simh-testsetgenerator/VAX/vax_cpu1.c
Bob Supnik 2bcd1e7c4c Notes For V2.10-2
1. New Features in 2.10-2

The build procedures have changed.  There is only one UNIX makefile.
To compile without Ethernet support, simply type

	gmake {target|all}

To compile with Ethernet support, type

	gmake USE_NETWORK=1 {target|all}

The Mingw batch files require Mingw release 2 and invoke the Unix
makefile.  There are still separate batch files for compilation
with or without Ethernet support.

1.1 SCP and Libraries

- The EVAL command will evaluate a symbolic type-in and display
  it in numeric form.
- The ! command (with no arguments) will launch the host operating
  system command shell.  The ! command (with an argument) executes
  the argument as a host operating system command.  (Code from
  Mark Pizzolato)
- Telnet sessions now recognize BREAK.  How a BREAK is transmitted
  dependent on the particular Telnet client.  (Code from Mark
  Pizzolato)
- The sockets library includes code for active connections as
  well as listening connections.
- The RESTORE command will restore saved memory size, if the
  simulator supports dynamic memory resizing.

1.2 PDP-1

- The PDP-1 supports the Type 24 serial drum (based on recently
  discovered documents).

1.3 18b PDP's

- The PDP-4 supports the Type 24 serial drum (based on recently
  discovered documents).

1.4 PDP-11

- The PDP-11 implements a stub DEUNA/DELUA (XU).  The real XU
  module will be included in a later release.

1.5 PDP-10

- The PDP-10 implements a stub DEUNA/DELUA (XU).  The real XU
  module will be included in a later release.

1.6 HP 2100

- The IOP microinstruction set is supported for the 21MX as well
  as the 2100.
- The HP2100 supports the Access Interprocessor Link (IPL).

1.7 VAX

- If the VAX console is attached to a Telnet session, BREAK is
  interpreted as console halt.
- The SET/SHOW HISTORY commands enable and display a history of
  the most recently executed instructions.  (Code from Mark
  Pizzolato)

1.8 Terminals Multiplexors

- BREAK detection was added to the HP, DEC, and Interdata terminal
  multiplexors.

1.9 Interdata 16b and 32b

- First release.  UNIX is not yet working.

1.10 SDS 940

- First release.

2. Bugs Fixed in 2.10-2

- PDP-11 console must default to 7b for early UNIX compatibility.
- PDP-11/VAX TMSCP emulator was using the wrong packet length for
  read/write end packets.
- Telnet IAC+IAC processing was fixed, both for input and output
  (found by Mark Pizzolato).
- PDP-11/VAX Ethernet setting flag bits wrong for chained
  descriptors (found by Mark Pizzolato).

3. New Features in 2.10 vs prior releases

3.1 SCP and Libraries

- The VT emulation package has been replaced by the capability
  to remote the console to a Telnet session.  Telnet clients
  typically have more complete and robust VT100 emulation.
- Simulated devices may now have statically allocated buffers,
  in addition to dynamically allocated buffers or disk-based
  data stores.
- The DO command now takes substitutable arguments (max 9).
  In command files, %n represents substitutable argument n.
- The initial command line is now interpreted as the command
  name and substitutable arguments for a DO command.  This is
  backward compatible to prior versions.
- The initial command line parses switches.  -Q is interpreted
  as quiet mode; informational messages are suppressed.
- The HELP command now takes an optional argument.  HELP <cmd>
  types help on the specified command.
- Hooks have been added for implementing GUI-based consoles,
  as well as simulator-specific command extensions.  A few
  internal data structures and definitions have changed.
- Two new routines (tmxr_open_master, tmxr_close_master) have
  been added to sim_tmxr.c.  The calling sequence for
  sim_accept_conn has been changed in sim_sock.c.
- The calling sequence for the VM boot routine has been modified
  to add an additional parameter.
- SAVE now saves, and GET now restores, controller and unit flags.
- Library sim_ether.c has been added for Ethernet support.

3.2 VAX

- Non-volatile RAM (NVR) can behave either like a memory or like
  a disk-based peripheral.  If unattached, it behaves like memory
  and is saved and restored by SAVE and RESTORE, respectively.
  If attached, its contents are loaded from disk by ATTACH and
  written back to disk at DETACH and EXIT.
- SHOW <device> VECTOR displays the device's interrupt vector.
  A few devices allow the vector to be changed with SET
  <device> VECTOR=nnn.
- SHOW CPU IOSPACE displays the I/O space address map.
- The TK50 (TMSCP tape) has been added.
- The DEQNA/DELQA (Qbus Ethernet controllers) have been added.
- Autoconfiguration support has been added.
- The paper tape reader has been removed from vax_stddev.c and
  now references a common implementation file, dec_pt.h.
- Examine and deposit switches now work on all devices, not just
  the CPU.
- Device address conflicts are not detected until simulation starts.

3.3 PDP-11

- SHOW <device> VECTOR displays the device's interrupt vector.
  Most devices allow the vector to be changed with SET
  <device> VECTOR=nnn.
- SHOW CPU IOSPACE displays the I/O space address map.
- The TK50 (TMSCP tape), RK611/RK06/RK07 (cartridge disk),
  RX211 (double density floppy), and KW11P programmable clock
  have been added.
- The DEQNA/DELQA (Qbus Ethernet controllers) have been added.
- Autoconfiguration support has been added.
- The paper tape reader has been removed from pdp11_stddev.c and
  now references a common implementation file, dec_pt.h.
- Device bootstraps now use the actual CSR specified by the
  SET ADDRESS command, rather than just the default CSR.  Note
  that PDP-11 operating systems may NOT support booting with
  non-standard addresses.
- Specifying more than 256KB of memory, or changing the bus
  configuration, causes all peripherals that are not compatible
  with the current bus configuration to be disabled.
- Device address conflicts are not detected until simulation starts.

3.4 PDP-10

- SHOW <device> VECTOR displays the device's interrupt vector.
  A few devices allow the vector to be changed with SET
  <device> VECTOR=nnn.
- SHOW CPU IOSPACE displays the I/O space address map.
- The RX211 (double density floppy) has been added; it is off
  by default.
- The paper tape now references a common implementation file,
  dec_pt.h.
- Device address conflicts are not detected until simulation starts.

3.5 PDP-1

- DECtape (then known as MicroTape) support has been added.
- The line printer and DECtape can be disabled and enabled.

3.6 PDP-8

- The RX28 (double density floppy) has been added as an option to
  the existing RX8E controller.
- SHOW <device> DEVNO displays the device's device number.  Most
  devices allow the device number to be changed with SET <device>
  DEVNO=nnn.
- Device number conflicts are not detected until simulation starts.

3.7 IBM 1620

- The IBM 1620 simulator has been released.

3.8 AltairZ80

- A hard drive has been added for increased storage.
- Several bugs have been fixed.

3.9 HP 2100

- The 12845A has been added and made the default line printer (LPT).
  The 12653A has been renamed LPS and is off by default.  It also
  supports the diagnostic functions needed to run the DCPC and DMS
  diagnostics.
- The 12557A/13210A disk defaults to the 13210A (7900/7901).
- The 12559A magtape is off by default.
- New CPU options (EAU/NOEAU) enable/disable the extended arithmetic
  instructions for the 2116.  These instructions are standard on
  the 2100 and 21MX.
- New CPU options (MPR/NOMPR) enable/disable memory protect for the
  2100 and 21MX.
- New CPU options (DMS/NODMS) enable/disable the dynamic mapping
  instructions for the 21MX.
- The 12539 timebase generator autocalibrates.

3.10 Simulated Magtapes

- Simulated magtapes recognize end of file and the marker
  0xFFFFFFFF as end of medium.  Only the TMSCP tape simulator
  can generate an end of medium marker.
- The error handling in simulated magtapes was overhauled to be
  consistent through all simulators.

3.11 Simulated DECtapes

- Added support for RT11 image file format (256 x 16b) to DECtapes.

4. Bugs Fixed in 2.10 vs prior releases

- TS11/TSV05 was not simulating the XS0_MOT bit, causing failures
  under VMS.  In addition, two of the CTL options were coded
  interchanged.
- IBM 1401 tape was not setting a word mark under group mark for
  load mode reads.  This caused the diagnostics to crash.
- SCP bugs in ssh_break and set_logon were fixed (found by Dave
  Hittner).
- Numerous bugs in the HP 2100 extended arithmetic, floating point,
  21MX, DMS, and IOP instructions were fixed.  Bugs were also fixed
  in the memory protect and DMS functions.  The moving head disks
  (DP, DQ) were revised to simulate the hardware more accurately.
  Missing functions in DQ (address skip, read address) were added.
- PDP-10 tape wouldn't boot, and then wouldn't read (reported by
  Michael Thompson and Harris Newman, respectively)
- PDP-1 typewriter is half duplex, with only one shift state for
  both input and output (found by Derek Peschel)

5. General Notes

WARNING: V2.10 has reorganized and renamed some of the definition
files for the PDP-10, PDP-11, and VAX.  Be sure to delete all
previous source files before you unpack the Zip archive, or
unpack it into a new directory structure.

WARNING: V2.10 has a new, more comprehensive save file format.
Restoring save files from previous releases will cause 'invalid
register' errors and loss of CPU option flags, device enable/
disable flags, unit online/offline flags, and unit writelock
flags.

WARNING: If you are using Visual Studio .NET through the IDE,
be sure to turn off the /Wp64 flag in the project settings, or
dozens of spurious errors will be generated.

WARNING: Compiling Ethernet support under Windows requires
extra steps; see the Ethernet readme file.  Ethernet support is
currently available only for Windows, Linux, NetBSD, and OpenBSD.
2011-04-15 08:33:56 -07:00

1492 lines
47 KiB
C
Raw Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/* vax_cpu1.c: VAX complex instructions
Copyright (c) 1998-2002, Robert M Supnik
Permission is hereby granted, free of charge, to any person obtaining a
copy of this software and associated documentation files (the "Software"),
to deal in the Software without restriction, including without limitation
the rights to use, copy, modify, merge, publish, distribute, sublicense,
and/or sell copies of the Software, and to permit persons to whom the
Software is furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
ROBERT M SUPNIK BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
Except as contained in this notice, the name of Robert M Supnik shall not
be used in advertising or otherwise to promote the sale, use or other dealings
in this Software without prior written authorization from Robert M Supnik.
30-Apr-02 RMS Fixed interrupt/exception handler to clear traps
17-Apr-02 RMS Fixed pos > 31 test in bit fields (should be unsigned)
14-Apr-02 RMS Fixed prv_mode handling for interrupts (found by Tim Stark)
Fixed PROBEx to mask mode to 2b (found by Kevin Handy)
This module contains the instruction simulators for
Field instructions:
- BBS, BBC, BBSSI, BBCCI
- BBSC, BBCC, BBCS, BBSS
- EXTV, EXTZV, CMPV, CMPZV
- FFS, FFC, INSV
Call/return and push/pop instructions:
- CALLS, CALLG, RET
- PUSHR, POPR
Queue instructions:
- INSQUE, REMQUE
- INSQHI, INSQTI, REMQHI, REMQTI
String instructions:
- MOVC3, MOVC5, CMPC3, CMPC5
- LOCC, SKPC, SCANC, SPANC
Operating system interface instructions:
- CHMK, CHME, CHMS, CHMU
- PROBER, PROBEW, REI
- MTPR, MFPR
- LDPCTX, SVPCTX
- (interrupt and exception routine)
Emulated instructions:
- MOVP, CMPP3, CMPP4, ASHP
- ADDP4, ADDP6, SUBP4, SUBP6
- MULP, DIVP, CVTLP, CVTPL,
- CVTPT, CVTTP, CVTPS, CVTSP
- EDITPC, CRC
- MATCHC, MOVTC, MOVTUC
*/
#include "vax_defs.h"
static const uint8 rcnt[128] = {
0, 4, 4, 8, 4, 8, 8,12, 4, 8, 8,12, 8,12,12,16, /* 00 - 0F */
4, 8, 8,12, 8,12,12,16, 8,12,12,16,12,16,16,20, /* 10 - 1F */
4, 8, 8,12, 8,12,12,16, 8,12,12,16,12,16,16,20, /* 20 - 2F */
8,12,12,16,12,16,16,20,12,16,16,20,16,20,20,24, /* 30 - 3F */
4, 8, 8,12, 8,12,12,16, 8,12,12,16,12,16,16,20, /* 40 - 4F */
8,12,12,16,12,16,16,20,12,16,16,20,16,20,20,24, /* 50 - 5F */
8,12,12,16,12,16,16,20,12,16,16,20,16,20,20,24, /* 60 - 6F */
12,16,16,20,16,20,20,24,16,20,20,24,20,24,24,28 /* 70 - 7F */
};
int32 last_chm = 0;
extern uint32 *M;
extern uint32 byte_mask[33];
extern int32 R[16];
extern int32 STK[5];
extern int32 PSL;
extern int32 SCBB, PCBB, SBR, SLR;
extern int32 P0BR, P0LR, P1BR, P1LR;
extern int32 ASTLVL, SISR, mapen;
extern int32 CADR, MSER;
extern int32 trpirq;
extern int32 p1, p2;
extern int32 conpsl, conpc;
extern int32 fault_PC;
extern int32 pcq[PCQ_SIZE];
extern int32 pcq_p;
extern int32 in_ie;
extern int32 mchk_va;
extern int32 sim_interval;
extern int32 ibcnt, ppc;
extern int32 cpu_log;
extern FILE *sim_log;
extern int32 Read (t_addr va, int32 lnt, int32 acc);
extern void Write (t_addr va, int32 val, int32 lnt, int32 acc);
extern int32 Test (t_addr va, int32 acc, int32 *status);
extern int32 ReadLP (t_addr pa);
extern void WriteLP (t_addr pa, int32 val);
extern void set_map_reg (void);
extern void zap_tb (int stb);
extern void zap_tb_ent (t_addr va);
extern t_bool chk_tb_ent (t_addr va);
extern int32 ReadIPR (int32 rg);
extern void WriteIPR (int32 rg, int32 val);
extern jmp_buf save_env;
/* Branch on bit and no modify
Branch on bit and modify
opnd[0] = position (pos.rl)
opnd[1] = register number/memory flag
opnd[2] = memory address, if memory
Returns bit to be tested
*/
int32 op_bb_n (int32 *opnd, int32 acc)
{
int32 pos = opnd[0];
int32 rn = opnd[1];
int32 ea, by;
if (rn >= 0) { /* register? */
if (((uint32) pos) > 31) RSVD_OPND_FAULT; /* pos > 31? fault */
return (R[rn] >> pos) & 1; } /* get bit */
ea = opnd[2] + (pos >> 3); /* base byte addr */
pos = pos & 07; /* pos in byte */
by = Read (ea, L_BYTE, RA); /* read byte */
return ((by >> pos) & 1); /* get bit */
}
int32 op_bb_x (int32 *opnd, int32 newb, int32 acc)
{
int32 pos = opnd[0];
int32 rn = opnd[1];
int32 ea, by, bit;
if (rn >= 0) { /* register? */
if (((uint32) pos) > 31) RSVD_OPND_FAULT; /* pos > 31? fault */
bit = (R[rn] >> pos) & 1; /* get bit */
R[rn] = newb? (R[rn] | (1u << pos)): (R[rn] & ~(1u << pos));
return bit; }
ea = opnd[2] + (pos >> 3); /* base byte addr */
pos = pos & 07; /* pos in byte */
by = Read (ea, L_BYTE, WA); /* read byte */
bit = (by >> pos) & 1; /* get bit */
by = newb? (by | (1u << pos)): (by & ~(1u << pos)); /* change bit */
Write (ea, by, L_BYTE, WA); /* rewrite byte */
return bit;
}
/* Extract field
opnd[0] = position (pos.rl)
opnd[1] = size (size.rb)
opnd[2] = register number/memory flag
opnd[3] = register content/memory address
If the field is in a register, rn + 1 is in vfldrp1
*/
int32 op_extv (int32 *opnd, int32 vfldrp1, int32 acc)
{
int32 pos = opnd[0];
int32 size = opnd[1];
int32 rn = opnd[2];
uint32 wd = opnd[3];
int32 ba, wd1 = 0;
if (size == 0) return 0; /* size 0? field = 0 */
if (size > 32) RSVD_OPND_FAULT; /* size > 32? fault */
if (rn >= 0) { /* register? */
if (((uint32) pos) > 31) RSVD_OPND_FAULT; /* pos > 31? fault */
if (pos) wd = (wd >> pos) | (((uint32) vfldrp1) << (32 - pos)); }
else { ba = wd + (pos >> 3); /* base byte addr */
pos = (pos & 07) | ((ba & 03) << 3); /* bit offset */
ba = ba & ~03; /* lw align base */
wd = Read (ba, L_LONG, RA); /* read field */
if ((size + pos) > 32) wd1 = Read (ba + 4, L_LONG, RA);
if (pos) wd = (wd >> pos) | (((uint32) wd1) << (32 - pos)); }
return wd & byte_mask[size];
}
/* Insert field
opnd[0] = field (src.rl)
opnd[1] = position (pos.rl)
opnd[2] = size (size.rb)
opnd[3] = register number/memory flag
opnd[4] = register content/memory address
If the field is in a register, rn + 1 is in vfldrp1
*/
void op_insv (int32 *opnd, int32 vfldrp1, int32 acc)
{
uint32 ins = opnd[0];
int32 pos = opnd[1];
int32 size = opnd[2];
int32 rn = opnd[3];
int32 val, mask, ba, wd, wd1;
if (size == 0) return; /* size = 0? done */
if (size > 32) RSVD_OPND_FAULT; /* size > 32? fault */
if (rn >= 0) { /* in registers? */
if (((uint32) pos) > 31) RSVD_OPND_FAULT; /* pos > 31? fault */
if ((pos + size) > 32) { /* span two reg? */
if (rn >= nSP) RSVD_OPND_FAULT; /* if PC, fault */
mask = byte_mask[pos + size - 32]; /* insert fragment */
val = ins >> (32 - pos);
R[rnplus1] = (vfldrp1 & ~mask) | (val & mask); }
mask = byte_mask[size] << pos; /* insert field */
val = ins << pos;
R[rn] = (R[rn] & ~mask) | (val & mask); }
else { ba = opnd[4] + (pos >> 3); /* base byte addr */
pos = (pos & 07) | ((ba & 03) << 3); /* bit offset */
ba = ba & ~03; /* lw align base */
wd = Read (ba, L_LONG, WA); /* read field */
if ((size + pos) > 32) { /* field span lw? */
wd1 = Read (ba + 4, L_LONG, WA); /* read 2nd lw */
mask = byte_mask[pos + size - 32]; /* insert fragment */
val = ins >> (32 - pos);
Write (ba + 4, (wd1 & ~mask) | (val & mask), L_LONG, WA); }
mask = byte_mask[size] << pos; /* insert field */
val = ins << pos;
Write (ba, (wd & ~mask) | (val & mask), L_LONG, WA); }
return;
}
/* Find first */
int32 op_ffs (uint32 wd, int32 size)
{
int32 i;
for (i = 0; wd; i++, wd = wd >> 1) if (wd & 1) return i;
return size;
}
#define CALL_DV 0x8000 /* DV set */
#define CALL_IV 0x4000 /* IV set */
#define CALL_MBZ 0x3000 /* MBZ */
#define CALL_MASK 0x0FFF /* mask */
#define CALL_V_SPA 30 /* SPA */
#define CALL_M_SPA 03
#define CALL_V_S 29 /* S flag */
#define CALL_S (1 << CALL_V_S)
#define CALL_V_MASK 16
#define CALL_PUSH(n) if ((mask >> (n)) & 1) { \
tsp = tsp - 4; \
Write (tsp, R[n], L_LONG, WA); }
#define CALL_GETSPA(x) (((x) >> CALL_V_SPA) & CALL_M_SPA)
#define RET_POP(n) if ((spamask >> (n + CALL_V_MASK)) & 1) { \
R[n] = Read (tsp, L_LONG, RA); \
tsp = tsp + 4; }
#define PUSHR_PUSH(n) CALL_PUSH(n)
#define POPR_POP(n) if ((mask >> (n)) & 1) { \
R[n] = Read (SP, L_LONG, RA); \
SP = SP + 4; }
/* CALLG, CALLS
opnd[0] = argument (arg.rx)
opnd[1] = procedure address (adr.ab)
flg = CALLG (0), CALLS (1)
acc = access mask
These instructions implement a generalized procedure call and return facility.
The principal data structure involved is the stack frame.
CALLS and CALLG build a stack frame in the following format:
+---------------------------------------------------------------+
| condition handler (initially 0) |
+---+-+-+-----------------------+--------------------+----------+
|SPA|S|0| entry mask<11:0> | saved PSW<15:5> | 0 0 0 0 0|
+---+-+-+-----------------------+--------------------+----------+
| saved AP |
+---------------------------------------------------------------+
| saved FP |
+---------------------------------------------------------------+
| saved PC |
+---------------------------------------------------------------+
| saved R0 (...) |
+---------------------------------------------------------------+
. .
. (according to entry mask<11:0>) .
. .
+---------------------------------------------------------------+
| saved R11 (...) |
+---------------+-----------------------------------------------+
| #args (CALLS) | (0-3 bytes needed to align stack) |
+---------------+-----------------------------------------------+
| | 0 0 0 (CALLS) |
+---------------+-----------------------------------------------+
RET expects to find this structure based at the frame pointer (FP).
For CALLG and CALLS, the entry mask specifies the new settings of
DV and IV, and also which registers are to be saved on entry:
15 14 13 12 11 0
+--+--+-----+----------------------------------+
|DV|IV| MBZ | register mask |
+--+--+-----+----------------------------------+
CALLG/CALLS operation:
read the procedure entry mask
make sure that the stack frame will be accessible
if CALLS, push the number of arguments onto the stack
align the stack to the next lower longword boundary
push the registers specified by the procedure entry mask
push PC, AP, FP, saved SPA/S0/mask/PSW, condition handler
update PC, SP, FP, AP
update PSW traps, clear condition codes
*/
int32 op_call (int32 *opnd, t_bool gs, int32 acc)
{
int32 addr = opnd[1];
int32 mask, stklen, tsp, wd;
mask = Read (addr, L_WORD, RA); /* get proc mask */
if (mask & CALL_MBZ) RSVD_OPND_FAULT; /* test mbz */
stklen = rcnt[mask & 077] + rcnt[(mask >> 6) & 077] + (gs? 24: 20);
Read (SP - stklen, L_BYTE, WA); /* wchk stk */
if (gs) {
Write (SP - 4, opnd[0], L_LONG, WA); /* if S, push #arg */
SP = SP - 4; } /* stack is valid */
tsp = SP & ~CALL_M_SPA; /* lw align stack */
CALL_PUSH (11); /* check mask bits, */
CALL_PUSH (10); /* push sel reg */
CALL_PUSH (9);
CALL_PUSH (8);
CALL_PUSH (7);
CALL_PUSH (6);
CALL_PUSH (5);
CALL_PUSH (4);
CALL_PUSH (3);
CALL_PUSH (2);
CALL_PUSH (1);
CALL_PUSH (0);
Write (tsp - 4, PC, L_LONG, WA); /* push PC */
Write (tsp - 8, FP, L_LONG, WA); /* push AP */
Write (tsp - 12, AP, L_LONG, WA); /* push FP */
wd = ((SP & CALL_M_SPA) << CALL_V_SPA) | (gs << CALL_V_S) |
((mask & CALL_MASK) << CALL_V_MASK) | (PSL & 0xFFE0);
Write (tsp - 16, wd, L_LONG, WA); /* push spa/s/mask/psw */
Write (tsp - 20, 0, L_LONG, WA); /* push cond hdlr */
if (gs) AP = SP; /* update AP */
else AP = opnd[0];
SP = FP = tsp - 20; /* update FP, SP */
PSL = (PSL & ~(PSW_DV | PSW_FU | PSW_IV)) | /* update PSW */
((mask & CALL_DV)? PSW_DV: 0) |
((mask & CALL_IV)? PSW_IV: 0);
JUMP (addr + 2); /* new PC */
return 0; /* new cc's */
}
int32 op_ret (int32 acc)
{
int32 spamask, stklen, newpc, nargs;
int32 tsp = FP;
spamask = Read (tsp + 4, L_LONG, RA); /* spa/s/mask/psw */
if (spamask & PSW_MBZ) RSVD_OPND_FAULT; /* test mbz */
stklen = rcnt[(spamask >> CALL_V_MASK) & 077] +
rcnt[(spamask >> (CALL_V_MASK + 6)) & 077] + ((spamask & CALL_S)? 23: 19);
Read (tsp + stklen, L_BYTE, RA); /* rchk stk end */
AP = Read (tsp + 8, L_LONG, RA); /* restore AP */
FP = Read (tsp + 12, L_LONG, RA); /* restore FP */
newpc = Read (tsp + 16, L_LONG, RA); /* get new PC */
tsp = tsp + 20; /* update stk ptr */
RET_POP (0); /* chk mask bits, */
RET_POP (1); /* pop sel regs */
RET_POP (2);
RET_POP (3);
RET_POP (4);
RET_POP (5);
RET_POP (6);
RET_POP (7);
RET_POP (8);
RET_POP (9);
RET_POP (10);
RET_POP (11);
SP = tsp + CALL_GETSPA (spamask); /* dealign stack */
if (spamask & CALL_S) { /* CALLS? */
nargs = Read (SP, L_LONG, RA); /* read #args */
SP = SP + 4 + ((nargs & BMASK) << 2); } /* pop arg list */
PSL = (PSL & ~(PSW_DV | PSW_FU | PSW_IV | PSW_T)) | /* reset PSW */
(spamask & (PSW_DV | PSW_FU | PSW_IV | PSW_T));
JUMP (newpc); /* set new PC */
return spamask & (CC_MASK); /* return cc's */
}
/* PUSHR and POPR */
void op_pushr (int32 *opnd, int32 acc)
{
int32 mask = opnd[0] & 0x7FFF;
int32 stklen, tsp;
if (mask == 0) return;
stklen = rcnt[(mask >> 7) & 0177] + rcnt[mask & 0177] +
((mask & 0x4000)? 4: 0);
Read (SP - stklen, L_BYTE, WA); /* wchk stk end */
tsp = SP; /* temp stk ptr */
PUSHR_PUSH (14); /* check mask bits, */
PUSHR_PUSH (13); /* push sel reg */
PUSHR_PUSH (12);
PUSHR_PUSH (11);
PUSHR_PUSH (10);
PUSHR_PUSH (9);
PUSHR_PUSH (8);
PUSHR_PUSH (7);
PUSHR_PUSH (6);
PUSHR_PUSH (5);
PUSHR_PUSH (4);
PUSHR_PUSH (3);
PUSHR_PUSH (2);
PUSHR_PUSH (1);
PUSHR_PUSH (0);
SP = tsp; /* update stk ptr */
return;
}
void op_popr (int32 *opnd, int32 acc)
{
int32 mask = opnd[0] & 0x7FFF;
int32 stklen;
if (mask == 0) return;
stklen = rcnt[(mask >> 7) & 0177] + rcnt[mask & 0177] +
((mask & 0x4000)? 4: 0);
Read (SP + stklen - 1, L_BYTE, RA); /* rchk stk end */
POPR_POP (0); /* check mask bits, */
POPR_POP (1); /* pop sel regs */
POPR_POP (2);
POPR_POP (3);
POPR_POP (4);
POPR_POP (5);
POPR_POP (6);
POPR_POP (7);
POPR_POP (8);
POPR_POP (9);
POPR_POP (10);
POPR_POP (11);
POPR_POP (12);
POPR_POP (13);
if (mask & 0x4000) SP = Read (SP, L_LONG, RA); /* if pop SP, no inc */
return;
}
/* INSQUE
opnd[0] = entry address (ent.ab)
opnd[1] = predecessor address (pred.ab)
Condition codes returned to caller on comparison of (ent):(ent+4).
All writes must be checked before any writes are done.
Pictorially:
BEFORE AFTER
P: S P: E W
P+4: (n/a) P+4: (n/a)
E: --- E: S W
E+4: --- E+4: P W
S: (n/a) S: (n/a)
S+4: P S+4: E W
s+4 must be tested with a read modify rather than a probe, as it
might be misaligned.
*/
int32 op_insque (int32 *opnd, int32 acc)
{
int32 p = opnd[1];
int32 e = opnd[0];
int32 s, cc;
s = Read (p, L_LONG, WA); /* s <- (p), wchk */
Read (s + 4, L_LONG, WA); /* wchk s+4 */
Read (e + 4, L_LONG, WA); /* wchk e+4 */
Write (e, s, L_LONG, WA); /* (e) <- s */
Write (e + 4, p, L_LONG, WA); /* (e+4) <- p */
Write (s + 4, e, L_LONG, WA); /* (s+4) <- ent */
Write (p, e, L_LONG, WA); /* (p) <- e */
CC_CMP_L (s, p); /* set cc's */
return cc;
}
/* REMQUE
opnd[0] = entry address (ent.ab)
opnd[1:2] = destination address (dst.wl)
Condition codes returned to caller based on (ent):(ent+4).
All writes must be checked before any writes are done.
Pictorially:
BEFORE AFTER
P: E P: S W
P+4: (n/a) P+4: (n/a)
E: S W E: S
E+4: P W E+4: P
S: (n/a) S: (n/a)
S+4: E W S+4: P
*/
int32 op_remque (int32 *opnd, int32 acc)
{
int32 e = opnd[0];
int32 s, p, cc;
s = Read (e, L_LONG, RA); /* s <- (e) */
p = Read (e + 4, L_LONG, RA); /* p <- (e+4) */
CC_CMP_L (s, p); /* set cc's */
if (e != p) { /* queue !empty? */
Read (s + 4, L_LONG, WA); /* wchk (s+4) */
if (opnd[1] < 0) Read (opnd[2], L_LONG, WA); /* wchk dest */
Write (p, s, L_LONG, WA); /* (p) <- s */
Write (s + 4, p, L_LONG, WA); } /* (s+4) <- p */
else cc = cc | CC_V; /* else set v */
if (opnd[1] >= 0) R[opnd[1]] = e; /* store result */
else Write (opnd[2], e, L_LONG, WA);
return cc;
}
/* Interlocked insert instructions
opnd[0] = entry (ent.ab)
opnd[1] = header (hdr.aq)
Pictorially:
BEFORE AFTER INSQHI AFTER INSQTI
H: A-H H: D-H W H: A-H W for interlock
H+4: C-H H+4: C-H H+4: D-H W
A: B-A A: B-A A: B-A
A+4: H-A A+4: D-A W A+4: H-A
B: C-B B: C-B B: C-B
B+4: A-B B+4: A-B B+4: A-B
C: H-C C: H-C C: D-C W
C+4: B-C C+4: B-C C+4: B-C
D: --- D: A-D W D: H-D W
D+4: --- D+4: H-D W D+4: C-D W
Note that the queue header, the entry to be inserted, and all
the intermediate entries that are "touched" in any way must be
QUADWORD aligned. In addition, the header and the entry must
not be equal.
*/
int32 op_insqhi (int32 *opnd, int32 acc)
{
int32 h = opnd[1];
int32 d = opnd[0];
int32 a, t;
if ((h == d) || ((h | d) & 07)) RSVD_OPND_FAULT; /* h, d quad align? */
Read (d, L_BYTE, WA); /* wchk ent */
a = Read (h, L_LONG, WA); /* a <- (h), wchk */
if (a & 06) RSVD_OPND_FAULT; /* chk quad align */
if (a & 01) return CC_C; /* busy, cc = 0001 */
Write (h, a | 1, L_LONG, WA); /* get interlock */
a = a + h; /* abs addr of a */
if (Test (a, WA, &t) < 0) Write (h, a - h, L_LONG, WA); /* wtst a, rls if err */
Write (a + 4, d - a, L_LONG, WA); /* (a+4) <- d-a, flt ok */
Write (d, a - d, L_LONG, WA); /* (d) <- a-d */
Write (d + 4, h - d, L_LONG, WA); /* (d+4) <- h-d */
Write (h, d - h, L_LONG, WA); /* (h) <- d-h, rls int */
return (a == h)? CC_Z: 0; /* Z = 1 if a = h */
}
int32 op_insqti (int32 *opnd, int32 acc)
{
int32 h = opnd[1];
int32 d = opnd[0];
int32 a, c, t;
if ((h == d) || ((h | d) & 07)) RSVD_OPND_FAULT; /* h, d quad align? */
Read (d, L_BYTE, WA); /* wchk ent */
a = Read (h, L_LONG, WA); /* a <- (h), wchk */
if (a == 0) return op_insqhi (opnd, acc); /* if empty, ins hd */
if (a & 06) RSVD_OPND_FAULT; /* chk quad align */
if (a & 01) return CC_C; /* busy, cc = 0001 */
Write (h, a | 1, L_LONG, WA); /* acquire interlock */
c = Read (h + 4, L_LONG, RA) + h; /* c <- (h+4) + h */
if (c & 07) { /* c quad aligned? */
Write (h, a, L_LONG, WA); /* release interlock */
RSVD_OPND_FAULT; } /* fault */
if (Test (c, WA, &t) < 0) Write (h, a, L_LONG, WA); /* wtst c, rls if err */
Write (c, d - c, L_LONG, WA); /* (c) <- d-c, flt ok */
Write (d, h - d, L_LONG, WA); /* (d) <- h-d */
Write (d + 4, c - d, L_LONG, WA); /* (d+4) <- c-d */
Write (h + 4, d - h, L_LONG, WA); /* (h+4) <- d-h */
Write (h, a, L_LONG, WA); /* release interlock */
return 0; /* q >= 2 entries */
}
/* Interlocked remove instructions
opnd[0] = header (hdr.aq)
opnd[1:2] = destination address (dst.al)
Pictorially:
BEFORE AFTER REMQHI AFTER REMQTI
H: A-H H: B-H W H: A-H W for interlock
H+4: C-H H+4: C-H H+4: B-H W
A: B-A A: B-A R A: B-A
A+4: H-A A+4: H-A A+4: H-A
B: C-B B: C-B B: H-B W
B+4: A-B B+4: H-B W B+4: A-B
C: H-C C: H-C C: H-C
C+4: B-C C+4: B-C C+4: B-C R
Note that the queue header and all the entries that are
"touched" in any way must be QUADWORD aligned. In addition,
the header and the destination must not be equal.
*/
int32 op_remqhi (int32 *opnd, int32 acc)
{
int32 h = opnd[0];
int32 ar, a, b, t;
if (h & 07) RSVD_OPND_FAULT; /* h quad aligned? */
if (opnd[1] < 0) { /* mem destination? */
if (h == opnd[2]) RSVD_OPND_FAULT; /* hdr = dst? */
Read (opnd[2], L_LONG, WA); } /* wchk dst */
ar = Read (h, L_LONG, WA); /* ar <- (h) */
if (ar & 06) RSVD_OPND_FAULT; /* a quad aligned? */
if (ar & 01) return CC_V | CC_C; /* busy, cc = 0011 */
a = ar + h; /* abs addr of a */
if (ar) { /* queue not empty? */
Write (h, ar | 1, L_LONG, WA); /* acquire interlock */
if (Test (a, RA, &t) < 0) /* read tst a */
Write (h, ar, L_LONG, WA); /* release if error */
b = Read (a, L_LONG, RA) + a; /* b <- (a)+a, flt ok */
if (b & 07) { /* b quad aligned? */
Write (h, ar, L_LONG, WA); /* release interlock */
RSVD_OPND_FAULT; } /* fault */
if (Test (b, WA, &t) < 0) /* write test b */
Write (h, ar, L_LONG, WA); /* release if err */
Write (b + 4, h - b, L_LONG, WA); /* (b+4) <- h-b, flt ok */
Write (h, b - h, L_LONG, WA); } /* (h) <- b-h, rls int */
if (opnd[1] >= 0) R[opnd[1]] = a; /* store result */
else Write (opnd[2], a, L_LONG, WA);
if (ar == 0) return CC_Z | CC_V; /* empty, cc = 0110 */
return (b == h)? CC_Z: 0; /* if b = h, q empty */
}
int32 op_remqti (int32 *opnd, int32 acc)
{
int32 h = opnd[0];
int32 ar, b, c, t;
if (h & 07) RSVD_OPND_FAULT; /* h quad aligned? */
if (opnd[1] < 0) { /* mem destination? */
if (h == opnd[2]) RSVD_OPND_FAULT; /* hdr = dst? */
Read (opnd[2], L_LONG, WA); } /* wchk dst */
ar = Read (h, L_LONG, WA); /* a <- (h) */
if (ar & 06) RSVD_OPND_FAULT; /* a quad aligned? */
if (ar & 01) return CC_V | CC_C; /* busy, cc = 0011 */
if (ar) { /* queue not empty */
Write (h, ar | 1, L_LONG, WA); /* acquire interlock */
c = Read (h + 4, L_LONG, RA); /* c <- (h+4) */
if (ar == c) { /* single entry? */
Write (h, ar, L_LONG, WA); /* release interlock */
return op_remqhi (opnd, acc); } /* treat as remqhi */
if (c & 07) { /* c quad aligned? */
Write (h, ar, L_LONG, WA); /* release interlock */
RSVD_OPND_FAULT; } /* fault */
c = c + h; /* abs addr of c */
if (Test (c + 4, RA, &t) < 0) /* read test c+4 */
Write (h, ar, L_LONG, WA); /* release if error */
b = Read (c + 4, L_LONG, RA) + c; /* b <- (c+4)+c, flt ok */
if (b & 07) { /* b quad aligned? */
Write (h, ar, L_LONG, WA); /* release interlock */
RSVD_OPND_FAULT; } /* fault */
if (Test (b, WA, &t) < 0) /* write test b */
Write (h, ar, L_LONG, WA); /* release if error */
Write (b, h - b, L_LONG, WA); /* (b) <- h-b */
Write (h + 4, b - h, L_LONG, WA); /* (h+4) <- b-h */
Write (h, ar, L_LONG, WA); } /* release interlock */
else c = h; /* empty, result = h */
if (opnd[1] >= 0) R[opnd[1]] = c; /* store result */
else Write (opnd[2], c, L_LONG, WA);
if (ar == 0) return CC_Z | CC_V; /* empty, cc = 0110 */
return 0; /* q can't be empty */
}
/* String instructions */
#define MVC_FRWD 0 /* movc state codes */
#define MVC_BACK 1
#define MVC_FILL 3 /* must be 3 */
#define MVC_M_STATE 3
#define MVC_V_CC 2
#define STR_V_DPC 24
#define STR_M_DPC 0xFF
#define STR_V_CHR 16
#define STR_M_CHR 0xFF
#define STR_LNMASK 0xFFFF
#define STR_GETDPC(x) (((x) >> STR_V_DPC) & STR_M_DPC)
#define STR_GETCHR(x) (((x) >> STR_V_CHR) & STR_M_CHR)
#define STR_PACK(m,x) ((((PC - fault_PC) & STR_M_DPC) << STR_V_DPC) | \
(((m) & STR_M_CHR) << STR_V_CHR) | ((x) & STR_LNMASK))
/* MOVC3, MOVC5
if PSL<fpd> = 0 and MOVC3,
opnd[0] = length
opnd[1] = source address
opnd[2] = dest address
if PSL<fpd> = 0 and MOVC5,
opnd[0] = source length
opnd[1] = source address
opnd[2] = fill
opnd[3] = dest length
opnd[4] = dest address
if PSL<fpd> = 1,
R0 = delta-PC/fill/initial move length
R1 = current source address
R2 = current move length
R3 = current dest address
R4 = dstlen - srclen (loop count if fill state)
R5 = cc/state
*/
int32 op_movc (int32 *opnd, int32 movc5, int32 acc)
{
int32 i, cc, fill, wd;
int32 j, lnt, mlnt[3];
static const int32 looplnt[3] = { L_BYTE, L_LONG, L_BYTE };
if (PSL & PSL_FPD) { /* FPD set? */
SETPC (fault_PC + STR_GETDPC (R[0])); /* reset PC */
fill = STR_GETCHR (R[0]); /* get fill */
R[2] = R[2] & STR_LNMASK; /* mask lengths */
if (R[4] > 0) R[4] = R[4] & STR_LNMASK; }
else { R[1] = opnd[1]; /* src addr */
if (movc5) { /* MOVC5? */
R[2] = (opnd[0] < opnd[3])? opnd[0]: opnd[3];
R[3] = opnd[4]; /* dst addr */
R[4] = opnd[3] - opnd[0]; /* dstlen - srclen */
fill = opnd[2]; /* set fill */
CC_CMP_W (opnd[0], opnd[3]); } /* set cc's */
else {
R[2] = opnd[0]; /* mvlen = srclen */
R[3] = opnd[2]; /* dst addr */
R[4] = fill = 0; /* no fill */
cc = CC_Z; } /* set cc's */
R[0] = STR_PACK (fill, R[2]); /* initial mvlen */
if (R[2]) { /* any move? */
if (((uint32) R[1]) < ((uint32) R[3])) {
R[1] = R[1] + R[2]; /* backward, adjust */
R[3] = R[3] + R[2]; /* addr to end */
R[5] = MVC_BACK; } /* set state */
else R[5] = MVC_FRWD; } /* fwd, set state */
else R[5] = MVC_FILL; /* fill, set state */
R[5] = R[5] | (cc << MVC_V_CC); /* pack with state */
PSL = PSL | PSL_FPD; } /* set FPD */
/* At this point,
R0 = delta PC'fill'initial move length
R1 = current src addr
R2 = current move length
R3 = current dst addr
R4 = dst length - src length
R5 = cc'state
*/
switch (R[5] & MVC_M_STATE) { /* case on state */
case MVC_FRWD: /* move forward */
mlnt[0] = (4 - R[3]) & 3; /* length to align */
if (mlnt[0] > R[2]) mlnt[0] = R[2]; /* cant exceed total */
mlnt[1] = (R[2] - mlnt[0]) & ~03; /* aligned length */
mlnt[2] = R[2] - mlnt[0] - mlnt[1]; /* tail */
for (i = 0; i < 3; i++) { /* head, align, tail */
lnt = looplnt[i]; /* length for loop */
for (j = 0; j < mlnt[i]; j = j + lnt, sim_interval--) {
/* if (sim_interval == 0) ABORT (ABORT_INTR); */
wd = Read (R[1], lnt, RA); /* read src */
Write (R[3], wd, lnt, WA); /* write dst */
R[1] = R[1] + lnt; /* inc src addr */
R[3] = R[3] + lnt; /* inc dst addr */
R[2] = R[2] - lnt; } } /* dec move lnt */
goto FILL; /* check for fill */
case MVC_BACK: /* move backward */
mlnt[0] = R[3] & 03; /* length to align */
if (mlnt[0] > R[2]) mlnt[0] = R[2]; /* cant exceed total */
mlnt[1] = (R[2] - mlnt[0]) & ~03; /* aligned length */
mlnt[2] = R[2] - mlnt[0] - mlnt[1]; /* tail */
for (i = 0; i < 3; i++) { /* head, align, tail */
lnt = looplnt[i]; /* length for loop */
for (j = 0; j < mlnt[i]; j = j + lnt, sim_interval--) {
/* if (sim_interval == 0) ABORT (ABORT_INTR); */
wd = Read (R[1] - lnt, lnt, RA); /* read src */
Write (R[3] - lnt, wd, lnt, WA); /* write dst */
R[1] = R[1] - lnt; /* dec src addr */
R[3] = R[3] - lnt; /* dec dst addr */
R[2] = R[2] - lnt; } } /* dec move lnt */
R[1] = R[1] + (R[0] & STR_LNMASK); /* final src addr */
R[3] = R[3] + (R[0] & STR_LNMASK); /* final dst addr */
case MVC_FILL: /* fill */
FILL:
if (R[4] <= 0) break; /* any fill? */
R[5] = R[5] | MVC_FILL; /* set state */
mlnt[0] = (4 - R[3]) & 3; /* length to align */
if (mlnt[0] > R[4]) mlnt[0] = R[4]; /* cant exceed total */
mlnt[1] = (R[4] - mlnt[0]) & ~03; /* aligned length */
mlnt[2] = R[4] - mlnt[0] - mlnt[1]; /* tail */
for (i = 0; i < 3; i++) { /* head, align, tail */
lnt = looplnt[i]; /* length for loop */
fill = fill & BMASK; /* fill for loop */
if (lnt == L_LONG) fill =
(((uint32) fill) << 24) | (fill << 16) | (fill << 8) | fill;
for (j = 0; j < mlnt[i]; j = j + lnt, sim_interval--) {
/* if (sim_interval == 0) ABORT (ABORT_INTR); */
Write (R[3], fill, lnt, WA); /* write fill */
R[3] = R[3] + lnt; /* inc dst addr */
R[4] = R[4] - lnt; } } /* dec fill lnt */
break;
default: /* bad state */
RSVD_OPND_FAULT; } /* you lose */
PSL = PSL & ~PSL_FPD; /* clear FPD */
cc = (R[5] >> MVC_V_CC) & CC_MASK; /* get cc's */
R[0] = NEG (R[4]); /* set R0 */
R[2] = R[4] = R[5] = 0; /* clear reg */
return cc;
}
/* CMPC3, CMPC5
if PSL<fpd> = 0 and CMPC3,
opnd[0] = length
opnd[1] = source1 address
opnd[2] = source2 address
if PSL<fpd> = 0 and CMPC5,
opnd[0] = source1 length
opnd[1] = source1 address
opnd[2] = fill
opnd[3] = source2 length
opnd[4] = source2 address
if PSL<fpd> = 1,
R0 = delta-PC/fill/source1 length
R1 = source1 address
R2 = source2 length
R3 = source2 address
*/
int32 op_cmpc (int32 *opnd, int32 cmpc5, int32 acc)
{
int32 cc, s1, s2, fill;
if (PSL & PSL_FPD) { /* FPD set? */
SETPC (fault_PC + STR_GETDPC (R[0])); /* reset PC */
fill = STR_GETCHR (R[0]); } /* get fill */
else { R[1] = opnd[1]; /* src1len */
if (cmpc5) { /* CMPC5? */
R[2] = opnd[3]; /* get src2 opnds */
R[3] = opnd[4];
fill = opnd[2]; }
else {
R[2] = opnd[0]; /* src2len = src1len */
R[3] = opnd[2];
fill = 0; }
R[0] = STR_PACK (fill, opnd[0]); /* src1len + FPD data */
PSL = PSL | PSL_FPD; }
R[2] = R[2] & STR_LNMASK; /* mask src2len */
for (s1 = s2 = 0; ((R[0] | R[2]) & STR_LNMASK) != 0; sim_interval--) {
/* if (sim_interval == 0) ABORT (ABORT_INTR); /* timer event */
if (R[0] & STR_LNMASK) s1 = Read (R[1], L_BYTE, RA); /* src1? read */
else s1 = fill; /* no, use fill */
if (R[2]) s2 = Read (R[3], L_BYTE, RA); /* src2? read */
else s2 = fill; /* no, use fill */
if (s1 != s2) break; /* src1 = src2? */
if (R[0] & STR_LNMASK) { /* if src1, decr */
R[0] = (R[0] & ~STR_LNMASK) | ((R[0] - 1) & STR_LNMASK);
R[1] = R[1] + 1; }
if (R[2]) { /* if src2, decr */
R[2] = (R[2] - 1) & STR_LNMASK;
R[3] = R[3] + 1; } }
PSL = PSL & ~PSL_FPD; /* clear FPD */
CC_CMP_B (s1, s2); /* set cc's */
R[0] = R[0] & STR_LNMASK; /* clear packup */
return cc;
}
/* LOCC, SKPC
if PSL<fpd> = 0,
opnd[0] = match character
opnd[1] = source length
opnd[2] = source address
if PSL<fpd> = 1,
R0 = delta-PC/match/source length
R1 = source address
*/
int32 op_locskp (int32 *opnd, int32 skpc, int32 acc)
{
int32 c, match;
if (PSL & PSL_FPD) { /* FPD set? */
SETPC (fault_PC + STR_GETDPC (R[0])); /* reset PC */
match = STR_GETCHR (R[0]); } /* get match char */
else { match = opnd[0]; /* get operands */
R[0] = STR_PACK (match, opnd[1]); /* src len + FPD data */
R[1] = opnd[2]; /* src addr */
PSL = PSL | PSL_FPD; }
for ( ; (R[0] & STR_LNMASK) != 0; sim_interval-- ) { /* loop thru string */
/* if (sim_interval == 0) ABORT (ABORT_INTR); /* timer event? */
c = Read (R[1], L_BYTE, RA); /* get src byte */
if ((c == match) ^ skpc) break; /* match & locc? */
R[0] = (R[0] & ~STR_LNMASK) | ((R[0] - 1) & STR_LNMASK);
R[1] = R[1] + 1; } /* incr src1adr */
PSL = PSL & ~PSL_FPD; /* clear FPD */
R[0] = R[0] & STR_LNMASK; /* clear packup */
return (R[0]? 0: CC_Z); /* set cc's */
}
/* SCANC, SPANC
if PSL<fpd> = 0,
opnd[0] = source length
opnd[1] = source address
opnd[2] = table address
opnd[3] = mask
if PSL<fpd> = 1,
R0 = delta-PC/char/source length
R1 = source address
R3 = table address
*/
int32 op_scnspn (int32 *opnd, int32 spanc, int32 acc)
{
int32 c, t, mask;
if (PSL & PSL_FPD) { /* FPD set? */
SETPC (fault_PC + STR_GETDPC (R[0])); /* reset PC */
mask = STR_GETCHR (R[0]); } /* get mask */
else { R[1] = opnd[1]; /* src addr */
R[3] = opnd[2]; /* tblad */
mask = opnd[3]; /* mask */
R[0] = STR_PACK (mask, opnd[0]); /* srclen + FPD data */
PSL = PSL | PSL_FPD; }
for ( ; (R[0] & STR_LNMASK) != 0; sim_interval-- ) { /* loop thru string */
/* if (sim_interval == 0) ABORT (ABORT_INTR); /* timer event? */
c = Read (R[1], L_BYTE, RA); /* get byte */
t = Read (R[3] + c, L_BYTE, RA); /* get table ent */
if (((t & mask) != 0) ^ spanc) break; /* test vs instr */
R[0] = (R[0] & ~STR_LNMASK) | ((R[0] - 1) & STR_LNMASK);
R[1] = R[1] + 1; }
PSL = PSL & ~PSL_FPD;
R[0] = R[0] & STR_LNMASK; /* clear packup */
R[2] = 0;
return (R[0]? 0: CC_Z);
}
/* Operating system interfaces */
/* Interrupt or exception
vec = SCB vector
cc = condition codes
ipl = new IPL if interrupt
ei = -1: severe exception
0: normal exception
1: interrupt
*/
int32 intexc (int32 vec, int32 cc, int32 ipl, int ei)
{
int32 oldpsl = PSL | cc;
int32 oldcur = PSL_GETCUR (oldpsl);
int32 oldsp = SP;
int32 newpsl;
int32 newpc;
int32 acc;
in_ie = 1; /* flag int/exc */
CLR_TRAPS; /* clear traps */
newpc = ReadLP ((SCBB + vec) & PAMASK); /* read new PC */
if (ei < 0) newpc = newpc | 1; /* severe? on istk */
if (newpc & 2) ABORT (STOP_ILLVEC); /* bad flags? */
if (oldpsl & PSL_IS) newpsl = PSL_IS; /* on int stk? */
else { STK[oldcur] = SP; /* no, save cur stk */
if (newpc & 1) { /* to int stk? */
newpsl = PSL_IS; /* flag */
SP = IS; } /* new stack */
else {
newpsl = 0; /* to ker stk */
SP = KSP; } } /* new stack */
if (ei > 0) PSL = newpsl | (ipl << PSL_V_IPL); /* if int, new IPL */
else PSL = newpsl | ((newpc & 1)? PSL_IPL1F: (oldpsl & PSL_IPL)) |
(oldcur << PSL_V_PRV);
if (DBG_LOG (LOG_CPU_I)) fprintf (sim_log,
">>IEX: PC=%08x, PSL=%08x, SP=%08x, VEC=%08x, nPSL=%08x, nSP=%08x\n",
PC, oldpsl, oldsp, vec, PSL, SP);
acc = ACC_MASK (KERN); /* new mode is kernel */
Write (SP - 4, oldpsl, L_LONG, WA); /* push old PSL */
Write (SP - 8, PC, L_LONG, WA); /* push old PC */
SP = SP - 8; /* update stk ptr */
JUMP (newpc & ~3); /* change PC */
in_ie = 0; /* out of flows */
return 0;
}
/* CHMK, CHME, CHMS, CHMU
opnd[0] = operand
*/
int32 op_chm (int32 *opnd, int32 cc, int32 opc)
{
int32 mode = opc & PSL_M_MODE;
int32 cur = PSL_GETCUR (PSL);
int32 tsp, newpc, acc, sta;
if (PSL & PSL_IS) ABORT (STOP_CHMFI);
newpc = ReadLP ((SCBB + SCB_CHMK + (mode << 2)) & PAMASK);
if (cur < mode) mode = cur; /* only inward */
STK[cur] = SP; /* save stack */
tsp = STK[mode]; /* get new stk */
acc = ACC_MASK (mode); /* set new mode */
if (Test (p2 = tsp - 1, WA, &sta) < 0) { /* probe stk */
p1 = MM_WRITE | (sta & MM_EMASK);
ABORT ((sta & 4)? ABORT_TNV: ABORT_ACV); }
if (Test (p2 = tsp - 12, WA, &sta) < 0) {
p1 = MM_WRITE | (sta & MM_EMASK);
ABORT ((sta & 4)? ABORT_TNV: ABORT_ACV); }
Write (tsp - 12, SXTW (opnd[0]), L_LONG, WA); /* push argument */
Write (tsp - 8, PC, L_LONG, WA); /* push PC */
Write (tsp - 4, PSL | cc, L_LONG, WA); /* push PSL */
SP = tsp - 12; /* set new stk */
PSL = (mode << PSL_V_CUR) | (PSL & PSL_IPL) | /* set new PSL */
(cur << PSL_V_PRV);
last_chm = fault_PC;
JUMP (newpc & ~03); /* set new PC */
return 0; /* cc = 0 */
}
/* REI - return from exception or interrupt
The lengthiest part of the REI instruction is the validity checking of the PSL
popped off the stack. The new PSL is checked against the following eight rules:
let tmp = new PSL popped off the stack
let PSL = current PSL
Rule SRM formulation Comment
---- --------------- -------
1 tmp<25:24> GEQ PSL<25:24> tmp<cur_mode> GEQ PSL<cur_mode>
2 tmp<26> LEQ PSL<26> tmp<is> LEQ tmp<is>
3 tmp<26> = 1 => tmp<25:24> = 0 tmp<is> = 1 => tmp<cur_mode> = ker
4 tmp<26> = 1 => tmp<20:16> > 0 tmp<is> = 1 => tmp<ipl> > 0
5 tmp<20:16> > 0 => tmp<25:24> = 0 tmp<ipl> > 0 => tmp<cur_mode> = ker
6 tmp<25:24> LEQ tmp<23:22> tmp<cur_mode> LEQ tmp<prv_mode>
7 tmp<20:16> LEQ PSL<20:16> tmp<ipl> LEQ PSL<ipl>
8 tmp<31,29:28,21,15:8> = 0 tmp<mbz> = 0
*/
int32 op_rei (int32 acc)
{
int32 newpc = Read (SP, L_LONG, RA);
int32 newpsl = Read (SP + 4, L_LONG, RA);
int32 newcur = PSL_GETCUR (newpsl);
int32 oldcur = PSL_GETCUR (PSL);
int32 newipl;
if ((newpsl & PSL_MBZ) || /* rule 8 */
(newcur < oldcur)) RSVD_OPND_FAULT; /* rule 1 */
if (newcur) { /* to esu, skip 2,4,7 */
if ((newpsl & (PSL_IS | PSL_IPL)) || /* rules 3,5 */
(newcur > PSL_GETPRV (newpsl))) /* rule 6 */
RSVD_OPND_FAULT; } /* end rei to esu */
else { /* to k, skip 3,5,6 */
newipl = PSL_GETIPL (newpsl); /* get new ipl */
if ((newpsl & PSL_IS) && /* setting IS? */
(((PSL & PSL_IS) == 0) || (newipl == 0))) /* test rules 2,4 */
RSVD_OPND_FAULT; /* else skip 2,4 */
if (newipl > PSL_GETIPL (PSL)) RSVD_OPND_FAULT; /* test rule 7 */
} /* end if kernel */
SP = SP + 8; /* pop stack */
if (PSL & PSL_IS) IS = SP; /* save stack */
else STK[oldcur] = SP;
if (DBG_LOG (LOG_CPU_R)) fprintf (sim_log,
">>REI: PC=%08x, PSL=%08x, SP=%08x, nPC=%08x, nPSL=%08x, nSP=%08x\n",
PC, PSL, SP - 8, newpc, newpsl, ((newpsl & IS)? IS: STK[newcur]));
PSL = (PSL & PSL_TP) | (newpsl & ~CC_MASK); /* set new PSL */
if (PSL & PSL_IS) SP = IS; /* set new stack */
else { SP = STK[newcur]; /* if ~IS, chk AST */
if (newcur >= ASTLVL) {
if (DBG_LOG (LOG_CPU_R)) fprintf (sim_log,
">>REI: AST delivered\n");
SISR = SISR | SISR_2; } }
JUMP (newpc); /* set new PC */
return newpsl & CC_MASK; /* set new cc */
}
/* LDCPTX - load process context */
void op_ldpctx (int32 acc)
{
int32 newpc, newpsl, pcbpa;
if (PSL & PSL_CUR) RSVD_INST_FAULT; /* must be kernel */
pcbpa = PCBB & PAMASK; /* phys address */
KSP = ReadLP (pcbpa); /* restore stk ptrs */
ESP = ReadLP (pcbpa + 4);
SSP = ReadLP (pcbpa + 8);
USP = ReadLP (pcbpa + 12);
R[0] = ReadLP (pcbpa + 16); /* restore registers */
R[1] = ReadLP (pcbpa + 20);
R[2] = ReadLP (pcbpa + 24);
R[3] = ReadLP (pcbpa + 28);
R[4] = ReadLP (pcbpa + 32);
R[5] = ReadLP (pcbpa + 36);
R[6] = ReadLP (pcbpa + 40);
R[7] = ReadLP (pcbpa + 44);
R[8] = ReadLP (pcbpa + 48);
R[9] = ReadLP (pcbpa + 52);
R[10] = ReadLP (pcbpa + 56);
R[11] = ReadLP (pcbpa + 60);
R[12] = ReadLP (pcbpa + 64);
R[13] = ReadLP (pcbpa + 68);
newpc = ReadLP (pcbpa + 72); /* get PC, PSL */
newpsl = ReadLP (pcbpa + 76);
P0BR = ReadLP (pcbpa + 80); /* restore mem mgt */
P0LR = ReadLP (pcbpa + 84);
P1BR = ReadLP (pcbpa + 88);
P1LR = ReadLP (pcbpa + 92);
ASTLVL = (P0LR >> 24) & AST_MASK; /* restore AST */
P0BR = P0BR & BR_MASK;
P0LR = P0LR & LR_MASK;
P1BR = P1BR & BR_MASK;
P1LR = P1LR & LR_MASK;
zap_tb (0); /* clear process TB */
set_map_reg ();
if (DBG_LOG (LOG_CPU_P)) fprintf (sim_log,
">>LDP: PC=%08x, PSL=%08x, SP=%08x, nPC=%08x, nPSL=%08x, nSP=%08x\n",
PC, PSL, SP, newpc, newpsl, KSP);
if (PSL & PSL_IS) IS = SP; /* if istk, */
PSL = PSL & ~PSL_IS; /* switch to kstk */
SP = KSP - 8;
Write (SP, newpc, L_LONG, WA); /* push PC, PSL */
Write (SP + 4, newpsl, L_LONG, WA);
return;
}
/* SVPCTX - save processor context */
void op_svpctx (int32 acc)
{
int32 savpc, savpsl, pcbpa;
if (PSL & PSL_CUR) RSVD_INST_FAULT; /* must be kernel */
savpc = Read (SP, L_LONG, RA); /* pop PC, PSL */
savpsl = Read (SP + 4, L_LONG, RA);
if (DBG_LOG (LOG_CPU_P)) fprintf (sim_log,
">>SVP: PC=%08x, PSL=%08x, SP=%08x, oPC=%08x, oPSL=%08x\n",
PC, PSL, SP, savpc, savpsl);
if (PSL & PSL_IS) SP = SP + 8; /* int stack? */
else { KSP = SP + 8; /* pop kernel stack */
SP = IS; /* switch to int stk */
if ((PSL & PSL_IPL) == 0) PSL = PSL | PSL_IPL1; /* make IPL > 0 */
PSL = PSL | PSL_IS; } /* set PSL<is> */
pcbpa = PCBB & PAMASK;
WriteLP (pcbpa, KSP); /* save stk ptrs */
WriteLP (pcbpa + 4, ESP);
WriteLP (pcbpa + 8, SSP);
WriteLP (pcbpa + 12, USP);
WriteLP (pcbpa + 16, R[0]); /* save registers */
WriteLP (pcbpa + 20, R[1]);
WriteLP (pcbpa + 24, R[2]);
WriteLP (pcbpa + 28, R[3]);
WriteLP (pcbpa + 32, R[4]);
WriteLP (pcbpa + 36, R[5]);
WriteLP (pcbpa + 40, R[6]);
WriteLP (pcbpa + 44, R[7]);
WriteLP (pcbpa + 48, R[8]);
WriteLP (pcbpa + 52, R[9]);
WriteLP (pcbpa + 56, R[10]);
WriteLP (pcbpa + 60, R[11]);
WriteLP (pcbpa + 64, R[12]);
WriteLP (pcbpa + 68, R[13]);
WriteLP (pcbpa + 72, savpc); /* save PC, PSL */
WriteLP (pcbpa + 76, savpsl);
return;
}
/* PROBER and PROBEW
opnd[0] = mode
opnd[1] = length
opnd[2] = base address
*/
int32 op_probe (int32 *opnd, int32 rw)
{
int32 mode = opnd[0] & PSL_M_MODE; /* mask mode */
int32 length = opnd[1];
int32 ba = opnd[2];
int32 prv = PSL_GETPRV (PSL);
int32 acc, sta, sta1;
if (prv > mode) mode = prv; /* maximize mode */
acc = ACC_MASK (mode) << (rw? TLB_V_WACC: 0); /* set acc mask */
Test (ba, acc, &sta); /* probe */
switch (sta) { /* case on status */
case PR_PTNV: /* pte TNV */
p1 = MM_PARAM (rw, PR_PTNV);
p2 = ba;
ABORT (ABORT_TNV); /* force TNV */
case PR_TNV: case PR_OK: /* TNV or ok */
break; /* continue */
default: /* other */
return CC_Z; } /* lose */
Test (ba + length - 1, acc, &sta1); /* probe end addr */
switch (sta1) { /* case on status */
case PR_PTNV: /* pte TNV */
p1 = MM_PARAM (rw, PR_PTNV);
p2 = ba + length - 1;
ABORT (ABORT_TNV); /* force TNV */
case PR_TNV: case PR_OK: /* TNV or ok */
break; /* win */
default: /* other */
return CC_Z; } /* lose */
return 0;
}
/* MTPR - move to processor register
opnd[0] = data
opnd[1] = register number
*/
int32 op_mtpr (int32 *opnd)
{
int32 val = opnd[0];
int32 prn = opnd[1];
int32 cc;
if (PSL & PSL_CUR) RSVD_INST_FAULT; /* must be kernel */
if (prn > 63) RSVD_OPND_FAULT; /* reg# > 63? fault */
CC_IIZZ_L (val); /* set cc's */
switch (prn) { /* case on reg # */
case MT_KSP: /* KSP */
if (PSL & PSL_IS) KSP = val; /* on IS? store KSP */
else SP = val; /* else store SP */
break;
case MT_ESP: case MT_SSP: case MT_USP: /* ESP, SSP, USP */
STK[prn] = val; /* store stack */
break;
case MT_IS: /* IS */
if (PSL & PSL_IS) SP = val; /* on IS? store SP */
else IS = val; /* else store IS */
break;
case MT_P0BR: /* P0BR */
P0BR = val & BR_MASK; /* lw aligned */
zap_tb (0); /* clr proc TLB */
set_map_reg ();
break;
case MT_P0LR: /* P0LR */
P0LR = val & LR_MASK;
zap_tb (0); /* clr proc TLB */
set_map_reg ();
break;
case MT_P1BR: /* P1BR */
P1BR = val & BR_MASK; /* lw aligned */
zap_tb (0); /* clr proc TLB */
set_map_reg ();
break;
case MT_P1LR: /* P1LR */
P1LR = val & LR_MASK;
zap_tb (0); /* clr proc TLB */
set_map_reg ();
break;
case MT_SBR: /* SBR */
SBR = val & BR_MASK; /* lw aligned */
zap_tb (1); /* clr entire TLB */
set_map_reg ();
break;
case MT_SLR: /* SLR */
SLR = val & LR_MASK;
zap_tb (1); /* clr entire TLB */
set_map_reg ();
break;
case MT_SCBB: /* SCBB */
SCBB = val & BR_MASK; /* lw aligned */
break;
case MT_PCBB: /* PCBB */
PCBB = val & BR_MASK; /* lw aligned */
break;
case MT_IPL: /* IPL */
PSL = (PSL & ~PSL_IPL) | ((val & PSL_M_IPL) << PSL_V_IPL);
break;
case MT_ASTLVL: /* ASTLVL */
if (val > AST_MAX) RSVD_OPND_FAULT; /* > 4? fault */
ASTLVL = val;
break;
case MT_SIRR: /* SIRR */
if ((val > 0xF) || (val == 0)) RSVD_OPND_FAULT;
SISR = SISR | (1 << val); /* set bit in SISR */
break;
case MT_SISR: /* SISR */
SISR = val & SISR_MASK;
break;
case MT_CADR: /* CADR */
CADR = (val & CADR_RW) | CADR_MBO;
break;
case MT_MSER: /* MSER */
MSER = MSER & MSER_HM;
break;
case MT_MAPEN: /* MAPEN */
mapen = val & 1;
case MT_TBIA: /* TBIA */
zap_tb (1); /* clr entire TLB */
break;
case MT_TBIS: /* TBIS */
zap_tb_ent (val);
break;
case MT_SID:
case MT_CONPC:
case MT_CONPSL:
RSVD_OPND_FAULT; /* read only */
case MT_TBCHK: /* TBCHK */
if (chk_tb_ent (val)) cc = cc | CC_V;
break;
default:
WriteIPR (prn, val); /* others */
break; }
return cc;
}
int32 op_mfpr (int32 *opnd)
{
int32 prn = opnd[0];
int32 val;
if (PSL & PSL_CUR) RSVD_INST_FAULT; /* must be kernel */
if (prn > 63) RSVD_OPND_FAULT; /* reg# > 63? fault */
switch (prn) { /* case on reg# */
case MT_KSP: /* KSP */
val = (PSL & PSL_IS)? KSP: SP; /* return KSP or SP */
break;
case MT_ESP: case MT_SSP: case MT_USP: /* ESP, SSP, USP */
val = STK[prn]; /* return stk ptr */
break;
case MT_IS: /* IS */
val = (PSL & PSL_IS)? SP: IS; /* return SP or IS */
break;
case MT_P0BR: /* P0BR */
val = P0BR;
break;
case MT_P0LR: /* P0LR */
val = P0LR;
break;
case MT_P1BR: /* P1BR */
val = P1BR;
break;
case MT_P1LR: /* P1LR */
val = P1LR;
break;
case MT_SBR: /* SBR */
val = SBR;
break;
case MT_SLR: /* SLR */
val = SLR;
break;
case MT_SCBB: /* SCBB */
val = SCBB;
break;
case MT_PCBB: /* PCBB */
val = PCBB;
break;
case MT_IPL: /* IPL */
val = PSL_GETIPL (PSL);
break;
case MT_ASTLVL: /* ASTLVL */
val = ASTLVL;
break;
case MT_SISR: /* SISR */
val = SISR & SISR_MASK;
break;
case MT_CADR: /* CADR */
val = CADR & 0xFF;
break;
case MT_MSER: /* MSER */
val = MSER & 0xFF;
break;
case MT_CONPC: /* console PC */
val = conpc;
break;
case MT_CONPSL: /* console PSL */
val = conpsl;
break;
case MT_MAPEN: /* MAPEN */
val = mapen;
break;
case MT_SID: /* SID */
val = CVAX_SID | CVAX_UREV;
break;
case MT_SIRR:
case MT_TBIA:
case MT_TBIS:
case MT_TBCHK:
RSVD_OPND_FAULT; /* write only */
default: /* others */
val = ReadIPR (prn); /* read from SSC */
break; }
return val;
}
/* Emulated instructions
opnd[0:5] = six operands to be pushed (if PSL<fpd> = 0)
cc = condition codes
opc = opcode
If FPD is set, push old PC and PSL on stack, vector thru SCB.
If FPD is clear, push opcode, old PC, operands, new PC, and PSL
on stack, vector thru SCB.
In both cases, the exception occurs in the current mode.
*/
int32 op_emulate (int32 *opnd, int32 cc, int32 opc, int32 acc)
{
int32 vec;
if (PSL & PSL_FPD) { /* FPD set? */
Read (SP - 1, L_BYTE, WA); /* wchk stack */
Write (SP - 8, fault_PC, L_LONG, WA); /* push old PC */
Write (SP - 4, PSL | cc, L_LONG, WA); /* push PSL */
SP = SP - 8; /* decr stk ptr */
vec = ReadLP ((SCBB + SCB_EMULFPD) & PAMASK); }
else { Read (SP - 1, L_BYTE, WA); /* wchk stack */
Write (SP - 48, opc, L_LONG, WA); /* push opcode */
Write (SP - 44, fault_PC, L_LONG, WA); /* push old PC */
Write (SP - 40, opnd[0], L_LONG, WA); /* push operands */
Write (SP - 36, opnd[1], L_LONG, WA);
Write (SP - 32, opnd[2], L_LONG, WA);
Write (SP - 28, opnd[3], L_LONG, WA);
Write (SP - 24, opnd[4], L_LONG, WA);
Write (SP - 20, opnd[5], L_LONG, WA);
Write (SP - 8, PC, L_LONG, WA); /* push cur PC */
Write (SP - 4, PSL | cc, L_LONG, WA); /* push PSL */
SP = SP - 48; /* decr stk ptr */
vec = ReadLP ((SCBB + SCB_EMULATE) & PAMASK); }
PSL = PSL & ~(PSL_TP | PSL_FPD | PSW_DV | PSW_FU | PSW_IV | PSW_T);
JUMP (vec & ~03); /* set new PC */
return 0; /* set new cc's */
}