|
||
case SKN:
|
||
if (r = Ea (inst, &va)) return r; /* decode eff addr */
|
||
if (r = Read (va, &dat)) return r; /* get operand */
|
||
if (dat & SIGN) P = (P + 1) & VA_MASK; /* if op < 0, skip */
|
||
break;
|
||
case SKR:
|
||
if (r = Ea (inst, &va)) return r; /* decode eff addr */
|
||
if (r = Read (va, &dat)) return r; /* get operand */
|
||
dat = AddM24 (dat, DMASK); /* decr operand */
|
||
if (r = Write (va, dat)) return r; /* rewrite operand */
|
||
if (dat & SIGN) P = (P + 1) & VA_MASK; /* if op < 0, skip */
|
||
break;
|
||
case SKD:
|
||
if (r = Ea (inst, &va)) return r; /* decode eff addr */
|
||
if (r = Read (va, &dat)) return r; /* get operand */
|
||
if (SXT_EXP (B) < SXT_EXP (dat)) { /* B < dat? */
|
||
X = (dat - B) & DMASK; /* X = dat - B */
|
||
P = (P + 1) & VA_MASK; } /* skip */
|
||
else X = (B - dat) & DMASK; /* X = B - dat */
|
||
break;
|
||
|
||
/* Control */
|
||
|
||
case NOP:
|
||
break;
|
||
case HLT:
|
||
if (!nml_mode && usr_mode) return MM_PRVINS; /* priv inst */
|
||
return STOP_HALT; /* halt CPU */
|
||
case EXU:
|
||
exu_cnt = exu_cnt + 1; /* count chained EXU */
|
||
if (exu_cnt > exu_lim) return STOP_EXULIM; /* too many? */
|
||
if (r = Ea (inst, &va)) return r; /* decode eff addr */
|
||
if (r = Read (va, &dat)) return r; /* get operand */
|
||
inst = dat;
|
||
goto EXU_LOOP;
|
||
case BRU:
|
||
if (nml_mode && (inst & I_IND)) api_dismiss (); /* normal BRU*, dism */
|
||
if (r = Ea (inst, &va)) return r; /* decode eff addr */
|
||
if (r = Read (va, &dat)) return r; /* test dest access */
|
||
PCQ_ENTRY;
|
||
P = va & VA_MASK; /* branch */
|
||
break;
|
||
case BRX:
|
||
if (r = Ea (inst, &va)) return r; /* decode eff addr */
|
||
X = (X + 1) & DMASK; /* incr X */
|
||
if (X & I_IND) { /* bit 9 set? */
|
||
if (r = Read (va, &dat)) return r; /* test dest access */
|
||
PCQ_ENTRY;
|
||
P = va & VA_MASK; } /* branch */
|
||
break;
|
||
case BRM:
|
||
if (r = Ea (inst, &va)) return r; /* decode eff addr */
|
||
dat = (EM3 << 18) | (EM2 << 15) | pc; /* form return word */
|
||
if (!nml_mode && !usr_mode) /* monitor mode? */
|
||
dat = dat | (mode << 23) | (OV << 21);
|
||
else dat = dat | (OV << 23); /* normal or user */
|
||
if (r = Write (va, dat)) return r; /* write ret word */
|
||
PCQ_ENTRY;
|
||
P = (va + 1) & VA_MASK; /* branch */
|
||
break;
|
||
case BRR:
|
||
if (r = Ea (inst, &va)) return r; /* decode eff addr */
|
||
if (r = Read (va, &dat)) return r; /* get operand */
|
||
PCQ_ENTRY;
|
||
P = (dat + 1) & VA_MASK; /* branch */
|
||
if (!nml_mode && !usr_mode) { /* monitor mode? */
|
||
OV = OV | ((dat >> 21) & 1); /* restore OV */
|
||
if ((va & VA_USR) | (dat & I_USR)) { /* mode change? */
|
||
usr_mode = 1;
|
||
if (mon_usr_trap) return MM_MONUSR; } }
|
||
else OV = OV | ((dat >> 23) & 1); /* restore OV */
|
||
break;
|
||
case BRI:
|
||
if (!nml_mode && usr_mode) return MM_PRVINS; /* priv inst */
|
||
if (r = Ea (inst, &va)) return r; /* decode eff addr */
|
||
if (r = Read (va, &dat)) return r; /* get operand */
|
||
api_dismiss (); /* dismiss hi api */
|
||
PCQ_ENTRY;
|
||
P = dat & VA_MASK; /* branch */
|
||
if (!nml_mode) { /* monitor mode? */
|
||
OV = (dat >> 21) & 1; /* restore OV */
|
||
if ((va & VA_USR) | (dat & I_USR)) { /* mode change? */
|
||
usr_mode = 1;
|
||
if (mon_usr_trap) return MM_MONUSR; } }
|
||
else OV = (dat >> 23) & 1; /* restore OV */
|
||
break;
|
||
|
||
/* Register change (microprogrammed) */
|
||
|
||
case RCH:
|
||
old_A = A; /* save orig reg */
|
||
old_B = B;
|
||
old_X = X;
|
||
if (inst & 000001211) { /* A change? */
|
||
if (inst & 01000) dat = (~old_A + 1) & DMASK; /* CNA */
|
||
else dat = 0;
|
||
if (inst & 00200) dat = dat | old_X;
|
||
if (inst & 00010) dat = dat | old_B;
|
||
if (inst & 00100) A = (A & ~EXPMASK) | (dat & EXPMASK);
|
||
else A = dat; }
|
||
if (inst & 000000046) { /* B change? */
|
||
if (inst & 00040) dat = old_X;
|
||
else dat = 0;
|
||
if (inst & 00004) dat = dat | old_A;
|
||
if (inst & 00100) B = (B & ~EXPMASK) | (dat & EXPMASK);
|
||
else B = dat; }
|
||
if (inst & 020000420) { /* X change? */
|
||
if (inst & 00400) dat = old_A;
|
||
else dat = 0;
|
||
if (inst & 00020) dat = dat | old_B;
|
||
if (inst & 00100) X = SXT_EXP (dat) & DMASK;
|
||
else X = dat; }
|
||
break;
|
||
|
||
/* Overflow instruction */
|
||
|
||
case OVF:
|
||
if ((inst & 0100) & OV) P = (P + 1) & VA_MASK;
|
||
if (inst & 0001) OV = 0;
|
||
if ((inst & 0010) && (((X >> 1) ^ X) & EXPS)) OV = 1;
|
||
break;
|
||
|
||
/* Shifts */
|
||
|
||
case RSH:
|
||
if (r = EaSh (inst, &va)) return r; /* decode eff addr */
|
||
shf_op = I_GETSHFOP (va); /* get eff op */
|
||
sc = va & I_SHFMSK; /* get eff count */
|
||
switch (shf_op) { /* case on sub-op */
|
||
case 00: /* right arithmetic */
|
||
if (sc) ShfR48 (sc, (A & SIGN)? DMASK: 0);
|
||
break;
|
||
case 04: /* right cycle */
|
||
sc = sc % 48; /* mod 48 */
|
||
if (sc) RotR48 (sc);
|
||
break;
|
||
case 05: /* right logical */
|
||
if (sc) ShfR48 (sc, 0);
|
||
break;
|
||
default:
|
||
CRETINS; /* invalid inst */
|
||
break; } /* end case shf op */
|
||
break;
|
||
|
||
case LSH:
|
||
if (r = EaSh (inst, &va)) return r; /* decode eff addr */
|
||
shf_op = I_GETSHFOP (va); /* get eff op */
|
||
sc = va & I_SHFMSK; /* get eff count */
|
||
switch (shf_op) { /* case on sub-op */
|
||
case 00: /* left arithmetic */
|
||
dat = A; /* save sign */
|
||
if (sc > 48) sc = 48;
|
||
for (i = 0; i < sc; i++) { /* loop */
|
||
A = ((A << 1) | (B >> 23)) & DMASK;
|
||
B = (B << 1) & DMASK;
|
||
if ((A ^ dat) & SIGN) OV = 1; }
|
||
break;
|
||
case 02: /* normalize */
|
||
if (sc > 48) sc = 48;
|
||
for (i = 0; i < sc; i++) { /* until max count */
|
||
if ((A ^ (A << 1)) & SIGN) break;
|
||
A = ((A << 1) | (B >> 23)) & DMASK;
|
||
B = (B << 1) & DMASK; }
|
||
X = (X - i) & DMASK;
|
||
break;
|
||
case 04: /* left cycle */
|
||
sc = sc % 48; /* mod 48 */
|
||
if (sc) RotR48 (48 - sc); /* rotate */
|
||
break;
|
||
case 06: /* cycle normalize */
|
||
if (sc > 48) sc = 48;
|
||
for (i = 0; i < sc; i++) { /* until max count */
|
||
if ((A ^ (A << 1)) & SIGN) break;
|
||
old_A = A; /* cyclic shift */
|
||
A = ((A << 1) | (B >> 23)) & DMASK;
|
||
B = ((B << 1) | (old_A >> 23)) & DMASK; }
|
||
X = (X - i) & DMASK;
|
||
break;
|
||
default:
|
||
CRETINS; /* invalid inst */
|
||
break; } /* end case shf op */
|
||
break;
|
||
|
||
/* I/O instructions */
|
||
|
||
case MIW: case MIY:
|
||
if (!nml_mode && usr_mode) return MM_PRVINS; /* priv inst */
|
||
if (r = Ea (inst, &va)) return r; /* decode eff addr */
|
||
if (r = Read (va, &dat)) return r; /* get operand */
|
||
if (r = op_miwy (inst, dat)) return r; /* process inst */
|
||
int_reqhi = api_findreq (); /* recalc int req */
|
||
chan_req = chan_testact (); /* recalc chan act */
|
||
break;
|
||
case WIM: case YIM:
|
||
if (!nml_mode && usr_mode) return MM_PRVINS; /* priv inst */
|
||
if (r = Ea (inst, &va)) return r; /* decode eff addr */
|
||
if (r = op_wyim (inst, &dat)) return r; /* process inst */
|
||
if (r = Write (va, dat)) return r; /* write result */
|
||
int_reqhi = api_findreq (); /* recalc int req */
|
||
chan_req = chan_testact (); /* recalc chan act */
|
||
break;
|
||
case EOM: case EOD:
|
||
if (!nml_mode && usr_mode) return MM_PRVINS; /* priv inst */
|
||
if (r = op_eomd (inst)) return r; /* process inst */
|
||
int_reqhi = api_findreq (); /* recalc int req */
|
||
chan_req = chan_testact (); /* recalc chan act */
|
||
ion_defer = 1;
|
||
break;
|
||
case POT:
|
||
if (!nml_mode && usr_mode) return MM_PRVINS; /* priv inst */
|
||
if (r = Ea (inst, &va)) return r; /* decode eff addr */
|
||
if (r = Read (va, &dat)) return r; /* get operand */
|
||
if (r = op_pot (dat)) return r; /* process inst */
|
||
int_reqhi = api_findreq (); /* recalc int req */
|
||
chan_req = chan_testact (); /* recalc chan act */
|
||
break;
|
||
case PIN:
|
||
if (!nml_mode && usr_mode) return MM_PRVINS; /* priv inst */
|
||
if (r = Ea (inst, &va)) return r; /* decode eff addr */
|
||
if (r = op_pin (&dat)) return r; /* process inst */
|
||
if (r = Write (va, dat)) return r; /* write result */
|
||
int_reqhi = api_findreq (); /* recalc int req */
|
||
chan_req = chan_testact (); /* recalc chan act */
|
||
break;
|
||
case SKS:
|
||
if (!nml_mode && usr_mode) return MM_PRVINS; /* priv inst */
|
||
if (r = op_sks (inst, &dat)) return r; /* process inst */
|
||
if (dat) P = (P + 1) & VA_MASK;
|
||
break;
|
||
|
||
default:
|
||
if (!nml_mode && usr_mode) return MM_PRVINS; /* usr? priv viol */
|
||
CRETINS; /* invalid inst */
|
||
break; }
|
||
return SCPE_OK;
|
||
}
|
||
|
||
/* Effective address calculation */
|
||
|
||
t_stat Ea (uint32 inst, uint32 *addr)
|
||
{
|
||
int32 i;
|
||
uint32 wd = inst; /* homeable */
|
||
uint32 va = wd & XVA_MASK; /* initial va */
|
||
t_stat r;
|
||
|
||
for (i = 0; i < ind_lim; i++) { /* count indirects */
|
||
if (wd & I_IDX) va = (va & VA_USR) | ((va + X) & VA_MASK);
|
||
*addr = va;
|
||
if ((wd & I_IND) == 0) return SCPE_OK; /* indirect? */
|
||
if (r = Read (va, &wd)) return r; /* read ind; fails? */
|
||
va = (va & VA_USR) | (wd & XVA_MASK);
|
||
}
|
||
return STOP_INDLIM; /* too many indirects */
|
||
}
|
||
|
||
/* Effective address calculation for shifts - direct indexing is 9b */
|
||
|
||
t_stat EaSh (uint32 inst, uint32 *addr)
|
||
{
|
||
int32 i;
|
||
uint32 wd = inst; /* homeable */
|
||
uint32 va = wd & XVA_MASK; /* initial va */
|
||
t_stat r;
|
||
|
||
for (i = 0; i < ind_lim; i++) { /* count indirects */
|
||
if ((wd & I_IND) == 0) { /* end of ind chain? */
|
||
if (wd & I_IDX) *addr = (va & (VA_MASK & ~I_SHFMSK)) |
|
||
((va + X) & I_SHFMSK); /* 9b indexing */
|
||
else *addr = va & VA_MASK;
|
||
return SCPE_OK; }
|
||
if (wd & I_IDX) va = (va & VA_USR) | ((va + X) & VA_MASK);
|
||
if (r = Read (va, &wd)) return r; /* read ind; fails? */
|
||
va = (va & VA_USR) | (wd & XVA_MASK);
|
||
}
|
||
return STOP_INDLIM; /* too many indirects */
|
||
}
|
||
|
||
/* Read word from virtual address */
|
||
|
||
t_stat Read (uint32 va, uint32 *dat)
|
||
{
|
||
uint32 pgn, map, pa;
|
||
|
||
if (nml_mode) { /* normal? */
|
||
va = va & VA_MASK; /* ignore user */
|
||
if (va < 020000) pa = va; /* first 8K: 1 for 1 */
|
||
else if (va < 030000) pa = va + em2_dyn; /* next 4K: ext EM2 */
|
||
else pa = va + em3_dyn; } /* next 4K: ext EM3 */
|
||
else if (usr_mode || (va & VA_USR)) { /* user mapping? */
|
||
pgn = VA_GETPN (va); /* get page no */
|
||
map = usr_map[pgn]; /* get map entry */
|
||
if (map == MAP_PROT) return MM_NOACC; /* prot? no access */
|
||
pa = (map & ~MAP_PROT) | (va & VA_POFF); } /* map address */
|
||
else { pgn = VA_GETPN (va); /* mon, get page no */
|
||
map = mon_map[pgn]; /* get map entry */
|
||
if (map & MAP_PROT) return MM_NOACC; /* prot? no access */
|
||
pa = map | (va & VA_POFF); } /* map address */
|
||
*dat = M[pa]; /* return word */
|
||
return SCPE_OK;
|
||
}
|
||
|
||
/* Write word to virtual address */
|
||
|
||
t_stat Write (uint32 va, uint32 dat)
|
||
{
|
||
uint32 pgn, map, pa;
|
||
|
||
if (nml_mode) { /* normal? */
|
||
va = va & VA_MASK; /* ignore user */
|
||
if (va < 020000) pa = va; /* first 8K: 1 for 1 */
|
||
else if (va < 030000) pa = va + em2_dyn; /* next 4K: ext EM2 */
|
||
else pa = va + em3_dyn; } /* next 4K: ext EM3 */
|
||
else if (usr_mode || (va & VA_USR)) { /* user mapping? */
|
||
pgn = VA_GETPN (va); /* get page no */
|
||
map = usr_map[pgn]; /* get map entry */
|
||
if (map & MAP_PROT) { /* protected page? */
|
||
if (map == MAP_PROT) return MM_NOACC; /* zero? no access */
|
||
else return MM_WRITE; } /* else, write prot */
|
||
pa = map | (va & VA_POFF); } /* map address */
|
||
else { pgn = VA_GETPN (va); /* mon, get page no */
|
||
map = mon_map[pgn]; /* get map entry */
|
||
if (map & MAP_PROT) return MM_NOACC; /* prot? no access */
|
||
pa = map | (va & VA_POFF); } /* map address */
|
||
if (MEM_ADDR_OK (pa)) M[pa] = dat;
|
||
return SCPE_OK;
|
||
}
|
||
|
||
/* Relocate addr for console access */
|
||
|
||
t_addr RelocC (int32 va, int32 sw)
|
||
{
|
||
uint32 nml = nml_mode, usr = usr_mode;
|
||
uint32 pgn, map;
|
||
t_addr pa;
|
||
|
||
if (sw & SWMASK ('N')) nml = 1; /* -n: normal */
|
||
else if (sw & SWMASK ('X')) nml = usr = 0; /* -x: mon */
|
||
else if (sw & SWMASK ('U')) nml = 0, usr = 1; /* -u: user */
|
||
else if (!(sw & SWMASK ('V'))) return va; /* -v: curr */
|
||
set_dyn_map ();
|
||
if (nml) { /* normal? */
|
||
if (va < 020000) pa = va; /* first 8K: 1 for 1 */
|
||
else if (va < 030000) pa = va + em2_dyn; /* next 4K: ext EM2 */
|
||
else pa = va + em3_dyn; } /* next 4K: ext EM3 */
|
||
else { pgn = VA_GETPN (va); /* get page no */
|
||
map = usr? usr_map[pgn]: mon_map[pgn]; /* get map entry */
|
||
if (map == MAP_PROT) return MAXMEMSIZE + 1; /* no access page? */
|
||
pa = (map & ~MAP_PROT) | (va & VA_POFF); } /* map address */
|
||
return pa;
|
||
}
|
||
|
||
/* Arithmetic routines */
|
||
|
||
uint32 Add24 (uint32 s1, uint32 s2, uint32 cin)
|
||
{
|
||
uint32 t = s1 + s2 + cin; /* add with carry in */
|
||
if (t > DMASK) X = X | SIGN; /* carry to X<0> */
|
||
else X = X & ~SIGN;
|
||
if (((s1 ^ ~s2) & (s1 ^ t)) & SIGN) OV = 1; /* overflow */
|
||
return t & DMASK;
|
||
}
|
||
|
||
uint32 AddM24 (uint32 s1, uint32 s2)
|
||
{
|
||
uint32 t = s1 + s2; /* add */
|
||
if (((s1 ^ ~s2) & (s1 ^ t)) & SIGN) OV = 1; /* overflow */
|
||
return t & DMASK;
|
||
}
|
||
|
||
void Mul48 (uint32 s1, uint32 s2)
|
||
{
|
||
uint32 a = ABS (s1);
|
||
uint32 b = ABS (s2);
|
||
uint32 hi, md, lo, t, u;
|
||
|
||
if ((a == 0) || (b == 0)) { /* ops zero? */
|
||
A = B = 0;
|
||
return; }
|
||
t = a >> 12; /* split op1 */
|
||
a = a & 07777;
|
||
u = b >> 12; /* split op2 */
|
||
b = b & 07777;
|
||
md = (a * u) + (b * t); /* cross product */
|
||
lo = (a * b) + ((md & 07777) << 12); /* low result */
|
||
hi = (t * u) + (md >> 12) + (lo >> 24); /* hi result */
|
||
A = ((hi << 1) & DMASK) | ((lo & DMASK) >> 23);
|
||
B = (lo << 1) & DMASK;
|
||
if ((s1 ^ s2) & SIGN) {
|
||
B = ((B ^ DMASK) + 1) & DMASK;
|
||
A = ((A ^ DMASK) + (B == 0)) & DMASK; }
|
||
else if (A & SIGN) OV = 1;
|
||
return;
|
||
}
|
||
|
||
/* Divide - the SDS 940 uses a non-restoring divide. The algorithm
|
||
runs even for overflow cases. Hence it must be emulated precisely
|
||
to give the right answers for diagnostics. If the dividend is
|
||
negative, AB are 2's complemented starting at B<22>, and B<23>
|
||
is unchanged. */
|
||
|
||
void Div48 (uint32 ar, uint32 br, uint32 m)
|
||
{
|
||
int32 i;
|
||
uint32 quo = 0; /* quotient */
|
||
uint32 dvdh = ar, dvdl = br; /* dividend */
|
||
uint32 dvr = ABS (m); /* make dvr pos */
|
||
|
||
if (TSTS (dvdh)) { /* dvd < 0? */
|
||
dvdl = (((dvdl ^ DMASK) + 2) & (DMASK & ~1)) | /* 23b negate */
|
||
(dvdl & 1); /* low bit unch */
|
||
dvdh = ((dvdh ^ DMASK) + (dvdl <= 1)) & DMASK; }
|
||
if ((dvdh > dvr) || /* divide fail? */
|
||
((dvdh == dvr) && dvdl) ||
|
||
((dvdh == dvr) && !TSTS (ar ^ m))) OV = 1;
|
||
dvdh = (dvdh - dvr) & DMASK; /* initial sub */
|
||
for (i = 0; i < 23; i++) { /* 23 iterations */
|
||
quo = (quo << 1) | ((dvdh >> 23) ^ 1); /* quo bit = ~sign */
|
||
dvdh = ((dvdh << 1) | (dvdl >> 23)) & DMASK; /* shift divd */
|
||
dvdl = (dvdl << 1) & DMASK;
|
||
if (quo & 1) /* test ~sign */
|
||
dvdh = (dvdh - dvr) & DMASK; /* sign was +, sub */
|
||
else dvdh = (dvdh + dvr) & DMASK; } /* sign was -, add */
|
||
quo = quo << 1; /* shift quo */
|
||
if (dvdh & SIGN) dvdh = (dvdh + dvr) & DMASK; /* last op -? restore */
|
||
else quo = quo | 1; /* +, set quo bit */
|
||
if (TSTS (ar ^ m)) A = NEG (quo); /* sign of quo */
|
||
else A = quo; /* A = quo */
|
||
if (TSTS (ar)) B = NEG (dvdh); /* sign of rem */
|
||
else B = dvdh; /* B = rem */
|
||
return;
|
||
}
|
||
|
||
void RotR48 (uint32 sc)
|
||
{
|
||
uint32 t = A;
|
||
|
||
if (sc >= 24) {
|
||
sc = sc - 24;
|
||
A = ((B >> sc) | (A << (24 - sc))) & DMASK;
|
||
B = ((t >> sc) | (B << (24 - sc))) & DMASK; }
|
||
else { A = ((A >> sc) | (B << (24 - sc))) & DMASK;
|
||
B = ((B >> sc) | (t << (24 - sc))) & DMASK; }
|
||
return;
|
||
}
|
||
|
||
void ShfR48 (uint32 sc, uint32 sgn)
|
||
{
|
||
if (sc >= 48) A = B = sgn;
|
||
if (sc >= 24) {
|
||
sc = sc - 24;
|
||
B = ((A >> sc) | (sgn << (24 - sc))) & DMASK;
|
||
A = sgn; }
|
||
else { B = ((B >> sc) | (A << (24 - sc)) & DMASK);
|
||
A = ((A >> sc) | (sgn << (24 - sc))) & DMASK; }
|
||
return;
|
||
}
|
||
|
||
/* POT routines for RL1, RL2, RL4 */
|
||
|
||
t_stat pot_RL1 (uint32 num, uint32 *dat)
|
||
{
|
||
RL1 = *dat;
|
||
set_dyn_map ();
|
||
return SCPE_OK;
|
||
}
|
||
|
||
t_stat pot_RL2 (uint32 num, uint32 *dat)
|
||
{
|
||
RL2 = *dat;
|
||
set_dyn_map ();
|
||
return SCPE_OK;
|
||
}
|
||
|
||
t_stat pot_RL4 (uint32 num, uint32 *dat)
|
||
{
|
||
RL4 = (*dat) & 03737;
|
||
set_dyn_map ();
|
||
return SCPE_OK;
|
||
}
|
||
|
||
/* Map EM2, EM3, RL1, RL2, RL4 to dynamic forms
|
||
|
||
EM2, EM3 - left shifted 12, base virtual address subtracted
|
||
RL1, RL2 - page left shifted 11
|
||
RL3 - filled in as 1 to 1 map
|
||
RL4 - EM2 or page left shifted 11, PROT bit inserted
|
||
*/
|
||
|
||
void set_dyn_map (void)
|
||
{
|
||
em2_dyn = ((EM2 & 07) << 12) - 020000;
|
||
em3_dyn = ((EM3 & 07) << 12) - 030000;
|
||
usr_map[0] = (RL1 >> 7) & (MAP_PROT | MAP_PAGE);
|
||
usr_map[1] = (RL1 >> 1) & (MAP_PROT | MAP_PAGE);
|
||
usr_map[2] = (RL1 << 5) & (MAP_PROT | MAP_PAGE);
|
||
usr_map[3] = (RL1 << 11) & (MAP_PROT | MAP_PAGE);
|
||
usr_map[4] = (RL2 >> 7) & (MAP_PROT | MAP_PAGE);
|
||
usr_map[5] = (RL2 >> 1) & (MAP_PROT | MAP_PAGE);
|
||
usr_map[6] = (RL2 << 5) & (MAP_PROT | MAP_PAGE);
|
||
usr_map[7] = (RL2 << 11) & (MAP_PROT | MAP_PAGE);
|
||
mon_map[0] = (0 << VA_V_PN);
|
||
mon_map[1] = (1 << VA_V_PN);
|
||
mon_map[2] = (2 << VA_V_PN);
|
||
mon_map[3] = (3 << VA_V_PN);
|
||
mon_map[4] = ((EM2 & 07) << 12);
|
||
mon_map[5] = ((EM2 & 07) << 12) + (1 << VA_V_PN);
|
||
mon_map[6] = (RL4 << 5) & MAP_PAGE;
|
||
mon_map[7] = (RL4 << 11) & MAP_PAGE;
|
||
if (mon_map[6] == 0) mon_map[6] = MAP_PROT;
|
||
if (mon_map[7] == 0) mon_map[7] = MAP_PROT;
|
||
return;
|
||
}
|
||
|
||
/* Recalculate api requests */
|
||
|
||
uint32 api_findreq (void)
|
||
{
|
||
uint32 i, t;
|
||
|
||
t = (int_req & ~1) & api_mask[api_lvlhi]; /* unmasked int */
|
||
for (i = 31; t && (i > 0); i--) { /* find highest */
|
||
if ((t >> i) & 1) return i; }
|
||
return 0; /* none */
|
||
}
|
||
|
||
/* Dismiss highest priority interrupt */
|
||
|
||
void api_dismiss (void)
|
||
{
|
||
uint32 i, t;
|
||
|
||
t = 1u << api_lvlhi; /* highest active */
|
||
int_req = int_req & ~t; /* clear int req */
|
||
api_lvl = api_lvl & ~t; /* clear api level */
|
||
api_lvlhi = 0; /* assume all clear */
|
||
for (i = 31; api_lvl && (i > 0); i--) { /* find highest api */
|
||
if ((api_lvl >> i) & 1) { /* bit set? */
|
||
api_lvlhi = i; /* record level */
|
||
break; } } /* done */
|
||
int_reqhi = api_findreq (); /* recalc intreq */
|
||
return;
|
||
}
|
||
|
||
/* Reset routine */
|
||
|
||
t_stat cpu_reset (DEVICE *dptr)
|
||
{
|
||
OV = 0;
|
||
EM2 = 2;
|
||
EM3 = 3;
|
||
RL1 = RL2 = RL4 = 0;
|
||
ion = ion_defer = 0;
|
||
nml_mode = 1;
|
||
usr_mode = 0;
|
||
mon_usr_trap = 0;
|
||
int_req = 0;
|
||
int_reqhi = 0;
|
||
api_lvl = 0;
|
||
api_lvlhi = 0;
|
||
alert = 0;
|
||
pcq_r = find_reg ("PCQ", NULL, dptr);
|
||
if (pcq_r) pcq_r->qptr = 0;
|
||
else return SCPE_IERR;
|
||
sim_brk_types = sim_brk_dflt = SWMASK ('E');
|
||
return SCPE_OK;
|
||
}
|
||
|
||
/* Memory examine */
|
||
|
||
t_stat cpu_ex (t_value *vptr, t_addr addr, UNIT *uptr, int32 sw)
|
||
{
|
||
t_addr pa;
|
||
|
||
pa = RelocC (addr, sw);
|
||
if (pa > MAXMEMSIZE) return SCPE_REL;
|
||
if (pa >= MEMSIZE) return SCPE_NXM;
|
||
if (vptr != NULL) *vptr = M[pa] & DMASK;
|
||
return SCPE_OK;
|
||
}
|
||
|
||
/* Memory deposit */
|
||
|
||
t_stat cpu_dep (t_value val, t_addr addr, UNIT *uptr, int32 sw)
|
||
{
|
||
t_addr pa;
|
||
|
||
pa = RelocC (addr, sw);
|
||
if (pa > MAXMEMSIZE) return SCPE_REL;
|
||
if (pa >= MEMSIZE) return SCPE_NXM;
|
||
M[pa] = val & DMASK;
|
||
return SCPE_OK;
|
||
}
|
||
|
||
/* Set memory size */
|
||
|
||
t_stat cpu_set_size (UNIT *uptr, int32 val, char *cptr, void *desc)
|
||
{
|
||
int32 mc = 0;
|
||
t_addr i;
|
||
|
||
if ((val <= 0) || (val > MAXMEMSIZE) || ((val & 037777) != 0))
|
||
return SCPE_ARG;
|
||
for (i = val; i < MEMSIZE; i++) mc = mc | M[i];
|
||
if ((mc != 0) && (!get_yn ("Really truncate memory [N]?", FALSE)))
|
||
return SCPE_OK;
|
||
MEMSIZE = val;
|
||
for (i = MEMSIZE; i < MAXMEMSIZE; i++) M[i] = 0;
|
||
return SCPE_OK;
|
||
}
|
||
|
||
/* Set system type (1 = Genie, 0 = standard) */
|
||
|
||
t_stat cpu_set_type (UNIT *uptr, int32 val, char *cptr, void *desc)
|
||
{
|
||
extern t_stat drm_reset (DEVICE *dptr);
|
||
extern DEVICE drm_dev, mux_dev, muxl_dev;
|
||
extern UNIT drm_unit, mux_unit;
|
||
extern DIB mux_dib;
|
||
|
||
if ((cpu_unit.flags & UNIT_GENIE) == val) return SCPE_OK;
|
||
if ((drm_unit.flags & UNIT_ATT) || /* attached? */
|
||
(mux_unit.flags & UNIT_ATT)) return SCPE_NOFNC; /* can't do it */
|
||
if (val) { /* Genie? */
|
||
drm_dev.flags = drm_dev.flags & ~DEV_DIS; /* enb drum */
|
||
mux_dev.flags = mux_dev.flags & ~DEV_DIS; /* enb mux */
|
||
muxl_dev.flags = muxl_dev.flags & ~DEV_DIS;
|
||
mux_dib.dev = DEV3_GMUX; } /* Genie mux */
|
||
else { drm_dev.flags = drm_dev.flags | DEV_DIS; /* dsb drum */
|
||
mux_dib.dev = DEV3_SMUX; /* std mux */
|
||
return drm_reset (&drm_dev); }
|
||
return SCPE_OK;
|
||
}
|
||
|
||
/* The real time clock runs continuously; therefore, it only has
|
||
a unit service routine and a reset routine. The service routine
|
||
sets an interrupt that invokes the clock counter. The clock counter
|
||
is a "one instruction interrupt", and only MIN/SKR are valid.
|
||
*/
|
||
|
||
t_stat rtc_svc (UNIT *uptr)
|
||
{
|
||
if (rtc_pie) int_req = int_req | INT_RTCP; /* set pulse intr */
|
||
sim_activate (&rtc_unit, sim_rtcn_calb (rtc_tps, TMR_RTC)); /* reactivate unit */
|
||
return SCPE_OK;
|
||
}
|
||
|
||
t_stat rtc_inst (uint32 inst)
|
||
{
|
||
uint32 op, dat, val, va;
|
||
t_stat r;
|
||
|
||
op = I_GETOP (inst); /* get opcode */
|
||
if (op == MIN) val = 1; /* incr */
|
||
else if (op == SKR) val = DMASK; /* decr */
|
||
else return STOP_RTCINS; /* can't do it */
|
||
if (r = Ea (inst, &va)) return r; /* decode eff addr */
|
||
if (r = Read (va, &dat)) return r; /* get operand */
|
||
dat = AddM24 (dat, val); /* mem +/- 1 */
|
||
if (r = Write (va, dat)) return r; /* rewrite */
|
||
if (dat == 0) int_req = int_req | INT_RTCS; /* set clk sync int */
|
||
return SCPE_OK;
|
||
}
|
||
|
||
t_stat rtc_reset (DEVICE *dptr)
|
||
{
|
||
rtc_pie = 0; /* disable pulse */
|
||
sim_activate (&rtc_unit, rtc_unit.wait); /* activate unit */
|
||
return SCPE_OK;
|
||
}
|