simh-testsetgenerator/GRI/gri_cpu.c
Bob Supnik 2c2dd5ea33 Notes For V2.10-0
WARNING: V2.10 has reorganized and renamed some of the definition
files for the PDP-10, PDP-11, and VAX.  Be sure to delete all
previous source files before you unpack the Zip archive, or
unpack it into a new directory structure.

WARNING: V2.10 has a new, more comprehensive save file format.
Restoring save files from previous releases will cause 'invalid
register' errors and loss of CPU option flags, device enable/
disable flags, unit online/offline flags, and unit writelock
flags.

WARNING: If you are using Visual Studio .NET through the IDE,
be sure to turn off the /Wp64 flag in the project settings, or
dozens of spurious errors will be generated.

WARNING: Compiling Ethernet support under Windows requires
extra steps; see the Ethernet readme file.  Ethernet support is
currently available only for Windows, Linux, NetBSD, and OpenBSD.

1. New Features

1.1 SCP and Libraries

- The VT emulation package has been replaced by the capability
  to remote the console to a Telnet session.  Telnet clients
  typically have more complete and robust VT100 emulation.
- Simulated devices may now have statically allocated buffers,
  in addition to dynamically allocated buffers or disk-based
  data stores.
- The DO command now takes substitutable arguments (max 9).
  In command files, %n represents substitutable argument n.
- The initial command line is now interpreted as the command
  name and substitutable arguments for a DO command.  This is
  backward compatible to prior versions.
- The initial command line parses switches.  -Q is interpreted
  as quiet mode; informational messages are suppressed.
- The HELP command now takes an optional argument.  HELP <cmd>
  types help on the specified command.
- Hooks have been added for implementing GUI-based consoles,
  as well as simulator-specific command extensions.  A few
  internal data structures and definitions have changed.
- Two new routines (tmxr_open_master, tmxr_close_master) have
  been added to sim_tmxr.c.  The calling sequence for
  sim_accept_conn has been changed in sim_sock.c.
- The calling sequence for the VM boot routine has been modified
  to add an additional parameter.
- SAVE now saves, and GET now restores, controller and unit flags.
- Library sim_ether.c has been added for Ethernet support.

1.2 VAX

- Non-volatile RAM (NVR) can behave either like a memory or like
  a disk-based peripheral.  If unattached, it behaves like memory
  and is saved and restored by SAVE and RESTORE, respectively.
  If attached, its contents are loaded from disk by ATTACH and
  written back to disk at DETACH and EXIT.
- SHOW <device> VECTOR displays the device's interrupt vector.
  A few devices allow the vector to be changed with SET
  <device> VECTOR=nnn.
- SHOW CPU IOSPACE displays the I/O space address map.
- The TK50 (TMSCP tape) has been added.
- The DEQNA/DELQA (Qbus Ethernet controllers) have been added.
- Autoconfiguration support has been added.
- The paper tape reader has been removed from vax_stddev.c and
  now references a common implementation file, dec_pt.h.
- Examine and deposit switches now work on all devices, not just
  the CPU.
- Device address conflicts are not detected until simulation starts.

1.3 PDP-11

- SHOW <device> VECTOR displays the device's interrupt vector.
  Most devices allow the vector to be changed with SET
  <device> VECTOR=nnn.
- SHOW CPU IOSPACE displays the I/O space address map.
- The TK50 (TMSCP tape), RK611/RK06/RK07 (cartridge disk),
  RX211 (double density floppy), and KW11P programmable clock
  have been added.
- The DEQNA/DELQA (Qbus Ethernet controllers) have been added.
- Autoconfiguration support has been added.
- The paper tape reader has been removed from pdp11_stddev.c and
  now references a common implementation file, dec_pt.h.
- Device bootstraps now use the actual CSR specified by the
  SET ADDRESS command, rather than just the default CSR.  Note
  that PDP-11 operating systems may NOT support booting with
  non-standard addresses.
- Specifying more than 256KB of memory, or changing the bus
  configuration, causes all peripherals that are not compatible
  with the current bus configuration to be disabled.
- Device address conflicts are not detected until simulation starts.

1.4 PDP-10

- SHOW <device> VECTOR displays the device's interrupt vector.
  A few devices allow the vector to be changed with SET
  <device> VECTOR=nnn.
- SHOW CPU IOSPACE displays the I/O space address map.
- The RX211 (double density floppy) has been added; it is off
  by default.
- The paper tape now references a common implementation file,
  dec_pt.h.
- Device address conflicts are not detected until simulation starts.

1.5 PDP-1

- DECtape (then known as MicroTape) support has been added.
- The line printer and DECtape can be disabled and enabled.

1.6 PDP-8

- The RX28 (double density floppy) has been added as an option to
  the existing RX8E controller.
- SHOW <device> DEVNO displays the device's device number.  Most
  devices allow the device number to be changed with SET <device>
  DEVNO=nnn.
- Device number conflicts are not detected until simulation starts.

1.7 IBM 1620

- The IBM 1620 simulator has been released.

1.8 AltairZ80

- A hard drive has been added for increased storage.
- Several bugs have been fixed.

1.9 HP 2100

- The 12845A has been added and made the default line printer (LPT).
  The 12653A has been renamed LPS and is off by default.  It also
  supports the diagnostic functions needed to run the DCPC and DMS
  diagnostics.
- The 12557A/13210A disk defaults to the 13210A (7900/7901).
- The 12559A magtape is off by default.
- New CPU options (EAU/NOEAU) enable/disable the extended arithmetic
  instructions for the 2116.  These instructions are standard on
  the 2100 and 21MX.
- New CPU options (MPR/NOMPR) enable/disable memory protect for the
  2100 and 21MX.
- New CPU options (DMS/NODMS) enable/disable the dynamic mapping
  instructions for the 21MX.
- The 12539 timebase generator autocalibrates.

1.10 Simulated Magtapes

- Simulated magtapes recognize end of file and the marker
  0xFFFFFFFF as end of medium.  Only the TMSCP tape simulator
  can generate an end of medium marker.
- The error handling in simulated magtapes was overhauled to be
  consistent through all simulators.

1.11 Simulated DECtapes

- Added support for RT11 image file format (256 x 16b) to DECtapes.

2. Release Notes

2.1 Bugs Fixed

- TS11/TSV05 was not simulating the XS0_MOT bit, causing failures
  under VMS.  In addition, two of the CTL options were coded
  interchanged.
- IBM 1401 tape was not setting a word mark under group mark for
  load mode reads.  This caused the diagnostics to crash.
- SCP bugs in ssh_break and set_logon were fixed (found by Dave
  Hittner).
- Numerous bugs in the HP 2100 extended arithmetic, floating point,
  21MX, DMS, and IOP instructions were fixed.  Bugs were also fixed
  in the memory protect and DMS functions.  The moving head disks
  (DP, DQ) were revised to simulate the hardware more accurately.
  Missing functions in DQ (address skip, read address) were added.

2.2 HP 2100 Debugging

- The HP 2100 CPU nows runs all of the CPU diagnostics.
- The peripherals run most of the peripheral diagnostics.  There
  is still a problem in overlapped seek operation on the disks.
  See the file hp2100_diag.txt for details.

3. In Progress

These simulators are not finished and are available in a separate
Zip archive distribution.

- Interdata 16b/32b: coded, partially tested.  See the file
  id_diag.txt for details.
- SDS 940: coded, partially tested.
2011-04-15 08:33:49 -07:00

884 lines
24 KiB
C
Raw Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/* gri_cpu.c: GRI-909 CPU simulator
Copyright (c) 2001-2002, Robert M. Supnik
Permission is hereby granted, free of charge, to any person obtaining a
copy of this software and associated documentation files (the "Software"),
to deal in the Software without restriction, including without limitation
the rights to use, copy, modify, merge, publish, distribute, sublicense,
and/or sell copies of the Software, and to permit persons to whom the
Software is furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
ROBERT M SUPNIK BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
Except as contained in this notice, the name of Robert M Supnik shall not
be used in advertising or otherwise to promote the sale, use or other dealings
in this Software without prior written authorization from Robert M Supnik.
The system state for the GRI-909 is:
AX<0:15> arithmetic input
AY<0:15> arithmetic input
BSW<0:15> byte swapper
BPK<0:15> byte packer
GR[0:5]<0:15> extended general registers
MSR<0:15> machine status register
TRP<0:15> trap register (subroutine return)
SC<0:14> sequence counter
The GRI-909 has, nominally, just one instruction format: move.
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
| source | op | destination | move
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
<6:9> operation
xx1x complement
01xx add 1
10xx rotate left 1
11xx rotate right 1
In fact, certain of the source and destination operators have side
effects, yielding four additional instruction formats: function out,
skip on function, memory reference, and conditional jump.
*/
/* The function out format is:
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
| 0 0 0 0 1 0| pulse | destination | function out
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
The skip on function format is:
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
| source | skip |rv| 0 0 0 0 1 0| skip function
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
The memory reference format is (src and/or dst = 006):
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
| source | op | mode| destination | memory ref
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
| address or immediate |
+-----------------------------------------------+
<6:9> operation
xx0x direct, ea = M[SC+1]
xx1x immediate, ea = SC+1
xxx1 indirect, M[ea] = M[ea]+1, then ea = M[ea]
01xx add 1
10xx rotate left 1
11xx rotate right 1
The conditional jump format is (src != 006):
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
| source | cond|rv|df| 0 0 0 0 1 1| cond jump
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
| jump address |
+-----------------------------------------------+
<6:9> operation
xxx0 direct, ea = M[SC+1]
xxx1 indirect, ea = M[SC+1], M[ea] = M[ea]+1,
then ea = M[ea]
xx1x reverse conditional sense
x1xx jump if src == 0
1xxx jump if src < 0
*/
/* This routine is the instruction decode routine for the GRI-909.
It is called from the simulator control program to execute
instructions in simulated memory, starting at the simulated PC.
It runs until 'reason' is set non-zero.
General notes:
1. Reasons to stop. The simulator can be stopped by:
HALT instruction
breakpoint encountered
unknown source or destination and STOP_OPR flag set
I/O error in I/O simulator
2. Interrupts. The interrupt structure is kept in two parallel variables:
dev_done device done flags
ISR interrupt status register (enables)
In addition, there is a master interrupt enable, and a one cycle
interrupt defer, both kept in dev_done.
3. Non-existent memory. On the GRI-909, reads to non-existent memory
return zero, and writes are ignored. In the simulator, the
largest possible memory is instantiated and initialized to zero.
Thus, only writes need be checked against actual memory size.
4. Adding I/O devices. These modules must be modified:
gri_defs.h add interrupt request definition
gri_cpu.c add dev_tab table entry
gri_sys.c add sim_devices table entry
*/
#include "gri_defs.h"
#define SCQ_SIZE 64 /* must be 2**n */
#define SCQ_MASK (SCQ_SIZE - 1)
#define SCQ_ENTRY scq[scq_p = (scq_p - 1) & SCQ_MASK] = SC
#define UNIT_V_NOEAO (UNIT_V_UF) /* EAO absent */
#define UNIT_NOEAO (1 << UNIT_V_NOEAO)
#define UNIT_V_MSIZE (UNIT_V_UF + 1) /* dummy mask */
#define UNIT_MSIZE (1 << UNIT_V_MSIZE)
uint16 M[MAXMEMSIZE] = { 0 }; /* memory */
uint32 SC; /* sequence cntr */
uint32 AX, AY, AO; /* arithmetic unit */
uint32 IR; /* instr reg */
uint32 MA; /* memory addr */
uint32 TRP; /* subr return */
uint32 MSR; /* machine status */
uint32 ISR; /* interrupt status */
uint32 BSW, BPK; /* byte swap, pack */
uint32 GR[6]; /* extended general regs */
uint32 SWR; /* switch reg */
uint32 DR; /* display register */
uint32 thwh = 0; /* thumbwheel */
uint32 dev_done = 0; /* device flags */
uint32 bkp = 0; /* bkpt pending */
uint32 stop_opr = 1; /* stop ill operator */
int16 scq[SCQ_SIZE] = { 0 }; /* PC queue */
int32 scq_p = 0; /* PC queue ptr */
REG *scq_r = NULL; /* PC queue reg ptr */
extern int32 sim_interval;
extern int32 sim_int_char;
extern int32 sim_brk_types, sim_brk_dflt, sim_brk_summ; /* breakpoint info */
t_stat cpu_ex (t_value *vptr, t_addr addr, UNIT *uptr, int32 sw);
t_stat cpu_dep (t_value val, t_addr addr, UNIT *uptr, int32 sw);
t_stat cpu_reset (DEVICE *dptr);
t_stat cpu_set_size (UNIT *uptr, int32 val, char *cptr, void *desc);
t_stat bus_op (uint32 src, uint32 op, uint32 dst);
/* Dispatch tables for source, dest, function out, skip on function */
uint32 no_rd (uint32 src);
t_stat no_wr (uint32 dst, uint32 val);
t_stat no_fo (uint32 op);
uint32 no_sf (uint32 op);
uint32 zero_rd (uint32 src);
t_stat zero_wr (uint32 dst, uint32 val);
t_stat zero_fo (uint32 op);
uint32 zero_sf (uint32 op);
uint32 ir_rd (uint32 op);
t_stat ir_fo (uint32 op);
uint32 trp_rd (uint32 src);
uint32 isr_rd (uint32 src);
t_stat isr_wr (uint32 dst, uint32 val);
t_stat isr_fo (uint32 op);
uint32 isr_sf (uint32 op);
uint32 ma_rd (uint32 src);
uint32 mem_rd (uint32 src);
t_stat mem_wr (uint32 dst, uint32 val);
uint32 sc_rd (uint32 src);
t_stat sc_wr (uint32 dst, uint32 val);
uint32 swr_rd (uint32 src);
uint32 ax_rd (uint32 src);
t_stat ax_wr (uint32 dst, uint32 val);
uint32 ay_rd (uint32 src);
t_stat ay_wr (uint32 dst, uint32 val);
uint32 ao_rd (uint32 src);
t_stat ao_fo (uint32 op);
uint32 ao_sf (uint32 op);
uint32 ao_update (void);
t_stat eao_fo (uint32 op);
uint32 msr_rd (uint32 src);
t_stat msr_wr (uint32 dst, uint32 val);
uint32 bsw_rd (uint32 src);
t_stat bsw_wr (uint32 dst, uint32 val);
uint32 bpk_rd (uint32 src);
t_stat bpk_wr (uint32 dst, uint32 val);
uint32 gr_rd (uint32 src);
t_stat gr_wr (uint32 dst, uint32 val);
extern t_stat rtc_fo (uint32 op);
extern uint32 rtc_sf (uint32 op);
extern uint32 hsrp_rd (uint32 src);
extern t_stat hsrp_wr (uint32 dst, uint32 val);
extern t_stat hsrp_fo (uint32 op);
extern uint32 hsrp_sf (uint32 op);
extern uint32 tty_rd (uint32 src);
extern t_stat tty_wr (uint32 dst, uint32 val);
extern t_stat tty_fo (uint32 op);
extern uint32 tty_sf (uint32 op);
struct gdev dev_tab[64] = {
{ &zero_rd, &zero_wr, &zero_fo, &zero_sf }, /* 00: zero */
{ &ir_rd, &zero_wr, &ir_fo, &zero_sf }, /* ir */
{ &no_rd, &no_wr, &no_fo, &no_sf }, /* fo/sf */
{ &trp_rd, &no_wr, &zero_fo, &zero_sf }, /* trp */
{ &isr_rd, &isr_wr, &isr_fo, &isr_sf }, /* isr */
{ &ma_rd, &no_wr, &no_fo, &no_sf }, /* MA */
{ &mem_rd, &mem_wr, &zero_fo, &zero_sf }, /* memory */
{ &sc_rd, &sc_wr, &zero_fo, &zero_sf }, /* sc */
{ &swr_rd, &no_wr, &no_fo, &no_sf }, /* swr */
{ &ax_rd, &ax_wr, &zero_fo, &zero_sf }, /* ax */
{ &ay_rd, &ay_wr, &zero_fo, &zero_sf }, /* ay */
{ &ao_rd, &zero_wr, &ao_fo, &ao_sf }, /* ao */
{ &zero_rd, &zero_wr, &eao_fo, &zero_sf }, /* eao */
{ &no_rd, &no_wr, &no_fo, &no_sf },
{ &no_rd, &no_wr, &no_fo, &no_sf },
{ &msr_rd, &msr_wr, &zero_fo, &zero_sf }, /* msr */
{ &no_rd, &no_wr, &no_fo, &no_sf }, /* 20 */
{ &no_rd, &no_wr, &no_fo, &no_sf },
{ &no_rd, &no_wr, &no_fo, &no_sf },
{ &no_rd, &no_wr, &no_fo, &no_sf },
{ &bsw_rd, &bsw_wr, &no_fo, &no_sf }, /* bsw */
{ &bpk_rd, &bpk_wr, &no_fo, &no_sf }, /* bpk */
{ &no_rd, &no_wr, &no_fo, &no_sf },
{ &no_rd, &no_wr, &no_fo, &no_sf },
{ &gr_rd, &gr_wr, &zero_fo, &zero_sf }, /* 30: gr1 */
{ &gr_rd, &gr_wr, &zero_fo, &zero_sf }, /* gr2 */
{ &gr_rd, &gr_wr, &zero_fo, &zero_sf }, /* gr3 */
{ &gr_rd, &gr_wr, &zero_fo, &zero_sf }, /* gr4 */
{ &gr_rd, &gr_wr, &zero_fo, &zero_sf }, /* gr5 */
{ &gr_rd, &gr_wr, &zero_fo, &zero_sf }, /* gr6 */
{ &no_rd, &no_wr, &no_fo, &no_sf },
{ &no_rd, &no_wr, &no_fo, &no_sf },
{ &no_rd, &no_wr, &no_fo, &no_sf }, /* 40 */
{ &no_rd, &no_wr, &no_fo, &no_sf },
{ &no_rd, &no_wr, &no_fo, &no_sf },
{ &no_rd, &no_wr, &no_fo, &no_sf },
{ &no_rd, &no_wr, &no_fo, &no_sf },
{ &no_rd, &no_wr, &no_fo, &no_sf },
{ &no_rd, &no_wr, &no_fo, &no_sf },
{ &no_rd, &no_wr, &no_fo, &no_sf },
{ &no_rd, &no_wr, &no_fo, &no_sf }, /* 50 */
{ &no_rd, &no_wr, &no_fo, &no_sf },
{ &no_rd, &no_wr, &no_fo, &no_sf },
{ &no_rd, &no_wr, &no_fo, &no_sf },
{ &no_rd, &no_wr, &no_fo, &no_sf },
{ &no_rd, &no_wr, &no_fo, &no_sf },
{ &no_rd, &no_wr, &no_fo, &no_sf },
{ &no_rd, &no_wr, &no_fo, &no_sf },
{ &no_rd, &no_wr, &no_fo, &no_sf }, /* 60 */
{ &no_rd, &no_wr, &no_fo, &no_sf },
{ &no_rd, &no_wr, &no_fo, &no_sf },
{ &no_rd, &no_wr, &no_fo, &no_sf },
{ &no_rd, &no_wr, &no_fo, &no_sf },
{ &no_rd, &no_wr, &no_fo, &no_sf },
{ &no_rd, &no_wr, &no_fo, &no_sf },
{ &no_rd, &no_wr, &no_fo, &no_sf },
{ &no_rd, &no_wr, &no_fo, &no_sf }, /* 70 */
{ &no_rd, &no_wr, &no_fo, &no_sf },
{ &no_rd, &no_wr, &no_fo, &no_sf },
{ &no_rd, &no_wr, &no_fo, &no_sf },
{ &no_rd, &no_wr, &no_fo, &no_sf },
{ &zero_rd, &zero_wr, &rtc_fo, &rtc_sf }, /* rtc */
{ &hsrp_rd, &hsrp_wr, &hsrp_fo, &hsrp_sf }, /* hsrp */
{ &tty_rd, &tty_wr, &tty_fo, &tty_sf } }; /* tty */
static const int32 vec_map[16] = {
VEC_TTO, VEC_TTI, VEC_HSP, VEC_HSR,
-1, -1, -1, -1,
-1, -1, -1, VEC_RTC,
-1, -1, -1, -1 };
/* CPU data structures
cpu_dev CPU device descriptor
cpu_unit CPU unit descriptor
cpu_reg CPU register list
cpu_mod CPU modifiers list
*/
UNIT cpu_unit = { UDATA (NULL, UNIT_FIX + UNIT_BINK, MAXMEMSIZE) };
REG cpu_reg[] = {
{ ORDATA (SC, SC, 15) },
{ ORDATA (AX, AX, 16) },
{ ORDATA (AY, AY, 16) },
{ ORDATA (AO, AO, 16), REG_RO },
{ ORDATA (TRP, TRP, 16) },
{ ORDATA (MSR, MSR, 16) },
{ ORDATA (ISR, ISR, 16) },
{ ORDATA (BSW, BSW, 16) },
{ ORDATA (BPK, BPK, 16) },
{ ORDATA (GR1, GR[0], 16) },
{ ORDATA (GR2, GR[1], 16) },
{ ORDATA (GR3, GR[2], 16) },
{ ORDATA (GR4, GR[3], 16) },
{ ORDATA (GR5, GR[4], 16) },
{ ORDATA (GR6, GR[5], 16) },
{ FLDATA (BOV, MSR, MSR_V_BOV) },
{ FLDATA (L, MSR, MSR_V_L) },
{ GRDATA (FOA, MSR, 8, 2, MSR_V_FOA) },
{ FLDATA (AOV, MSR, MSR_V_AOV) },
{ ORDATA (IR, IR, 16), REG_RO },
{ ORDATA (MA, MA, 16), REG_RO },
{ ORDATA (SWR, SWR, 16) },
{ ORDATA (DR, DR, 16) },
{ ORDATA (THW, thwh, 6) },
{ ORDATA (IREQ, dev_done, INT_V_NODEF) },
{ FLDATA (ION, dev_done, INT_V_ON) },
{ FLDATA (INODEF, dev_done, INT_V_NODEF) },
{ FLDATA (BKP, bkp, 0) },
{ BRDATA (SCQ, scq, 8, 15, SCQ_SIZE), REG_RO+REG_CIRC },
{ ORDATA (SCQP, scq_p, 6), REG_HRO },
{ FLDATA (STOP_OPR, stop_opr, 0) },
{ ORDATA (WRU, sim_int_char, 8) },
{ NULL } };
MTAB cpu_mod[] = {
{ UNIT_NOEAO, UNIT_NOEAO, "no EAO", "NOEAO", NULL },
{ UNIT_NOEAO, 0, "EAO", "EAO", NULL },
{ UNIT_MSIZE, 4096, NULL, "4K", &cpu_set_size },
{ UNIT_MSIZE, 8192, NULL, "8K", &cpu_set_size },
{ UNIT_MSIZE, 12288, NULL, "12K", &cpu_set_size },
{ UNIT_MSIZE, 16384, NULL, "16K", &cpu_set_size },
{ UNIT_MSIZE, 20480, NULL, "20K", &cpu_set_size },
{ UNIT_MSIZE, 24576, NULL, "24K", &cpu_set_size },
{ UNIT_MSIZE, 28672, NULL, "28K", &cpu_set_size },
{ UNIT_MSIZE, 32768, NULL, "32K", &cpu_set_size },
{ 0 } };
DEVICE cpu_dev = {
"CPU", &cpu_unit, cpu_reg, cpu_mod,
1, 8, 15, 1, 8, 16,
&cpu_ex, &cpu_dep, &cpu_reset,
NULL, NULL, NULL };
t_stat sim_instr (void)
{
uint32 src, dst, op, t, jmp;
t_stat reason;
extern UNIT rtc_unit;
/* Restore register state */
SC = SC & AMASK; /* load local PC */
reason = 0;
AO = ao_update (); /* update AO */
sim_rtc_init (rtc_unit.wait); /* init calibration */
/* Main instruction fetch/decode loop */
while (reason == 0) { /* loop until halted */
if (sim_interval <= 0) { /* check clock queue */
if (reason = sim_process_event ()) break; }
if (bkp) { /* breakpoint? */
bkp = 0; /* clear request */
dev_done = dev_done & ~INT_ON; /* int off */
M[VEC_BKP] = SC; /* save SC */
SC = VEC_BKP + 1; } /* new SC */
else if ((dev_done & (INT_PENDING | ISR)) > (INT_PENDING)) { /* intr? */
int32 i, vec;
t = dev_done & ISR; /* find hi pri */
for (i = 15; i >= 0; i--) {
if ((t >> i) & 1) break; }
if ((i < 0) || ((vec = vec_map[i]) < 0)) { /* undefined? */
reason = STOP_ILLINT; /* stop */
break; }
dev_done = dev_done & ~INT_ON; /* int off */
M[vec] = SC; /* save SC */
SC = vec + 1; /* new SC */
continue; }
if (sim_brk_summ && sim_brk_test (SC, SWMASK ('E'))) { /* breakpoint? */
reason = STOP_IBKPT; /* stop simulation */
break; }
MA = SC; /* set mem addr */
IR = M[MA]; /* fetch instr */
dev_done = dev_done | INT_NODEF; /* clr ion defer */
sim_interval = sim_interval - 1;
/* Decode instruction types */
src = I_GETSRC (IR); /* src unit */
dst = I_GETDST (IR); /* dst unit */
op = I_GETOP (IR); /* bus op */
if (src == U_FSK) { /* func out? */
reason = dev_tab[dst].FO (op); /* send function */
SC = (SC + 1) & AMASK; } /* incr SC */
else if (dst == U_FSK) { /* skip func? */
t = dev_tab[src].SF (op & ~1); /* issue SF */
reason = t >> SF_V_REASON;
if ((t ^ op) & 1) SC = SC + 2; /* skip? */
SC = (SC + 1) & AMASK; } /* incr SC */
else if ((src != U_MEM) && (dst == U_TRP)) { /* cond jump */
t = dev_tab[src].Src (src); /* get source */
switch (op >> 1) { /* case on jump */
case 00: /* never */
jmp = 0;
break;
case 01: /* always */
jmp = 1;
break;
case 02: /* src == 0 */
jmp = (t == 0);
break;
case 03: /* src != 0 */
jmp = (t != 0);
break;
case 04: /* src < 0 */
jmp = (t >= SIGN);
break;
case 05: /* src >= 0 */
jmp = (t < SIGN);
break;
case 06:
jmp = (t == 0) || (t & SIGN); /* src <= 0 */
break;
case 07:
jmp = (t != 0) && !(t & SIGN); /* src > 0 */
break; }
if (jmp) { /* jump taken? */
SCQ_ENTRY; /* save SC */
SC = (SC + 1) & AMASK; /* incr SC once */
MA = M[SC]; /* get jump addr */
if (op & TRP_DEF) { /* defer? */
t = (M[MA] + 1) & DMASK; /* autoinc */
if (MEM_ADDR_OK (MA)) M[MA] = t;
MA = t & AMASK; } /* ind addr */
TRP = SC; /* save SC */
SC = MA; } /* load new SC */
else SC = (SC + 2) & AMASK; } /* incr SC twice */
else if ((src != U_MEM) && (dst != U_MEM)) { /* reg-reg? */
reason = bus_op (src, op, dst); /* xmt and modify */
SC = (SC + 1) & AMASK; } /* incr SC */
/* Memory reference. The second SC increment occurs after the first
execution cycle. For direct, defer, and immediate defer, this is
after the first memory read and before the bus transfer; but for
immediate, it is before the bus transfer.
*/
else { SC = (SC + 1) & AMASK; /* incr SC */
switch (op & MEM_MOD) { /* case on addr mode */
case MEM_DIR: /* direct */
MA = M[SC] & AMASK; /* get address */
SC = (SC + 1) & AMASK; /* incr SC again */
reason = bus_op (src, op & BUS_FNC, dst); /* xmt and modify */
break;
case MEM_DEF: /* defer */
MA = M[SC] & AMASK; /* get ind addr */
SC = (SC + 1) & AMASK; /* incr SC again */
t = (M[MA] + 1) & DMASK; /* autoinc */
if (MEM_ADDR_OK (MA)) M[MA] = t;
MA = t & AMASK; /* ind addr */
reason = bus_op (src, op & BUS_FNC, dst); /* xmt and modify */
break;
case MEM_IMM: /* immediate */
MA = SC; /* eff addr */
reason = bus_op (src, op & BUS_FNC, dst); /* xmt and modify */
SC = (SC + 1) & AMASK; /* incr SC again */
break;
case MEM_IDF: /* immediate defer */
MA = SC; /* get ind addr */
t = (M[MA] + 1) & DMASK; /* autoinc */
if (MEM_ADDR_OK (MA)) M[MA] = t;
MA = t & AMASK; /* ind addr */
SC = (SC + 1) & AMASK; /* incr SC again */
reason = bus_op (src, op & BUS_FNC, dst); /* xmt and modify */
break; } /* end switch */
} /* end mem ref */
} /* end while */
/* Simulation halted */
AO = ao_update (); /* update AO */
return reason;
}
/* Bus operations */
t_stat bus_op (uint32 src, uint32 op, uint32 dst)
{
uint32 t, old_t;
t = dev_tab[src].Src (src); /* get src */
if (op & BUS_COM) t = t ^ DMASK; /* complement? */
switch (op & BUS_FNC) { /* case op */
case BUS_P1: /* plus 1 */
t = t + 1; /* do add */
if (t & CBIT) MSR = MSR | MSR_BOV; /* set cry out */
else MSR = MSR & ~MSR_BOV;
break;
case BUS_L1: /* left 1 */
t = (t << 1) | ((MSR & MSR_L)? 1: 0); /* rotate */
if (t & CBIT) MSR = MSR | MSR_L; /* set link out */
else MSR = MSR & ~MSR_L;
break;
case BUS_R1: /* right 1 */
old_t = t;
t = (t >> 1) | ((MSR & MSR_L)? SIGN: 0); /* rotate */
if (old_t & 1) MSR = MSR | MSR_L; /* set link out */
else MSR = MSR & ~MSR_L;
break; } /* end case op */
if (dst == thwh) DR = t & DMASK; /* display dst? */
return dev_tab[dst].Dst (dst, t & DMASK); /* store dst */
}
/* Non-existent device */
uint32 no_rd (uint32 src)
{
return 0;
}
t_stat no_wr (uint32 dst, uint32 dat)
{
return stop_opr;
}
t_stat no_fo (uint32 fnc)
{
return stop_opr;
}
uint32 no_sf (uint32 fnc)
{
return (stop_opr << SF_V_REASON);
}
/* Zero device */
uint32 zero_rd (uint32 src)
{
return 0;
}
t_stat zero_wr (uint32 dst, uint32 val)
{
return SCPE_OK;
}
t_stat zero_fo (uint32 op)
{
switch (op & 3) { /* FOM link */
case 1: /* CLL */
MSR = MSR & ~MSR_L;
break;
case 2: /* STL */
MSR = MSR | MSR_L;
break;
case 3: /* CML */
MSR = MSR ^ MSR_L;
break; }
if (op & 4) return STOP_HALT; /* HALT */
return SCPE_OK;
}
uint32 zero_sf (uint32 op)
{
if ((op & 010) || /* power always ok */
((op & 4) && (MSR & MSR_L)) || /* link set? */
((op & 2) && (MSR & MSR_BOV))) return 1; /* BOV set? */
return 0;
}
/* Instruction register (01) */
uint32 ir_rd (uint32 src)
{
return IR;
}
t_stat ir_fo (uint32 op)
{
if (op & 2) bkp = 1;
return SCPE_OK;
}
/* Trap register (03) */
uint32 trp_rd (uint32 src)
{
return TRP;
}
/* Interrupt status register (04) */
uint32 isr_rd (uint32 src)
{
return ISR;
}
t_stat isr_wr (uint32 dst, uint32 dat)
{
ISR = dat;
return SCPE_OK;
}
t_stat isr_fo (uint32 op)
{
if (op & ISR_ON) dev_done = (dev_done | INT_ON) & ~INT_NODEF;
if (op & ISR_OFF) dev_done = dev_done & ~INT_ON;
return SCPE_OK;
}
uint32 isr_sf (uint32 op)
{
return 0;
}
/* Memory address (05) */
uint32 ma_rd (uint32 src)
{
return MA;
}
/* Memory (06) */
uint32 mem_rd (uint32 src)
{
return M[MA];
}
t_stat mem_wr (uint32 dst, uint32 dat)
{
if (MEM_ADDR_OK (MA)) M[MA] = dat;
return SCPE_OK;
}
/* Sequence counter (07) */
uint32 sc_rd (uint32 src)
{
return SC;
}
t_stat sc_wr (uint32 dst, uint32 dat)
{
SCQ_ENTRY;
SC = dat & AMASK;
return SCPE_OK;
}
/* Switch register (10) */
uint32 swr_rd (uint32 src)
{
return SWR;
}
/* Machine status register (17) */
uint32 msr_rd (uint32 src)
{
return MSR;
}
t_stat msr_wr (uint32 src, uint32 dat)
{
MSR = dat; /* new MSR */
ao_update (); /* update AOV */
return SCPE_OK;
}
/* Arithmetic operators (11:14) */
uint32 ao_update (void)
{
int32 t;
int32 af = MSR_GET_FOA (MSR);
switch (af) {
case AO_ADD:
t = (AX + AY) & DMASK; /* add */
break;
case AO_AND:
t = AX & AY; /* and */
break;
case AO_XOR: /* xor */
t = AX ^ AY;
break;
case AO_IOR:
t = AX | AY; /* or */
break; }
if ((AX + AY) & CBIT) MSR = MSR | MSR_AOV; /* always calc AOV */
else MSR = MSR & ~MSR_AOV;
return t;
}
uint32 ax_rd (uint32 src)
{
return AX;
}
t_stat ax_wr (uint32 dst, uint32 dat)
{
AX = dat;
return SCPE_OK;
}
uint32 ay_rd (uint32 src)
{
return AY;
}
t_stat ay_wr (uint32 dst, uint32 dat)
{
AY = dat;
return SCPE_OK;
}
uint32 ao_rd (uint32 src)
{
AO = ao_update ();
return AO;
}
t_stat ao_fo (uint32 op)
{
uint32 t = OP_GET_FOA (op); /* get func */
MSR = MSR_PUT_FOA (MSR, t); /* store in MSR */
ao_update (); /* update AOV */
return SCPE_OK;
}
t_stat eao_fo (uint32 op)
{
uint32 t;
if (cpu_unit.flags & UNIT_NOEAO) return stop_opr; /* EAO installed? */
if (op == EAO_MUL) { /* mul? */
t = AX * AY; /* AX * AY */
AX = (t >> 16) & DMASK; /* to AX'GR1 */
GR[0] = t & DMASK; }
if (op == EAO_DIV) { /* div? */
if (AY && (AX < AY)) {
t = (AX << 16) | GR[0]; /* AX'GR1 / AY */
GR[0] = t / AY; /* quo to GR1 */
AX = t % AY; } /* rem to AX */
}
return SCPE_OK;
}
uint32 ao_sf (uint32 op)
{
if (((op & 2) && (MSR & MSR_AOV)) || /* arith carry? */
((op & 4) && (SIGN & /* arith overflow? */
((AX ^ (AX + AY)) & (~AX ^ AY))))) return 1;
return 0;
}
/* Byte swapper (24) */
uint32 bsw_rd (uint32 src)
{
return BSW;
}
t_stat bsw_wr (uint32 dst, uint32 val)
{
BSW = ((val >> 8) & 0377) | ((val & 0377) << 8);
return SCPE_OK;
}
/* Byte packer (25) */
uint32 bpk_rd (uint32 src)
{
return BPK;
}
t_stat bpk_wr (uint32 dst, uint32 val)
{
BPK = ((BPK & 0377) << 8) | (val & 0377);
return SCPE_OK;
}
/* General registers (30:35) */
uint32 gr_rd (uint32 src)
{
return GR[src - U_GR];
}
t_stat gr_wr (uint32 dst, uint32 dat)
{
GR[dst - U_GR] = dat;
return SCPE_OK;
}
/* Reset routine */
t_stat cpu_reset (DEVICE *dptr)
{
int32 i;
AX = AY = AO = 0;
TRP = 0;
ISR = 0;
MSR = 0;
MA = IR = 0;
BSW = BPK = 0;
for (i = 0; i < 6; i++) GR[i] = 0;
dev_done = dev_done & ~INT_PENDING;
scq_r = find_reg ("SCQ", NULL, dptr);
if (scq_r) scq_r->qptr = 0;
else return SCPE_IERR;
sim_brk_types = sim_brk_dflt = SWMASK ('E');
return SCPE_OK;
}
/* Memory examine */
t_stat cpu_ex (t_value *vptr, t_addr addr, UNIT *uptr, int32 sw)
{
if (addr >= MEMSIZE) return SCPE_NXM;
if (vptr != NULL) *vptr = M[addr] & DMASK;
return SCPE_OK;
}
/* Memory deposit */
t_stat cpu_dep (t_value val, t_addr addr, UNIT *uptr, int32 sw)
{
if (addr >= MEMSIZE) return SCPE_NXM;
M[addr] = val & DMASK;
return SCPE_OK;
}
t_stat cpu_set_size (UNIT *uptr, int32 val, char *cptr, void *desc)
{
int32 mc = 0;
t_addr i;
if ((val <= 0) || (val > MAXMEMSIZE) || ((val & 07777) != 0))
return SCPE_ARG;
for (i = val; i < MEMSIZE; i++) mc = mc | M[i];
if ((mc != 0) && (!get_yn ("Really truncate memory [N]?", FALSE)))
return SCPE_OK;
MEMSIZE = val;
for (i = MEMSIZE; i < MAXMEMSIZE; i++) M[i] = 0;
return SCPE_OK;
}