simh-testsetgenerator/HP2100/hp2100_sys.c
Bob Supnik 2c2dd5ea33 Notes For V2.10-0
WARNING: V2.10 has reorganized and renamed some of the definition
files for the PDP-10, PDP-11, and VAX.  Be sure to delete all
previous source files before you unpack the Zip archive, or
unpack it into a new directory structure.

WARNING: V2.10 has a new, more comprehensive save file format.
Restoring save files from previous releases will cause 'invalid
register' errors and loss of CPU option flags, device enable/
disable flags, unit online/offline flags, and unit writelock
flags.

WARNING: If you are using Visual Studio .NET through the IDE,
be sure to turn off the /Wp64 flag in the project settings, or
dozens of spurious errors will be generated.

WARNING: Compiling Ethernet support under Windows requires
extra steps; see the Ethernet readme file.  Ethernet support is
currently available only for Windows, Linux, NetBSD, and OpenBSD.

1. New Features

1.1 SCP and Libraries

- The VT emulation package has been replaced by the capability
  to remote the console to a Telnet session.  Telnet clients
  typically have more complete and robust VT100 emulation.
- Simulated devices may now have statically allocated buffers,
  in addition to dynamically allocated buffers or disk-based
  data stores.
- The DO command now takes substitutable arguments (max 9).
  In command files, %n represents substitutable argument n.
- The initial command line is now interpreted as the command
  name and substitutable arguments for a DO command.  This is
  backward compatible to prior versions.
- The initial command line parses switches.  -Q is interpreted
  as quiet mode; informational messages are suppressed.
- The HELP command now takes an optional argument.  HELP <cmd>
  types help on the specified command.
- Hooks have been added for implementing GUI-based consoles,
  as well as simulator-specific command extensions.  A few
  internal data structures and definitions have changed.
- Two new routines (tmxr_open_master, tmxr_close_master) have
  been added to sim_tmxr.c.  The calling sequence for
  sim_accept_conn has been changed in sim_sock.c.
- The calling sequence for the VM boot routine has been modified
  to add an additional parameter.
- SAVE now saves, and GET now restores, controller and unit flags.
- Library sim_ether.c has been added for Ethernet support.

1.2 VAX

- Non-volatile RAM (NVR) can behave either like a memory or like
  a disk-based peripheral.  If unattached, it behaves like memory
  and is saved and restored by SAVE and RESTORE, respectively.
  If attached, its contents are loaded from disk by ATTACH and
  written back to disk at DETACH and EXIT.
- SHOW <device> VECTOR displays the device's interrupt vector.
  A few devices allow the vector to be changed with SET
  <device> VECTOR=nnn.
- SHOW CPU IOSPACE displays the I/O space address map.
- The TK50 (TMSCP tape) has been added.
- The DEQNA/DELQA (Qbus Ethernet controllers) have been added.
- Autoconfiguration support has been added.
- The paper tape reader has been removed from vax_stddev.c and
  now references a common implementation file, dec_pt.h.
- Examine and deposit switches now work on all devices, not just
  the CPU.
- Device address conflicts are not detected until simulation starts.

1.3 PDP-11

- SHOW <device> VECTOR displays the device's interrupt vector.
  Most devices allow the vector to be changed with SET
  <device> VECTOR=nnn.
- SHOW CPU IOSPACE displays the I/O space address map.
- The TK50 (TMSCP tape), RK611/RK06/RK07 (cartridge disk),
  RX211 (double density floppy), and KW11P programmable clock
  have been added.
- The DEQNA/DELQA (Qbus Ethernet controllers) have been added.
- Autoconfiguration support has been added.
- The paper tape reader has been removed from pdp11_stddev.c and
  now references a common implementation file, dec_pt.h.
- Device bootstraps now use the actual CSR specified by the
  SET ADDRESS command, rather than just the default CSR.  Note
  that PDP-11 operating systems may NOT support booting with
  non-standard addresses.
- Specifying more than 256KB of memory, or changing the bus
  configuration, causes all peripherals that are not compatible
  with the current bus configuration to be disabled.
- Device address conflicts are not detected until simulation starts.

1.4 PDP-10

- SHOW <device> VECTOR displays the device's interrupt vector.
  A few devices allow the vector to be changed with SET
  <device> VECTOR=nnn.
- SHOW CPU IOSPACE displays the I/O space address map.
- The RX211 (double density floppy) has been added; it is off
  by default.
- The paper tape now references a common implementation file,
  dec_pt.h.
- Device address conflicts are not detected until simulation starts.

1.5 PDP-1

- DECtape (then known as MicroTape) support has been added.
- The line printer and DECtape can be disabled and enabled.

1.6 PDP-8

- The RX28 (double density floppy) has been added as an option to
  the existing RX8E controller.
- SHOW <device> DEVNO displays the device's device number.  Most
  devices allow the device number to be changed with SET <device>
  DEVNO=nnn.
- Device number conflicts are not detected until simulation starts.

1.7 IBM 1620

- The IBM 1620 simulator has been released.

1.8 AltairZ80

- A hard drive has been added for increased storage.
- Several bugs have been fixed.

1.9 HP 2100

- The 12845A has been added and made the default line printer (LPT).
  The 12653A has been renamed LPS and is off by default.  It also
  supports the diagnostic functions needed to run the DCPC and DMS
  diagnostics.
- The 12557A/13210A disk defaults to the 13210A (7900/7901).
- The 12559A magtape is off by default.
- New CPU options (EAU/NOEAU) enable/disable the extended arithmetic
  instructions for the 2116.  These instructions are standard on
  the 2100 and 21MX.
- New CPU options (MPR/NOMPR) enable/disable memory protect for the
  2100 and 21MX.
- New CPU options (DMS/NODMS) enable/disable the dynamic mapping
  instructions for the 21MX.
- The 12539 timebase generator autocalibrates.

1.10 Simulated Magtapes

- Simulated magtapes recognize end of file and the marker
  0xFFFFFFFF as end of medium.  Only the TMSCP tape simulator
  can generate an end of medium marker.
- The error handling in simulated magtapes was overhauled to be
  consistent through all simulators.

1.11 Simulated DECtapes

- Added support for RT11 image file format (256 x 16b) to DECtapes.

2. Release Notes

2.1 Bugs Fixed

- TS11/TSV05 was not simulating the XS0_MOT bit, causing failures
  under VMS.  In addition, two of the CTL options were coded
  interchanged.
- IBM 1401 tape was not setting a word mark under group mark for
  load mode reads.  This caused the diagnostics to crash.
- SCP bugs in ssh_break and set_logon were fixed (found by Dave
  Hittner).
- Numerous bugs in the HP 2100 extended arithmetic, floating point,
  21MX, DMS, and IOP instructions were fixed.  Bugs were also fixed
  in the memory protect and DMS functions.  The moving head disks
  (DP, DQ) were revised to simulate the hardware more accurately.
  Missing functions in DQ (address skip, read address) were added.

2.2 HP 2100 Debugging

- The HP 2100 CPU nows runs all of the CPU diagnostics.
- The peripherals run most of the peripheral diagnostics.  There
  is still a problem in overlapped seek operation on the disks.
  See the file hp2100_diag.txt for details.

3. In Progress

These simulators are not finished and are available in a separate
Zip archive distribution.

- Interdata 16b/32b: coded, partially tested.  See the file
  id_diag.txt for details.
- SDS 940: coded, partially tested.
2011-04-15 08:33:49 -07:00

577 lines
20 KiB
C
Raw Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/* hp2100_sys.c: HP 2100 simulator interface
Copyright (c) 1993-2002, Robert M. Supnik
Permission is hereby granted, free of charge, to any person obtaining a
copy of this software and associated documentation files (the "Software"),
to deal in the Software without restriction, including without limitation
the rights to use, copy, modify, merge, publish, distribute, sublicense,
and/or sell copies of the Software, and to permit persons to whom the
Software is furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
ROBERT M SUPNIK BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
Except as contained in this notice, the name of Robert M Supnik shall not
be used in advertising or otherwise to promote the sale, use or other dealings
in this Software without prior written authorization from Robert M Supnik.
22-Mar-02 RMS Revised for dynamically allocated memory
14-Feb-02 RMS Added DMS instructions
04-Feb-02 RMS Fixed bugs in alter/skip display and parsing
01-Feb-02 RMS Added terminal multiplexor support
16-Jan-02 RMS Added additional device support
17-Sep-01 RMS Removed multiconsole support
27-May-01 RMS Added multiconsole support
14-Mar-01 RMS Revised load/dump interface (again)
30-Oct-00 RMS Added examine to file support
15-Oct-00 RMS Added dynamic device number support
27-Oct-98 RMS V2.4 load interface
*/
#include "hp2100_defs.h"
#include <ctype.h>
extern DEVICE cpu_dev;
extern UNIT cpu_unit;
extern DEVICE dma0_dev, dma1_dev;
extern DEVICE ptr_dev, ptp_dev;
extern DEVICE tty_dev, clk_dev;
extern DEVICE lps_dev, lpt_dev;
extern DEVICE mtd_dev, mtc_dev;
extern DEVICE msd_dev, msc_dev;
extern DEVICE dpd_dev, dpc_dev;
extern DEVICE dqd_dev, dqc_dev;
extern DEVICE drd_dev, drc_dev;
extern DEVICE muxl_dev, muxu_dev, muxc_dev;
extern REG cpu_reg[];
extern uint16 *M;
/* SCP data structures and interface routines
sim_name simulator name string
sim_PC pointer to saved PC register descriptor
sim_emax maximum number of words for examine/deposit
sim_devices array of pointers to simulated devices
sim_stop_messages array of pointers to stop messages
sim_load binary loader
*/
char sim_name[] = "HP 2100";
REG *sim_PC = &cpu_reg[0];
int32 sim_emax = 3;
DEVICE *sim_devices[] = {
&cpu_dev,
&dma0_dev,
&dma1_dev,
&ptr_dev,
&ptp_dev,
&tty_dev,
&clk_dev,
&lps_dev,
&lpt_dev,
&dpd_dev, &dpc_dev,
&dqd_dev, &dqc_dev,
&drd_dev, &drc_dev,
&mtd_dev, &mtc_dev,
&msd_dev, &msc_dev,
&muxl_dev, &muxu_dev, &muxc_dev,
NULL };
const char *sim_stop_messages[] = {
"Unknown error",
"Unimplemented instruction",
"Non-existent I/O device",
"HALT instruction",
"Breakpoint",
"Indirect address loop",
"Indirect address interrupt (should not happen!)" };
/* Binary loader
The binary loader consists of blocks preceded and trailed by zero frames.
A block consists of 16b words (punched big endian), as follows:
count'xxx
origin
word 0
:
word count-1
checksum
The checksum includes the origin but not the count.
*/
int32 fgetw (FILE *fileref)
{
int c1, c2;
if ((c1 = fgetc (fileref)) == EOF) return -1;
if ((c2 = fgetc (fileref)) == EOF) return -1;
return ((c1 & 0377) << 8) | (c2 & 0377);
}
t_stat sim_load (FILE *fileref, char *cptr, char *fnam, int flag)
{
int32 origin, csum, zerocnt, count, word, i;
if ((*cptr != 0) || (flag != 0)) return SCPE_ARG;
for (zerocnt = 1;; zerocnt = -10) { /* block loop */
for (;; zerocnt++) { /* skip 0's */
if ((count = fgetc (fileref)) == EOF) return SCPE_OK;
else if (count) break;
else if (zerocnt == 0) return SCPE_OK; }
if (fgetc (fileref) == EOF) return SCPE_FMT;
if ((origin = fgetw (fileref)) < 0) return SCPE_FMT;
csum = origin; /* seed checksum */
for (i = 0; i < count; i++) { /* get data words */
if ((word = fgetw (fileref)) < 0) return SCPE_FMT;
if (MEM_ADDR_OK (origin)) M[origin] = word;
origin = origin + 1;
csum = csum + word; }
if ((word = fgetw (fileref)) < 0) return SCPE_FMT;
if ((word ^ csum) & DMASK) return SCPE_CSUM; }
return SCPE_OK;
}
/* Symbol tables */
#define I_V_FL 16 /* flag start */
#define I_M_FL 017 /* flag mask */
#define I_V_NPN 0 /* no operand */
#define I_V_NPC 1 /* no operand + C */
#define I_V_MRF 2 /* mem ref */
#define I_V_ASH 3 /* alter/skip, shift */
#define I_V_ESH 4 /* extended shift */
#define I_V_EMR 5 /* extended mem ref */
#define I_V_IO1 6 /* I/O + HC */
#define I_V_IO2 7 /* I/O only */
#define I_V_EGZ 010 /* ext grp, 1 op + 0 */
#define I_V_EG2 011 /* ext grp, 2 op */
#define I_NPN (I_V_NPN << I_V_FL)
#define I_NPC (I_V_NPC << I_V_FL)
#define I_MRF (I_V_MRF << I_V_FL)
#define I_ASH (I_V_ASH << I_V_FL)
#define I_ESH (I_V_ESH << I_V_FL)
#define I_EMR (I_V_EMR << I_V_FL)
#define I_IO1 (I_V_IO1 << I_V_FL)
#define I_IO2 (I_V_IO2 << I_V_FL)
#define I_EGZ (I_V_EGZ << I_V_FL)
#define I_EG2 (I_V_EG2 << I_V_FL)
static const int32 masks[] = {
0177777, 0176777, 0074000, 0170000,
0177760, 0177777, 0176700, 0177700,
0177777, 0177777 };
static const char *opcode[] = {
"NOP", "NOP", "AND", "JSB",
"XOR", "JMP", "IOR", "ISZ",
"ADA", "ADB" ,"CPA", "CPB",
"LDA", "LDB", "STA", "STB",
"DIAG", "ASL", "LSL", "TIMER",
"RRL", "ASR", "LSR", "RRR",
"MPY", "DIV", "DLD", "DST",
"FAD", "FSB", "FMP", "FDV",
"FIX", "FLT",
"STO", "CLO", "SOC", "SOS",
"HLT", "STF", "CLF",
"SFC", "SFS", "MIA", "MIB",
"LIA", "LIB", "OTA", "OTB",
"STC", "CLC",
"SYA", "USA", "PAA", "PBA",
"XMA",
"XLA", "XSA", "XCA", "LFA",
"RSA", "RVA",
"MBI", "MBF",
"MBW", "MWI", "MWF", "MWW",
"SYB", "USB", "PAB", "PBB",
"SSM", "JRS",
"XMM", "XMS", "XMB",
"XLB", "XSB", "XCB", "LFB",
"RSB", "RVB", "DJP", "DJS",
"SJP", "SJS", "UJP", "UJS",
"SAX", "SBX", "CAX", "CBX",
"LAX", "LBX", "STX",
"CXA", "CXB", "LDX",
"ADX", "XAX", "XBX",
"SAY", "SBY", "CAY", "CBY",
"LAY", "LBY", "STY",
"CYA", "CYB", "LDY",
"ADY", "XAY", "XBY",
"ISX", "DSX", "JLY", "LBT",
"SBT", "MBT", "CBT", "SBT",
"ISY", "DSY", "JPY", "SBS",
"CBS", "TBS", "CMW", "MVW",
NULL, /* decode only */
NULL };
static const int32 opc_val[] = {
0000000+I_NPN, 0002000+I_NPN, 0010000+I_MRF, 0014000+I_MRF,
0020000+I_MRF, 0024000+I_MRF, 0030000+I_MRF, 0034000+I_MRF,
0040000+I_MRF, 0044000+I_MRF, 0050000+I_MRF, 0054000+I_MRF,
0060000+I_MRF, 0064000+I_MRF, 0070000+I_MRF, 0074000+I_MRF,
0100000+I_NPN, 0100020+I_ESH, 0100040+I_ESH, 0100060+I_NPN,
0100100+I_ESH, 0101020+I_ESH, 0101040+I_ESH, 0101100+I_ESH,
0100200+I_EMR, 0100400+I_EMR, 0104200+I_EMR, 0104400+I_EMR,
0105000+I_EMR, 0105020+I_EMR, 0105040+I_EMR, 0105060+I_EMR,
0105100+I_NPN, 0105120+I_NPN,
0102101+I_NPN, 0103101+I_NPN, 0102201+I_NPC, 0102301+I_NPC,
0102000+I_IO1, 0102100+I_IO2, 0103100+I_IO2,
0102200+I_IO2, 0102300+I_IO2, 0102400+I_IO1, 0106400+I_IO1,
0102500+I_IO1, 0106500+I_IO1, 0102600+I_IO1, 0106600+I_IO1,
0102700+I_IO1, 0106700+I_IO1,
0101710+I_NPN, 0101711+I_NPN, 0101712+I_NPN, 0101713+I_NPN,
0101722+I_NPN,
0101724+I_EMR, 0101725+I_EMR, 0101726+I_EMR, 0101727+I_NPN,
0101730+I_NPN, 0101731+I_NPN,
0105702+I_NPN, 0105703+I_NPN,
0105704+I_NPN, 0105705+I_NPN, 0105706+I_NPN, 0105707+I_NPN,
0105710+I_NPN, 0105711+I_NPN, 0105712+I_NPN, 0105713+I_NPN,
0105714+I_EMR, 0105715+I_EG2,
0105720+I_NPN, 0105721+I_NPN, 0105722+I_NPN,
0105724+I_EMR, 0105725+I_EMR, 0105726+I_EMR, 0105727+I_NPN,
0105730+I_NPN, 0105731+I_NPN, 0105732+I_EMR, 0105733+I_EMR,
0105734+I_EMR, 0105735+I_EMR, 0105736+I_EMR, 0105737+I_EMR,
0101740+I_EMR, 0105740+I_EMR, 0101741+I_NPN, 0105741+I_NPN,
0101742+I_EMR, 0105742+I_EMR, 0105743+I_EMR,
0101744+I_NPN, 0105744+I_NPN, 0105745+I_EMR,
0105746+I_EMR, 0101747+I_NPN, 0105747+I_NPN,
0101750+I_EMR, 0105750+I_EMR, 0101751+I_NPN, 0105751+I_NPN,
0101752+I_EMR, 0105752+I_EMR, 0105753+I_EMR,
0101754+I_NPN, 0105754+I_NPN, 0105755+I_EMR,
0105756+I_EMR, 0101757+I_NPN, 0105757+I_NPN,
0105760+I_NPN, 0105761+I_NPN, 0105762+I_EMR, 0105763+I_NPN,
0105764+I_NPN, 0105765+I_EGZ, 0105766+I_EGZ, 0105767+I_NPN,
0105770+I_NPN, 0105771+I_NPN, 0105772+I_EMR, 0105773+I_EG2,
0105774+I_EG2, 0105775+I_EG2, 0105776+I_EGZ, 0105777+I_EGZ,
0000000+I_ASH, /* decode only */
-1 };
/* Decode tables for shift and alter/skip groups */
static const char *stab[] = {
"ALS", "ARS", "RAL", "RAR", "ALR", "ERA", "ELA", "ALF",
"BLS", "BRS", "RBL", "RBR", "BLR", "ERB", "ELB", "BLF",
"CLA", "CMA", "CCA", "CLB", "CMB", "CCB",
"SEZ", "CLE", "CLE", "CME", "CCE",
"SSA", "SSB", "SLA", "SLB",
"ALS", "ARS", "RAL", "RAR", "ALR", "ERA", "ELA", "ALF",
"BLS", "BRS", "RBL", "RBR", "BLR", "ERB", "ELB", "BLF",
"INA", "INB", "SZA", "SZB", "RSS",
NULL };
static const int32 mtab[] = {
0007700, 0007700, 0007700, 0007700, 0007700, 0007700, 0007700, 0007700,
0007700, 0007700, 0007700, 0007700, 0007700, 0007700, 0007700, 0007700,
0006400, 0007000, 0007400, 0006400, 0007000, 0007400,
0002040, 0002040, 0002100, 0002200, 0002300,
0006020, 0006020, 0004010, 0004010,
0006027, 0006027, 0006027, 0006027, 0006027, 0006027, 0006027, 0006027,
0006027, 0006027, 0006027, 0006027, 0006027, 0006027, 0006027, 0006027,
0006004, 0006004, 0006002, 0006002, 0002001,
0 };
static const int32 vtab[] = {
0001000, 0001100, 0001200, 0001300, 0001400, 0001500, 0001600, 0001700,
0005000, 0005100, 0005200, 0005300, 0005400, 0005500, 0005600, 0005700,
0002400, 0003000, 0003400, 0006400, 0007000, 0007400,
0002040, 0000040, 0002100, 0002200, 0002300,
0002020, 0006020, 0000010, 0004010,
0000020, 0000021, 0000022, 0000023, 0000024, 0000025, 0000026, 0000027,
0004020, 0004021, 0004022, 0004023, 0004024, 0004025, 0004026, 0004027,
0002004, 0006004, 0002002, 0006002, 0002001,
-1 };
/* Symbolic decode
Inputs:
*of = output stream
addr = current PC
*val = pointer to data
*uptr = pointer to unit
sw = switches
Outputs:
return = status code
*/
#define FMTASC(x) ((x) < 040)? "<%03o>": "%c", (x)
t_stat fprint_sym (FILE *of, t_addr addr, t_value *val,
UNIT *uptr, int32 sw)
{
int32 cflag, cm, i, j, inst, disp;
cflag = (uptr == NULL) || (uptr == &cpu_unit);
inst = val[0];
if (sw & SWMASK ('A')) { /* ASCII? */
if (inst > 0377) return SCPE_ARG;
fprintf (of, FMTASC (inst & 0177));
return SCPE_OK; }
if (sw & SWMASK ('C')) { /* characters? */
fprintf (of, FMTASC ((inst >> 8) & 0177));
fprintf (of, FMTASC (inst & 0177));
return SCPE_OK; }
if (!(sw & SWMASK ('M'))) return SCPE_ARG;
/* Instruction decode */
for (i = 0; opc_val[i] >= 0; i++) { /* loop thru ops */
j = (opc_val[i] >> I_V_FL) & I_M_FL; /* get class */
if ((opc_val[i] & DMASK) == (inst & masks[j])) { /* match? */
switch (j) { /* case on class */
case I_V_NPN: /* no operands */
fprintf (of, "%s", opcode[i]); /* opcode */
break;
case I_V_NPC: /* no operands + C */
fprintf (of, "%s", opcode[i]);
if (inst & I_HC) fprintf (of, " C");
break;
case I_V_MRF: /* mem ref */
disp = inst & I_DISP; /* displacement */
fprintf (of, "%s ", opcode[i]); /* opcode */
if (inst & I_CP) { /* current page? */
if (cflag) fprintf (of, "%-o", (addr & I_PAGENO) | disp);
else fprintf (of, "C %-o", disp); }
else fprintf (of, "%-o", disp); /* page zero */
if (inst & I_IA) fprintf (of, ",I");
break;
case I_V_ASH: /* shift, alter-skip */
cm = FALSE;
for (i = 0; mtab[i] != 0; i++) {
if ((inst & mtab[i]) == vtab[i]) {
inst = inst & ~(vtab[i] & 01777);
if (cm) fprintf (of, ",");
cm = TRUE;
fprintf (of, "%s", stab[i]); } }
if (!cm) return SCPE_ARG; /* nothing decoded? */
break;
case I_V_ESH: /* extended shift */
disp = inst & 017; /* shift count */
if (disp == 0) disp = 16;
fprintf (of, "%s %d", opcode[i], disp);
break;
case I_V_EMR: /* extended mem ref */
fprintf (of, "%s %-o", opcode[i], val[1] & VAMASK);
if (val[1] & I_IA) fprintf (of, ",I");
return -1; /* extra word */
case I_V_IO1: /* IOT with H/C */
fprintf (of, "%s %-o", opcode[i], inst & I_DEVMASK);
if (inst & I_HC) fprintf (of, ",C");
break;
case I_V_IO2: /* IOT */
fprintf (of, "%s %-o", opcode[i], inst & I_DEVMASK);
break;
case I_V_EGZ: /* ext grp 1 op + 0 */
fprintf (of, "%s %-o", opcode[i], val[1] & VAMASK);
if (val[1] & I_IA) fprintf (of, ",I");
return -2; /* extra words */
case I_V_EG2: /* ext grp 2 op */
fprintf (of, "%s %-o", opcode[i], val[1] & VAMASK);
if (val[1] & I_IA) fprintf (of, ",I");
fprintf (of, " %-o", val[2] & VAMASK);
if (val[2] & I_IA) fprintf (of, ",I");
return -2; } /* extra words */
return SCPE_OK; } /* end if */
} /* end for */
return SCPE_ARG;
}
/* Get address with indirection
Inputs:
*cptr = pointer to input string
Outputs:
val = address
-1 if error
*/
int32 get_addr (char *cptr)
{
int32 d;
t_stat r;
char gbuf[CBUFSIZE];
cptr = get_glyph (cptr, gbuf, ','); /* get next field */
d = get_uint (gbuf, 8, VAMASK, &r); /* construe as addr */
if (r != SCPE_OK) return -1;
if (*cptr != 0) { /* more? */
cptr = get_glyph (cptr, gbuf, 0); /* look for indirect */
if (*cptr != 0) return -1; /* should be done */
if (strcmp (gbuf, "I")) return -1; /* I? */
d = d | I_IA; }
return d;
}
/* Symbolic input
Inputs:
*iptr = pointer to input string
addr = current PC
*uptr = pointer to unit
*val = pointer to output values
sw = switches
Outputs:
status = error status
*/
t_stat parse_sym (char *iptr, t_addr addr, UNIT *uptr, t_value *val, int32 sw)
{
int32 cflag, d, i, j, k, clef, tbits;
t_stat r, ret;
char *cptr, gbuf[CBUFSIZE];
cflag = (uptr == NULL) || (uptr == &cpu_unit);
while (isspace (*iptr)) iptr++; /* absorb spaces */
if ((sw & SWMASK ('A')) || ((*iptr == '\'') && iptr++)) { /* ASCII char? */
if (iptr[0] == 0) return SCPE_ARG; /* must have 1 char */
val[0] = (t_value) iptr[0] & 0177;
return SCPE_OK; }
if ((sw & SWMASK ('C')) || ((*iptr == '"') && iptr++)) { /* char string? */
if (iptr[0] == 0) return SCPE_ARG; /* must have 1 char */
val[0] = (((t_value) iptr[0] & 0177) << 8) |
((t_value) iptr[1] & 0177);
return SCPE_OK; }
/* Instruction parse */
ret = SCPE_OK;
cptr = get_glyph (iptr, gbuf, 0); /* get opcode */
for (i = 0; (opcode[i] != NULL) && (strcmp (opcode[i], gbuf) != 0) ; i++) ;
if (opcode[i]) { /* found opcode? */
val[0] = opc_val[i] & DMASK; /* get value */
j = (opc_val[i] >> I_V_FL) & I_M_FL; /* get class */
switch (j) { /* case on class */
case I_V_NPN: /* no operand */
break;
case I_V_NPC: /* no operand + C */
if (*cptr != 0) {
cptr = get_glyph (cptr, gbuf, 0);
if (strcmp (gbuf, "C")) return SCPE_ARG;
val[0] = val[0] | I_HC; }
break;
case I_V_MRF: /* mem ref */
cptr = get_glyph (cptr, gbuf, 0); /* get next field */
if (k = (strcmp (gbuf, "C") == 0)) { /* C specified? */
val[0] = val[0] | I_CP;
cptr = get_glyph (cptr, gbuf, 0); }
else if (k = (strcmp (gbuf, "Z") == 0)) { /* Z specified? */
cptr = get_glyph (cptr, gbuf, ','); }
if ((d = get_addr (gbuf)) < 0) return SCPE_ARG;
if ((d & VAMASK) <= I_DISP) val[0] = val[0] | d;
else if (cflag && !k && (((addr ^ d) & I_PAGENO) == 0))
val[0] = val[0] | (d & (I_IA | I_DISP)) | I_CP;
else return SCPE_ARG;
break;
case I_V_ESH: /* extended shift */
cptr = get_glyph (cptr, gbuf, 0);
d = get_uint (gbuf, 10, 16, &r);
if ((r != SCPE_OK) || (d == 0)) return SCPE_ARG;
val[0] = val[0] | (d & 017);
break;
case I_V_EMR: /* extended mem ref */
cptr = get_glyph (cptr, gbuf, 0); /* get next field */
if ((d = get_addr (gbuf)) < 0) return SCPE_ARG;
val[1] = d;
ret = -1;
break;
case I_V_IO1: /* IOT + optional C */
cptr = get_glyph (cptr, gbuf, ','); /* get device */
d = get_uint (gbuf, 8, I_DEVMASK, &r);
if (r != SCPE_OK) return SCPE_ARG;
val[0] = val[0] | d;
if (*cptr != 0) {
cptr = get_glyph (cptr, gbuf, 0);
if (strcmp (gbuf, "C")) return SCPE_ARG;
val[0] = val[0] | I_HC; }
break;
case I_V_IO2: /* IOT */
cptr = get_glyph (cptr, gbuf, 0); /* get device */
d = get_uint (gbuf, 8, I_DEVMASK, &r);
if (r != SCPE_OK) return SCPE_ARG;
val[0] = val[0] | d;
break;
case I_V_EGZ: /* ext grp 1 op + 0 */
cptr = get_glyph (cptr, gbuf, 0); /* get next field */
if ((d = get_addr (gbuf)) < 0) return SCPE_ARG;
val[1] = d;
val[2] = 0;
ret = -2;
break;
case I_V_EG2: /* ext grp 2 op */
cptr = get_glyph (cptr, gbuf, 0); /* get next field */
if ((d = get_addr (gbuf)) < 0) return SCPE_ARG;
cptr = get_glyph (cptr, gbuf, 0); /* get next field */
if ((k = get_addr (gbuf)) < 0) return SCPE_ARG;
val[1] = d;
val[2] = k;
ret = -2;
break; } /* end case */
if (*cptr != 0) return SCPE_ARG; /* junk at end? */
return ret;
} /* end if opcode */
/* Shift or alter-skip
Each opcode is matched by a mask, specifiying the bits affected, and
the value, specifying the value. As opcodes are processed, the mask
values are used to specify which fields have already been filled in.
The mask has two subfields, the type bits (A/B and A/S), and the field
bits. The type bits, once specified by any instruction, must be
consistent in all other instructions. The mask bits assure that no
field is filled in twice.
Two special cases:
1. The dual shift field in shift requires checking how much of the
target word has been filled in before assigning the shift value.
To implement this, shifts are listed twice is the decode table.
If the current subopcode is a shift in the first part of the table
(entries 0..15), and CLE has been seen or the first shift field is
filled in, the code forces a mismatch. The glyph will match in
the second part of the table.
2. CLE processing must be deferred until the instruction can be
classified as shift or alter-skip, since it has two different
bit values in the two classes. To implement this, CLE seen is
recorded as a flag and processed after all other subopcodes.
*/
clef = FALSE;
tbits = 0;
val[0] = 0;
for (cptr = get_glyph (iptr, gbuf, ','); gbuf[0] != 0;
cptr = get_glyph (cptr, gbuf, ',')) { /* loop thru glyphs */
if (strcmp (gbuf, "CLE") == 0) { /* CLE? */
if (clef) return SCPE_ARG; /* already seen? */
clef = TRUE; /* set flag */
continue; }
for (i = 0; stab[i] != NULL; i++) { /* find subopcode */
if ((strcmp (gbuf, stab[i]) == 0) &&
((i >= 16) || (!clef && ((val[0] & 001710) == 0)))) break; }
if (stab[i] == NULL) return SCPE_ARG;
if (tbits & mtab[i] & (I_AB | I_ASKP) & (vtab[i] ^ val[0]))
return SCPE_ARG;
if (tbits & mtab[i] & ~(I_AB | I_ASKP)) return SCPE_ARG;
tbits = tbits | mtab[i]; /* fill type+mask */
val[0] = val[0] | vtab[i]; } /* fill value */
if (clef) { /* CLE seen? */
if (val[0] & I_ASKP) { /* alter-skip? */
if (tbits & 0100) return SCPE_ARG; /* already filled in? */
else val[0] = val[0] | 0100; }
else val[0] = val[0] | 040; } /* fill in shift */
return ret;
}