WARNING: V2.10 has reorganized and renamed some of the definition files for the PDP-10, PDP-11, and VAX. Be sure to delete all previous source files before you unpack the Zip archive, or unpack it into a new directory structure. WARNING: V2.10 has a new, more comprehensive save file format. Restoring save files from previous releases will cause 'invalid register' errors and loss of CPU option flags, device enable/ disable flags, unit online/offline flags, and unit writelock flags. WARNING: If you are using Visual Studio .NET through the IDE, be sure to turn off the /Wp64 flag in the project settings, or dozens of spurious errors will be generated. WARNING: Compiling Ethernet support under Windows requires extra steps; see the Ethernet readme file. Ethernet support is currently available only for Windows, Linux, NetBSD, and OpenBSD. 1. New Features 1.1 SCP and Libraries - The VT emulation package has been replaced by the capability to remote the console to a Telnet session. Telnet clients typically have more complete and robust VT100 emulation. - Simulated devices may now have statically allocated buffers, in addition to dynamically allocated buffers or disk-based data stores. - The DO command now takes substitutable arguments (max 9). In command files, %n represents substitutable argument n. - The initial command line is now interpreted as the command name and substitutable arguments for a DO command. This is backward compatible to prior versions. - The initial command line parses switches. -Q is interpreted as quiet mode; informational messages are suppressed. - The HELP command now takes an optional argument. HELP <cmd> types help on the specified command. - Hooks have been added for implementing GUI-based consoles, as well as simulator-specific command extensions. A few internal data structures and definitions have changed. - Two new routines (tmxr_open_master, tmxr_close_master) have been added to sim_tmxr.c. The calling sequence for sim_accept_conn has been changed in sim_sock.c. - The calling sequence for the VM boot routine has been modified to add an additional parameter. - SAVE now saves, and GET now restores, controller and unit flags. - Library sim_ether.c has been added for Ethernet support. 1.2 VAX - Non-volatile RAM (NVR) can behave either like a memory or like a disk-based peripheral. If unattached, it behaves like memory and is saved and restored by SAVE and RESTORE, respectively. If attached, its contents are loaded from disk by ATTACH and written back to disk at DETACH and EXIT. - SHOW <device> VECTOR displays the device's interrupt vector. A few devices allow the vector to be changed with SET <device> VECTOR=nnn. - SHOW CPU IOSPACE displays the I/O space address map. - The TK50 (TMSCP tape) has been added. - The DEQNA/DELQA (Qbus Ethernet controllers) have been added. - Autoconfiguration support has been added. - The paper tape reader has been removed from vax_stddev.c and now references a common implementation file, dec_pt.h. - Examine and deposit switches now work on all devices, not just the CPU. - Device address conflicts are not detected until simulation starts. 1.3 PDP-11 - SHOW <device> VECTOR displays the device's interrupt vector. Most devices allow the vector to be changed with SET <device> VECTOR=nnn. - SHOW CPU IOSPACE displays the I/O space address map. - The TK50 (TMSCP tape), RK611/RK06/RK07 (cartridge disk), RX211 (double density floppy), and KW11P programmable clock have been added. - The DEQNA/DELQA (Qbus Ethernet controllers) have been added. - Autoconfiguration support has been added. - The paper tape reader has been removed from pdp11_stddev.c and now references a common implementation file, dec_pt.h. - Device bootstraps now use the actual CSR specified by the SET ADDRESS command, rather than just the default CSR. Note that PDP-11 operating systems may NOT support booting with non-standard addresses. - Specifying more than 256KB of memory, or changing the bus configuration, causes all peripherals that are not compatible with the current bus configuration to be disabled. - Device address conflicts are not detected until simulation starts. 1.4 PDP-10 - SHOW <device> VECTOR displays the device's interrupt vector. A few devices allow the vector to be changed with SET <device> VECTOR=nnn. - SHOW CPU IOSPACE displays the I/O space address map. - The RX211 (double density floppy) has been added; it is off by default. - The paper tape now references a common implementation file, dec_pt.h. - Device address conflicts are not detected until simulation starts. 1.5 PDP-1 - DECtape (then known as MicroTape) support has been added. - The line printer and DECtape can be disabled and enabled. 1.6 PDP-8 - The RX28 (double density floppy) has been added as an option to the existing RX8E controller. - SHOW <device> DEVNO displays the device's device number. Most devices allow the device number to be changed with SET <device> DEVNO=nnn. - Device number conflicts are not detected until simulation starts. 1.7 IBM 1620 - The IBM 1620 simulator has been released. 1.8 AltairZ80 - A hard drive has been added for increased storage. - Several bugs have been fixed. 1.9 HP 2100 - The 12845A has been added and made the default line printer (LPT). The 12653A has been renamed LPS and is off by default. It also supports the diagnostic functions needed to run the DCPC and DMS diagnostics. - The 12557A/13210A disk defaults to the 13210A (7900/7901). - The 12559A magtape is off by default. - New CPU options (EAU/NOEAU) enable/disable the extended arithmetic instructions for the 2116. These instructions are standard on the 2100 and 21MX. - New CPU options (MPR/NOMPR) enable/disable memory protect for the 2100 and 21MX. - New CPU options (DMS/NODMS) enable/disable the dynamic mapping instructions for the 21MX. - The 12539 timebase generator autocalibrates. 1.10 Simulated Magtapes - Simulated magtapes recognize end of file and the marker 0xFFFFFFFF as end of medium. Only the TMSCP tape simulator can generate an end of medium marker. - The error handling in simulated magtapes was overhauled to be consistent through all simulators. 1.11 Simulated DECtapes - Added support for RT11 image file format (256 x 16b) to DECtapes. 2. Release Notes 2.1 Bugs Fixed - TS11/TSV05 was not simulating the XS0_MOT bit, causing failures under VMS. In addition, two of the CTL options were coded interchanged. - IBM 1401 tape was not setting a word mark under group mark for load mode reads. This caused the diagnostics to crash. - SCP bugs in ssh_break and set_logon were fixed (found by Dave Hittner). - Numerous bugs in the HP 2100 extended arithmetic, floating point, 21MX, DMS, and IOP instructions were fixed. Bugs were also fixed in the memory protect and DMS functions. The moving head disks (DP, DQ) were revised to simulate the hardware more accurately. Missing functions in DQ (address skip, read address) were added. 2.2 HP 2100 Debugging - The HP 2100 CPU nows runs all of the CPU diagnostics. - The peripherals run most of the peripheral diagnostics. There is still a problem in overlapped seek operation on the disks. See the file hp2100_diag.txt for details. 3. In Progress These simulators are not finished and are available in a separate Zip archive distribution. - Interdata 16b/32b: coded, partially tested. See the file id_diag.txt for details. - SDS 940: coded, partially tested.
391 lines
No EOL
11 KiB
C
391 lines
No EOL
11 KiB
C
/* gri_stddev.c: GRI-909 standard devices
|
||
|
||
Copyright (c) 2001-2002, Robert M Supnik
|
||
|
||
Permission is hereby granted, free of charge, to any person obtaining a
|
||
copy of this software and associated documentation files (the "Software"),
|
||
to deal in the Software without restriction, including without limitation
|
||
the rights to use, copy, modify, merge, publish, distribute, sublicense,
|
||
and/or sell copies of the Software, and to permit persons to whom the
|
||
Software is furnished to do so, subject to the following conditions:
|
||
|
||
The above copyright notice and this permission notice shall be included in
|
||
all copies or substantial portions of the Software.
|
||
|
||
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
||
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
||
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
|
||
ROBERT M SUPNIK BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
|
||
IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
|
||
CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
|
||
|
||
Except as contained in this notice, the name of Robert M Supnik shall not
|
||
be used in advertising or otherwise to promote the sale, use or other dealings
|
||
in this Software without prior written authorization from Robert M Supnik.
|
||
|
||
tti S42-001 terminal input
|
||
tto S42-002 terminal output
|
||
hsr S42-004 high speed reader
|
||
hsp S42-006 high speed punch
|
||
rtc real time clock
|
||
|
||
01-Nov-02 RMS Added 7b/8B support to terminal
|
||
*/
|
||
|
||
#include "gri_defs.h"
|
||
#include <ctype.h>
|
||
|
||
#define UNIT_V_8B (UNIT_V_UF + 0) /* 8B */
|
||
#define UNIT_V_KSR (UNIT_V_UF + 1) /* KSR33 */
|
||
#define UNIT_8B (1 << UNIT_V_8B)
|
||
#define UNIT_KSR (1 << UNIT_V_KSR)
|
||
|
||
uint32 hsr_stopioe = 1, hsp_stopioe = 1;
|
||
|
||
extern uint16 M[];
|
||
extern uint32 dev_done, ISR;
|
||
|
||
t_stat tti_svc (UNIT *uhsr);
|
||
t_stat tto_svc (UNIT *uhsr);
|
||
t_stat tti_reset (DEVICE *dhsr);
|
||
t_stat tto_reset (DEVICE *dhsr);
|
||
t_stat tty_set_mode (UNIT *uptr, int32 val, char *cptr, void *desc);
|
||
t_stat hsr_svc (UNIT *uhsr);
|
||
t_stat hsp_svc (UNIT *uhsr);
|
||
t_stat hsr_reset (DEVICE *dhsr);
|
||
t_stat hsp_reset (DEVICE *dhsr);
|
||
t_stat rtc_svc (UNIT *uhsr);
|
||
t_stat rtc_reset (DEVICE *dhsr);
|
||
int32 rtc_tps = 1000;
|
||
|
||
/* TTI data structures
|
||
|
||
tti_dev TTI device descriptor
|
||
tti_unit TTI unit descriptor
|
||
tti_reg TTI register list
|
||
tti_mod TTI modifiers list
|
||
*/
|
||
|
||
UNIT tti_unit = { UDATA (&tti_svc, UNIT_KSR, 0), KBD_POLL_WAIT };
|
||
|
||
REG tti_reg[] = {
|
||
{ ORDATA (BUF, tti_unit.buf, 8) },
|
||
{ FLDATA (IRDY, dev_done, INT_V_TTI) },
|
||
{ FLDATA (IENB, ISR, INT_V_TTI) },
|
||
{ DRDATA (POS, tti_unit.pos, 32), PV_LEFT },
|
||
{ DRDATA (TIME, tti_unit.wait, 24), REG_NZ + PV_LEFT },
|
||
{ FLDATA (UC, tti_unit.flags, UNIT_V_KSR), REG_HRO },
|
||
{ NULL } };
|
||
|
||
MTAB tti_mod[] = {
|
||
{ UNIT_KSR+UNIT_8B, UNIT_KSR, "KSR", "KSR", &tty_set_mode },
|
||
{ UNIT_KSR+UNIT_8B, 0 , "7b" , "7B" , &tty_set_mode },
|
||
{ UNIT_KSR+UNIT_8B, UNIT_8B , "8b" , "8B" , &tty_set_mode },
|
||
{ 0 } };
|
||
|
||
DEVICE tti_dev = {
|
||
"TTI", &tti_unit, tti_reg, tti_mod,
|
||
1, 10, 31, 1, 8, 8,
|
||
NULL, NULL, &tti_reset,
|
||
NULL, NULL, NULL };
|
||
|
||
/* TTO data structures
|
||
|
||
tto_dev TTO device descriptor
|
||
tto_unit TTO unit descriptor
|
||
tto_reg TTO register list
|
||
*/
|
||
|
||
UNIT tto_unit = { UDATA (&tto_svc, UNIT_KSR, 0), SERIAL_OUT_WAIT };
|
||
|
||
REG tto_reg[] = {
|
||
{ ORDATA (BUF, tto_unit.buf, 8) },
|
||
{ FLDATA (ORDY, dev_done, INT_V_TTO) },
|
||
{ FLDATA (IENB, ISR, INT_V_TTO) },
|
||
{ DRDATA (POS, tto_unit.pos, 32), PV_LEFT },
|
||
{ DRDATA (TIME, tto_unit.wait, 24), PV_LEFT },
|
||
{ NULL } };
|
||
|
||
MTAB tto_mod[] = {
|
||
{ UNIT_KSR+UNIT_8B, UNIT_KSR, "KSR", "KSR", &tty_set_mode },
|
||
{ UNIT_KSR+UNIT_8B, 0 , "7b" , "7B" , &tty_set_mode },
|
||
{ UNIT_KSR+UNIT_8B, UNIT_8B , "8b" , "8B" , &tty_set_mode },
|
||
{ 0 } };
|
||
|
||
DEVICE tto_dev = {
|
||
"TTO", &tto_unit, tto_reg, tto_mod,
|
||
1, 10, 31, 1, 8, 8,
|
||
NULL, NULL, &tto_reset,
|
||
NULL, NULL, NULL };
|
||
|
||
/* HSR data structures
|
||
|
||
hsr_dev HSR device descriptor
|
||
hsr_unit HSR unit descriptor
|
||
hsr_reg HSR register list
|
||
hsr_mod HSR modifiers list
|
||
*/
|
||
|
||
UNIT hsr_unit = {
|
||
UDATA (&hsr_svc, UNIT_SEQ+UNIT_ATTABLE+UNIT_ROABLE, 0), SERIAL_IN_WAIT };
|
||
|
||
REG hsr_reg[] = {
|
||
{ ORDATA (BUF, hsr_unit.buf, 8) },
|
||
{ FLDATA (IRDY, dev_done, INT_V_HSR) },
|
||
{ FLDATA (IENB, ISR, INT_V_HSR) },
|
||
{ DRDATA (POS, hsr_unit.pos, 32), PV_LEFT },
|
||
{ DRDATA (TIME, hsr_unit.wait, 24), REG_NZ + PV_LEFT },
|
||
{ FLDATA (STOP_IOE, hsr_stopioe, 0) },
|
||
{ NULL } };
|
||
|
||
DEVICE hsr_dev = {
|
||
"HSR", &hsr_unit, hsr_reg, NULL,
|
||
1, 10, 31, 1, 8, 8,
|
||
NULL, NULL, &hsr_reset,
|
||
NULL, NULL, NULL };
|
||
|
||
/* HSP data structures
|
||
|
||
hsp_dev HSP device descriptor
|
||
hsp_unit HSP unit descriptor
|
||
hsp_reg HSP register list
|
||
*/
|
||
|
||
UNIT hsp_unit = {
|
||
UDATA (&hsp_svc, UNIT_SEQ+UNIT_ATTABLE, 0), SERIAL_OUT_WAIT };
|
||
|
||
REG hsp_reg[] = {
|
||
{ ORDATA (BUF, hsp_unit.buf, 8) },
|
||
{ FLDATA (ORDY, dev_done, INT_V_HSP) },
|
||
{ FLDATA (IENB, ISR, INT_V_HSP) },
|
||
{ DRDATA (POS, hsp_unit.pos, 32), PV_LEFT },
|
||
{ DRDATA (TIME, hsp_unit.wait, 24), PV_LEFT },
|
||
{ FLDATA (STOP_IOE, hsp_stopioe, 0) },
|
||
{ NULL } };
|
||
|
||
DEVICE hsp_dev = {
|
||
"HSP", &hsp_unit, hsp_reg, NULL,
|
||
1, 10, 31, 1, 8, 8,
|
||
NULL, NULL, &hsp_reset,
|
||
NULL, NULL, NULL };
|
||
|
||
/* RTC data structures
|
||
|
||
rtc_dev RTC device descriptor
|
||
rtc_unit RTC unit descriptor
|
||
rtc_reg RTC register list
|
||
*/
|
||
|
||
UNIT rtc_unit = { UDATA (&rtc_svc, 0, 0), 16000 };
|
||
|
||
REG rtc_reg[] = {
|
||
{ FLDATA (RDY, dev_done, INT_V_RTC) },
|
||
{ FLDATA (IENB, ISR, INT_V_RTC) },
|
||
{ DRDATA (TIME, rtc_unit.wait, 24), REG_NZ + PV_LEFT },
|
||
{ DRDATA (TPS, rtc_tps, 8), REG_NZ + PV_LEFT + REG_HIDDEN },
|
||
{ NULL } };
|
||
|
||
DEVICE rtc_dev = {
|
||
"RTC", &rtc_unit, rtc_reg, NULL,
|
||
1, 0, 0, 0, 0, 0,
|
||
NULL, NULL, &rtc_reset,
|
||
NULL, NULL, NULL };
|
||
|
||
/* Console terminal function processors */
|
||
|
||
int32 tty_rd (int32 src, int32 ea)
|
||
{
|
||
return tti_unit.buf; /* return data */
|
||
}
|
||
|
||
t_stat tty_wr (uint32 dst, uint32 val)
|
||
{
|
||
tto_unit.buf = val & 0377; /* save char */
|
||
dev_done = dev_done & ~INT_TTO; /* clear ready */
|
||
sim_activate (&tto_unit, tto_unit.wait); /* activate unit */
|
||
return SCPE_OK;
|
||
}
|
||
|
||
t_stat tty_fo (uint32 op)
|
||
{
|
||
if (op & TTY_IRDY) dev_done = dev_done & ~INT_TTI;
|
||
if (op & TTY_ORDY) dev_done = dev_done & ~INT_TTO;
|
||
return SCPE_OK;
|
||
}
|
||
|
||
uint32 tty_sf (uint32 op)
|
||
{
|
||
if (((op & TTY_IRDY) && (dev_done & INT_TTI)) ||
|
||
((op & TTY_ORDY) && (dev_done & INT_TTO))) return 1;
|
||
return 0;
|
||
}
|
||
|
||
/* Service routines */
|
||
|
||
t_stat tti_svc (UNIT *uhsr)
|
||
{
|
||
int32 c;
|
||
|
||
sim_activate (&tti_unit, tti_unit.wait); /* continue poll */
|
||
if ((c = sim_poll_kbd ()) < SCPE_KFLAG) return c; /* no char or error? */
|
||
if (tti_unit.flags & UNIT_KSR) { /* KSR? */
|
||
c = c & 0177; /* force 7b */
|
||
if (islower (c)) c = toupper (c); /* cvt to UC */
|
||
tti_unit.buf = c | 0200; } /* add TTY bit */
|
||
else tti_unit.buf = c & ((tti_unit.flags & UNIT_8B)? 0377: 0177);
|
||
dev_done = dev_done | INT_TTI; /* set ready */
|
||
tti_unit.pos = tti_unit.pos + 1;
|
||
return SCPE_OK;
|
||
}
|
||
|
||
t_stat tto_svc (UNIT *uhsr)
|
||
{
|
||
int32 c;
|
||
t_stat r;
|
||
|
||
dev_done = dev_done | INT_TTO; /* set ready */
|
||
if (tto_unit.flags & UNIT_KSR) { /* KSR? */
|
||
c = tto_unit.buf & 0177; /* force 7b */
|
||
if (islower (c)) c = toupper (c); } /* cvt to UC */
|
||
else c = tto_unit.buf & ((tto_unit.flags & UNIT_8B)? 0377: 0177);
|
||
if ((r = sim_putchar (c)) != SCPE_OK) return r; /* output */
|
||
tto_unit.pos = tto_unit.pos + 1;
|
||
return SCPE_OK;
|
||
}
|
||
|
||
/* Reset routines */
|
||
|
||
t_stat tti_reset (DEVICE *dhsr)
|
||
{
|
||
tti_unit.buf = 0; /* clear buffer */
|
||
dev_done = dev_done & ~INT_TTI; /* clear ready */
|
||
sim_activate (&tti_unit, tti_unit.wait); /* activate unit */
|
||
return SCPE_OK;
|
||
}
|
||
|
||
t_stat tto_reset (DEVICE *dhsr)
|
||
{
|
||
tto_unit.buf = 0; /* clear buffer */
|
||
dev_done = dev_done | INT_TTO; /* set ready */
|
||
sim_cancel (&tto_unit); /* deactivate unit */
|
||
return SCPE_OK;
|
||
}
|
||
|
||
t_stat tty_set_mode (UNIT *uptr, int32 val, char *cptr, void *desc)
|
||
{
|
||
tti_unit.flags = (tti_unit.flags & ~(UNIT_KSR | UNIT_8B)) | val;
|
||
tto_unit.flags = (tto_unit.flags & ~(UNIT_KSR | UNIT_8B)) | val;
|
||
return SCPE_OK;
|
||
}
|
||
|
||
/* High speed paper tape function processors */
|
||
|
||
int32 hsrp_rd (int32 src, int32 ea)
|
||
{
|
||
return hsr_unit.buf; /* return data */
|
||
}
|
||
|
||
t_stat hsrp_wr (uint32 dst, uint32 val)
|
||
{
|
||
hsp_unit.buf = val & 0377; /* save char */
|
||
dev_done = dev_done & ~INT_HSP; /* clear ready */
|
||
sim_activate (&hsp_unit, hsp_unit.wait); /* activate unit */
|
||
return SCPE_OK;
|
||
}
|
||
|
||
t_stat hsrp_fo (uint32 op)
|
||
{
|
||
if (op & PT_IRDY) dev_done = dev_done & ~INT_HSR;
|
||
if (op & PT_ORDY) dev_done = dev_done & ~INT_HSP;
|
||
if (op & PT_STRT) sim_activate (&hsr_unit, hsr_unit.wait);
|
||
return SCPE_OK;
|
||
}
|
||
|
||
uint32 hsrp_sf (uint32 op)
|
||
{
|
||
if (((op & PT_IRDY) && (dev_done & INT_HSR)) ||
|
||
((op & PT_ORDY) && (dev_done & INT_HSP))) return 1;
|
||
return 0;
|
||
}
|
||
|
||
t_stat hsr_svc (UNIT *uhsr)
|
||
{
|
||
int32 temp;
|
||
|
||
if ((hsr_unit.flags & UNIT_ATT) == 0) /* attached? */
|
||
return IORETURN (hsr_stopioe, SCPE_UNATT);
|
||
if ((temp = getc (hsr_unit.fileref)) == EOF) { /* read char */
|
||
if (feof (hsr_unit.fileref)) { /* err or eof? */
|
||
if (hsr_stopioe) printf ("HSR end of file\n");
|
||
else return SCPE_OK; }
|
||
else perror ("HSR I/O error");
|
||
clearerr (hsr_unit.fileref);
|
||
return SCPE_IOERR; }
|
||
dev_done = dev_done | INT_HSR; /* set ready */
|
||
hsr_unit.buf = temp & 0377; /* save char */
|
||
hsr_unit.pos = hsr_unit.pos + 1;
|
||
return SCPE_OK;
|
||
}
|
||
|
||
t_stat hsp_svc (UNIT *uhsr)
|
||
{
|
||
dev_done = dev_done | INT_HSP; /* set ready */
|
||
if ((hsp_unit.flags & UNIT_ATT) == 0) /* attached? */
|
||
return IORETURN (hsp_stopioe, SCPE_UNATT);
|
||
if (putc (hsp_unit.buf, hsp_unit.fileref) == EOF) { /* write char */
|
||
perror ("HSP I/O error"); /* error? */
|
||
clearerr (hsp_unit.fileref);
|
||
return SCPE_IOERR; }
|
||
hsp_unit.pos = hsp_unit.pos + 1;
|
||
return SCPE_OK;
|
||
}
|
||
|
||
/* Reset routines */
|
||
|
||
t_stat hsr_reset (DEVICE *dhsr)
|
||
{
|
||
hsr_unit.buf = 0; /* clear buffer */
|
||
dev_done = dev_done & ~INT_HSR; /* clear ready */
|
||
sim_cancel (&hsr_unit); /* deactivate unit */
|
||
return SCPE_OK;
|
||
}
|
||
|
||
t_stat hsp_reset (DEVICE *dhsr)
|
||
{
|
||
hsp_unit.buf = 0; /* clear buffer */
|
||
dev_done = dev_done | INT_HSP; /* set ready */
|
||
sim_cancel (&hsp_unit); /* deactivate unit */
|
||
return SCPE_OK;
|
||
}
|
||
|
||
/* Clock function processors */
|
||
|
||
t_stat rtc_fo (int32 op)
|
||
{
|
||
if (op & RTC_OFF) sim_cancel (&rtc_unit); /* clock off? */
|
||
if ((op & RTC_ON) && !sim_is_active (&rtc_unit)) /* clock on? */
|
||
sim_activate (&rtc_unit, sim_rtc_init (rtc_unit.wait));
|
||
if (op & RTC_OV) dev_done = dev_done & ~INT_RTC; /* clr ovflo? */
|
||
return SCPE_OK;
|
||
}
|
||
|
||
int32 rtc_sf (int32 op)
|
||
{
|
||
if ((op & RTC_OV) && (dev_done & INT_RTC)) return 1;
|
||
return 0;
|
||
}
|
||
|
||
t_stat rtc_svc (UNIT *uhsr)
|
||
{
|
||
M[RTC_CTR] = (M[RTC_CTR] + 1) & DMASK; /* incr counter */
|
||
if (M[RTC_CTR] == 0) dev_done = dev_done | INT_RTC; /* ovflo? set ready */
|
||
sim_activate (&rtc_unit, sim_rtc_calb (rtc_tps)); /* reactivate */
|
||
return SCPE_OK;
|
||
}
|
||
|
||
t_stat rtc_reset (DEVICE *dhsr)
|
||
{
|
||
dev_done = dev_done & ~INT_RTC; /* clear ready */
|
||
sim_cancel (&rtc_unit); /* stop clock */
|
||
return SCPE_OK;
|
||
} |