WARNING: V2.10 has reorganized and renamed some of the definition files for the PDP-10, PDP-11, and VAX. Be sure to delete all previous source files before you unpack the Zip archive, or unpack it into a new directory structure. WARNING: V2.10 has a new, more comprehensive save file format. Restoring save files from previous releases will cause 'invalid register' errors and loss of CPU option flags, device enable/ disable flags, unit online/offline flags, and unit writelock flags. WARNING: If you are using Visual Studio .NET through the IDE, be sure to turn off the /Wp64 flag in the project settings, or dozens of spurious errors will be generated. WARNING: Compiling Ethernet support under Windows requires extra steps; see the Ethernet readme file. Ethernet support is currently available only for Windows, Linux, NetBSD, and OpenBSD. 1. New Features 1.1 SCP and Libraries - The VT emulation package has been replaced by the capability to remote the console to a Telnet session. Telnet clients typically have more complete and robust VT100 emulation. - Simulated devices may now have statically allocated buffers, in addition to dynamically allocated buffers or disk-based data stores. - The DO command now takes substitutable arguments (max 9). In command files, %n represents substitutable argument n. - The initial command line is now interpreted as the command name and substitutable arguments for a DO command. This is backward compatible to prior versions. - The initial command line parses switches. -Q is interpreted as quiet mode; informational messages are suppressed. - The HELP command now takes an optional argument. HELP <cmd> types help on the specified command. - Hooks have been added for implementing GUI-based consoles, as well as simulator-specific command extensions. A few internal data structures and definitions have changed. - Two new routines (tmxr_open_master, tmxr_close_master) have been added to sim_tmxr.c. The calling sequence for sim_accept_conn has been changed in sim_sock.c. - The calling sequence for the VM boot routine has been modified to add an additional parameter. - SAVE now saves, and GET now restores, controller and unit flags. - Library sim_ether.c has been added for Ethernet support. 1.2 VAX - Non-volatile RAM (NVR) can behave either like a memory or like a disk-based peripheral. If unattached, it behaves like memory and is saved and restored by SAVE and RESTORE, respectively. If attached, its contents are loaded from disk by ATTACH and written back to disk at DETACH and EXIT. - SHOW <device> VECTOR displays the device's interrupt vector. A few devices allow the vector to be changed with SET <device> VECTOR=nnn. - SHOW CPU IOSPACE displays the I/O space address map. - The TK50 (TMSCP tape) has been added. - The DEQNA/DELQA (Qbus Ethernet controllers) have been added. - Autoconfiguration support has been added. - The paper tape reader has been removed from vax_stddev.c and now references a common implementation file, dec_pt.h. - Examine and deposit switches now work on all devices, not just the CPU. - Device address conflicts are not detected until simulation starts. 1.3 PDP-11 - SHOW <device> VECTOR displays the device's interrupt vector. Most devices allow the vector to be changed with SET <device> VECTOR=nnn. - SHOW CPU IOSPACE displays the I/O space address map. - The TK50 (TMSCP tape), RK611/RK06/RK07 (cartridge disk), RX211 (double density floppy), and KW11P programmable clock have been added. - The DEQNA/DELQA (Qbus Ethernet controllers) have been added. - Autoconfiguration support has been added. - The paper tape reader has been removed from pdp11_stddev.c and now references a common implementation file, dec_pt.h. - Device bootstraps now use the actual CSR specified by the SET ADDRESS command, rather than just the default CSR. Note that PDP-11 operating systems may NOT support booting with non-standard addresses. - Specifying more than 256KB of memory, or changing the bus configuration, causes all peripherals that are not compatible with the current bus configuration to be disabled. - Device address conflicts are not detected until simulation starts. 1.4 PDP-10 - SHOW <device> VECTOR displays the device's interrupt vector. A few devices allow the vector to be changed with SET <device> VECTOR=nnn. - SHOW CPU IOSPACE displays the I/O space address map. - The RX211 (double density floppy) has been added; it is off by default. - The paper tape now references a common implementation file, dec_pt.h. - Device address conflicts are not detected until simulation starts. 1.5 PDP-1 - DECtape (then known as MicroTape) support has been added. - The line printer and DECtape can be disabled and enabled. 1.6 PDP-8 - The RX28 (double density floppy) has been added as an option to the existing RX8E controller. - SHOW <device> DEVNO displays the device's device number. Most devices allow the device number to be changed with SET <device> DEVNO=nnn. - Device number conflicts are not detected until simulation starts. 1.7 IBM 1620 - The IBM 1620 simulator has been released. 1.8 AltairZ80 - A hard drive has been added for increased storage. - Several bugs have been fixed. 1.9 HP 2100 - The 12845A has been added and made the default line printer (LPT). The 12653A has been renamed LPS and is off by default. It also supports the diagnostic functions needed to run the DCPC and DMS diagnostics. - The 12557A/13210A disk defaults to the 13210A (7900/7901). - The 12559A magtape is off by default. - New CPU options (EAU/NOEAU) enable/disable the extended arithmetic instructions for the 2116. These instructions are standard on the 2100 and 21MX. - New CPU options (MPR/NOMPR) enable/disable memory protect for the 2100 and 21MX. - New CPU options (DMS/NODMS) enable/disable the dynamic mapping instructions for the 21MX. - The 12539 timebase generator autocalibrates. 1.10 Simulated Magtapes - Simulated magtapes recognize end of file and the marker 0xFFFFFFFF as end of medium. Only the TMSCP tape simulator can generate an end of medium marker. - The error handling in simulated magtapes was overhauled to be consistent through all simulators. 1.11 Simulated DECtapes - Added support for RT11 image file format (256 x 16b) to DECtapes. 2. Release Notes 2.1 Bugs Fixed - TS11/TSV05 was not simulating the XS0_MOT bit, causing failures under VMS. In addition, two of the CTL options were coded interchanged. - IBM 1401 tape was not setting a word mark under group mark for load mode reads. This caused the diagnostics to crash. - SCP bugs in ssh_break and set_logon were fixed (found by Dave Hittner). - Numerous bugs in the HP 2100 extended arithmetic, floating point, 21MX, DMS, and IOP instructions were fixed. Bugs were also fixed in the memory protect and DMS functions. The moving head disks (DP, DQ) were revised to simulate the hardware more accurately. Missing functions in DQ (address skip, read address) were added. 2.2 HP 2100 Debugging - The HP 2100 CPU nows runs all of the CPU diagnostics. - The peripherals run most of the peripheral diagnostics. There is still a problem in overlapped seek operation on the disks. See the file hp2100_diag.txt for details. 3. In Progress These simulators are not finished and are available in a separate Zip archive distribution. - Interdata 16b/32b: coded, partially tested. See the file id_diag.txt for details. - SDS 940: coded, partially tested.
1861 lines
58 KiB
C
1861 lines
58 KiB
C
/* i1620_cpu.c: IBM 1620 CPU simulator
|
||
|
||
Copyright (c) 2002, Robert M. Supnik
|
||
|
||
Permission is hereby granted, free of charge, to any person obtaining a
|
||
copy of this software and associated documentation files (the "Software"),
|
||
to deal in the Software without restriction, including without limitation
|
||
the rights to use, copy, modify, merge, publish, distribute, sublicense,
|
||
and/or sell copies of the Software, and to permit persons to whom the
|
||
Software is furnished to do so, subject to the following conditions:
|
||
|
||
The above copyright notice and this permission notice shall be included in
|
||
all copies or substantial portions of the Software.
|
||
|
||
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
||
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
||
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
|
||
ROBERT M SUPNIK BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
|
||
IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
|
||
CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
|
||
|
||
Except as contained in this notice, the name of Robert M Supnik shall not
|
||
be used in advertising or otherwise to promote the sale, use or other dealings
|
||
in this Software without prior written authorization from Robert M Supnik.
|
||
|
||
This CPU module incorporates code and comments from the 1620 simulator by
|
||
Geoff Kuenning, with his permission.
|
||
|
||
18-Oct-02 RMS Fixed bugs in invalid result testing (found by Hans Pufal)
|
||
|
||
The simulated register state for the IBM 1620 is:
|
||
|
||
1620 sim comment
|
||
|
||
IR1 [PC] program counter
|
||
IR2 instruction register 2 (subroutine return address)
|
||
OR1 [QAR] Q address
|
||
OR2 [PAR] P address
|
||
PR1 manual save address
|
||
ind[0:99] indicators
|
||
|
||
Additional internal registers OR3, PR2, and PR3 are not simulated.
|
||
|
||
The IBM 1620 is a fixed instruction length, variable data length, decimal
|
||
data system. Memory consists of 20000 - 60000 BCD digits, each containing
|
||
four bits of data and a flag. There are no general registers; all
|
||
instructions are memory to memory.
|
||
|
||
The 1620 uses a fixed, 12 digit instruction format:
|
||
|
||
oo ppppp qqqqq
|
||
|
||
where
|
||
|
||
oo = opcode
|
||
ppppp = P (usually destination) address
|
||
qqqqq = Q (usually source) address
|
||
|
||
Immediate instructions use the qqqqq field as the second operand.
|
||
|
||
The 1620 Model 1 uses table lookups for add and multiply; for that reason,
|
||
it was nicknamed CADET (Can't Add, Doesn't Even Try). The Model 2 does
|
||
adds in hardware and uses the add table memory for index registers.
|
||
*/
|
||
|
||
/* This routine is the instruction decode routine for the IBM 1620.
|
||
It is called from the simulator control program to execute
|
||
instructions in simulated memory, starting at the simulated PC.
|
||
It runs until 'reason' is set non-zero.
|
||
|
||
General notes:
|
||
|
||
1. Reasons to stop. The simulator can be stopped by:
|
||
|
||
HALT instruction
|
||
breakpoint encountered
|
||
illegal addresses or instruction formats
|
||
I/O error in I/O simulator
|
||
|
||
2. Interrupts. The 1620 has no interrupt structure.
|
||
|
||
3. Non-existent memory. On the 1620, all memory references
|
||
are modulo the memory size.
|
||
|
||
4. Adding I/O devices. These modules must be modified:
|
||
|
||
i1620_cpu.c add iodisp table entry
|
||
i1620_sys.c add sim_devices table entry
|
||
*/
|
||
|
||
#include "i1620_defs.h"
|
||
|
||
#define PCQ_SIZE 64 /* must be 2**n */
|
||
#define PCQ_MASK (PCQ_SIZE - 1)
|
||
#define PCQ_ENTRY pcq[pcq_p = (pcq_p - 1) & PCQ_MASK] = saved_PC
|
||
|
||
uint8 M[MAXMEMSIZE] = { 0 }; /* main memory */
|
||
uint32 saved_PC = 0; /* saved PC */
|
||
uint32 IR2 = 1; /* inst reg 2 */
|
||
uint32 PAR = 0; /* P address */
|
||
uint32 QAR = 0; /* Q address */
|
||
uint32 PR1 = 1; /* proc reg 1 */
|
||
uint32 iae = 1; /* ind addr enb */
|
||
uint32 idxe = 0; /* index enable */
|
||
uint32 idxb = 0; /* index band */
|
||
uint32 io_stop = 1; /* I/O stop */
|
||
uint32 ar_stop = 1; /* arith stop */
|
||
int32 ind_max = 16; /* iadr nest limit */
|
||
uint16 pcq[PCQ_SIZE] = { 0 }; /* PC queue */
|
||
int32 pcq_p = 0; /* PC queue ptr */
|
||
REG *pcq_r = NULL; /* PC queue reg ptr */
|
||
uint8 ind[NUM_IND] = { 0 }; /* indicators */
|
||
|
||
extern int32 sim_int_char;
|
||
extern int32 sim_interval;
|
||
extern int32 sim_brk_types, sim_brk_dflt, sim_brk_summ; /* breakpoint info */
|
||
extern FILE *sim_log;
|
||
|
||
t_stat cpu_ex (t_value *vptr, t_addr addr, UNIT *uptr, int32 sw);
|
||
t_stat cpu_dep (t_value val, t_addr addr, UNIT *uptr, int32 sw);
|
||
t_stat cpu_reset (DEVICE *dptr);
|
||
t_stat cpu_set_opt1 (UNIT *uptr, int32 val, char *cptr, void *desc);
|
||
t_stat cpu_set_opt2 (UNIT *uptr, int32 val, char *cptr, void *desc);
|
||
t_stat cpu_set_model (UNIT *uptr, int32 val, char *cptr, void *desc);
|
||
t_stat cpu_set_size (UNIT *uptr, int32 val, char *cptr, void *desc);
|
||
t_stat cpu_set_save (UNIT *uptr, int32 val, char *cptr, void *desc);
|
||
t_stat cpu_set_table (UNIT *uptr, int32 val, char *cptr, void *desc);
|
||
|
||
int32 get_2d (uint32 ad);
|
||
t_stat get_addr (uint32 alast, int32 lnt, t_bool indexok, uint32 *addr);
|
||
t_stat cvt_addr (uint32 alast, int32 lnt, t_bool signok, int32 *val);
|
||
t_stat get_idx (uint32 aidx);
|
||
t_stat xmt_field (uint32 d, uint32 s, uint32 skp);
|
||
t_stat xmt_record (uint32 d, uint32 s, t_bool cpy);
|
||
t_stat xmt_index (uint32 d, uint32 s);
|
||
t_stat xmt_divd (uint32 d, uint32 s);
|
||
t_stat xmt_tns (uint32 d, uint32 s);
|
||
t_stat xmt_tnf (uint32 d, uint32 s);
|
||
t_stat add_field (uint32 d, uint32 s, t_bool sub, t_bool sto, int32 *sta);
|
||
uint32 add_one_digit (uint32 dst, uint32 src, uint32 *cry);
|
||
t_stat mul_field (uint32 mpc, uint32 mpy);
|
||
t_stat mul_one_digit (uint32 mpyd, uint32 mpcp, uint32 prop, uint32 last);
|
||
t_stat div_field (uint32 dvd, uint32 dvr, int32 *ez);
|
||
t_stat div_one_digit (uint32 dvd, uint32 dvr, uint32 max, uint32 *quod, uint32 *quop);
|
||
t_stat oct_to_dec (uint32 tbl, uint32 s);
|
||
t_stat dec_to_oct (uint32 d, uint32 tbl, int32 *ez);
|
||
t_stat or_field (uint32 d, uint32 s);
|
||
t_stat and_field (uint32 d, uint32 s);
|
||
t_stat xor_field (uint32 d, uint32 s);
|
||
t_stat com_field (uint32 d, uint32 s);
|
||
void upd_ind (void);
|
||
|
||
extern tty (uint32 op, uint32 pa, uint32 f0, uint32 f1);
|
||
extern ptp (uint32 op, uint32 pa, uint32 f0, uint32 f1);
|
||
extern ptr (uint32 op, uint32 pa, uint32 f0, uint32 f1);
|
||
extern cdp (uint32 op, uint32 pa, uint32 f0, uint32 f1);
|
||
extern cdr (uint32 op, uint32 pa, uint32 f0, uint32 f1);
|
||
extern dp (uint32 op, uint32 pa, uint32 f0, uint32 f1);
|
||
extern lpt (uint32 op, uint32 pa, uint32 f0, uint32 f1);
|
||
extern btp (uint32 op, uint32 pa, uint32 f0, uint32 f1);
|
||
extern btr (uint32 op, uint32 pa, uint32 f0, uint32 f1);
|
||
|
||
extern t_stat fp_add (uint32 d, uint32 s, t_bool sub);
|
||
extern t_stat fp_mul (uint32 d, uint32 s);
|
||
extern t_stat fp_div (uint32 d, uint32 s);
|
||
extern t_stat fp_fsl (uint32 d, uint32 s);
|
||
extern t_stat fp_fsr (uint32 d, uint32 s);
|
||
|
||
/* CPU data structures
|
||
|
||
cpu_dev CPU device descriptor
|
||
cpu_unit CPU unit descriptor
|
||
cpu_reg CPU register list
|
||
cpu_mod CPU modifier list
|
||
*/
|
||
|
||
UNIT cpu_unit = { UDATA (NULL, UNIT_FIX+UNIT_BCD+MI_STD, MAXMEMSIZE) };
|
||
|
||
REG cpu_reg[] = {
|
||
{ DRDATA (PC, saved_PC, 16), PV_LEFT },
|
||
{ DRDATA (IR2, IR2, 16), PV_LEFT },
|
||
{ DRDATA (PR1, PR1, 16), PV_LEFT },
|
||
{ DRDATA (PAR, PAR, 16), PV_LEFT + REG_RO },
|
||
{ DRDATA (QAR, QAR, 16), PV_LEFT + REG_RO },
|
||
{ FLDATA (SW1, ind[IN_SW1], 0) },
|
||
{ FLDATA (SW2, ind[IN_SW2], 0) },
|
||
{ FLDATA (SW3, ind[IN_SW3], 0) },
|
||
{ FLDATA (SW4, ind[IN_SW4], 0) },
|
||
{ FLDATA (HP, ind[IN_HP], 0) },
|
||
{ FLDATA (EZ, ind[IN_EZ], 0) },
|
||
{ FLDATA (OVF, ind[IN_OVF], 0) },
|
||
{ FLDATA (EXPCHK, ind[IN_EXPCHK], 0) },
|
||
{ FLDATA (RDCHK, ind[IN_RDCHK], 0) },
|
||
{ FLDATA (WRCHK, ind[IN_WRCHK], 0) },
|
||
{ FLDATA (ARSTOP, ar_stop, 0) },
|
||
{ FLDATA (IOSTOP, io_stop, 0) },
|
||
{ BRDATA (IND, ind, 10, 1, NUM_IND) },
|
||
{ FLDATA (IAE, iae, 0) },
|
||
{ FLDATA (IDXE, idxe, 0) },
|
||
{ FLDATA (IDXB, idxb, 0) },
|
||
{ DRDATA (INDMAX, ind_max, 16), REG_NZ + PV_LEFT },
|
||
{ BRDATA (PCQ, pcq, 10, 14, PCQ_SIZE), REG_RO+REG_CIRC },
|
||
{ ORDATA (PCQP, pcq_p, 6), REG_HRO },
|
||
{ ORDATA (WRU, sim_int_char, 8) },
|
||
{ NULL } };
|
||
|
||
MTAB cpu_mod[] = {
|
||
{ IF_IA, IF_IA, "IA", "IA", &cpu_set_opt1 },
|
||
{ IF_IA, 0, "no IA", "NOIA", &cpu_set_opt1 },
|
||
{ IF_EDT, IF_EDT, "EDT", "EDT", &cpu_set_opt1 },
|
||
{ IF_EDT, 0, "no EDT", "NOEDT", &cpu_set_opt1 },
|
||
{ IF_DIV, IF_DIV, "DIV", "DIV", &cpu_set_opt1 },
|
||
{ IF_DIV, 0, "no DIV", "NODIV", &cpu_set_opt1 },
|
||
{ IF_FP, IF_FP, "FP", "FP", NULL },
|
||
{ IF_FP, 0, "no FP", "NOFP", NULL },
|
||
{ IF_BIN, IF_BIN, "BIN", "BIN", &cpu_set_opt2 },
|
||
{ IF_BIN, 0, "no BIN", "NOBIN", &cpu_set_opt2 },
|
||
{ IF_IDX, IF_IDX, "IDX", "IDX", &cpu_set_opt2 },
|
||
{ IF_IDX, 0, "no IDX", "NOIDX", &cpu_set_opt2 },
|
||
{ IF_MII, IF_MII, "Model 2", "MOD2", &cpu_set_model },
|
||
{ IF_MII, 0, "Model 1", "MOD1", &cpu_set_model },
|
||
{ UNIT_MSIZE, 20000, NULL, "20K", &cpu_set_size },
|
||
{ UNIT_MSIZE, 40000, NULL, "40K", &cpu_set_size },
|
||
{ UNIT_MSIZE, 60000, NULL, "60K", &cpu_set_size },
|
||
{ UNIT_MSIZE, 0, NULL, "SAVE", &cpu_set_save },
|
||
{ UNIT_MSIZE, 0, NULL, "TABLE", &cpu_set_table },
|
||
{ 0 } };
|
||
|
||
DEVICE cpu_dev = {
|
||
"CPU", &cpu_unit, cpu_reg, cpu_mod,
|
||
1, 10, 18, 1, 16, 5,
|
||
&cpu_ex, &cpu_dep, &cpu_reset,
|
||
NULL, NULL, NULL };
|
||
|
||
/* Instruction table */
|
||
|
||
const int32 op_table[100] = {
|
||
0, /* 0 */
|
||
IF_FP + IF_VPA + IF_VQA, /* FADD */
|
||
IF_FP + IF_VPA + IF_VQA, /* FSUB */
|
||
IF_FP + IF_VPA + IF_VQA, /* FMUL */
|
||
0,
|
||
IF_FP + IF_VPA + IF_VQA, /* FSL */
|
||
IF_FP + IF_MII + IF_VPA + IF_VQA, /* TFL */
|
||
IF_FP + IF_MII + IF_VPA + IF_VQA, /* BTFL */
|
||
IF_FP + IF_VPA + IF_VQA, /* FSR */
|
||
IF_FP + IF_VPA + IF_VQA, /* FDV */
|
||
IF_MII + IF_VPA + IF_IMM, /* 10: BTAM */
|
||
IF_VPA + IF_IMM, /* AM */
|
||
IF_VPA + IF_IMM, /* SM */
|
||
IF_VPA + IF_IMM, /* MM */
|
||
IF_VPA + IF_IMM, /* CM */
|
||
IF_VPA + IF_IMM, /* TDM */
|
||
IF_VPA + IF_IMM, /* TFM */
|
||
IF_VPA + IF_IMM, /* BTM */
|
||
IF_DIV + IF_VPA + IF_IMM, /* LDM */
|
||
IF_DIV + IF_VPA + IF_IMM, /* DM */
|
||
IF_MII + IF_VPA + IF_VQA, /* 20: BTA */
|
||
IF_VPA + IF_VQA, /* A */
|
||
IF_VPA + IF_VQA, /* S */
|
||
IF_VPA + IF_VQA, /* M */
|
||
IF_VPA + IF_VQA, /* C */
|
||
IF_VPA + IF_VQA, /* TD */
|
||
IF_VPA + IF_VQA, /* TF */
|
||
IF_VPA + IF_VQA, /* BT */
|
||
IF_DIV + IF_VPA + IF_VQA, /* LD */
|
||
IF_DIV + IF_VPA + IF_VQA, /* D */
|
||
IF_MII + IF_VPA + IF_VQA, /* 30: TRNM */
|
||
IF_VPA + IF_VQA, /* TR */
|
||
IF_VPA, /* SF */
|
||
IF_VPA, /* CF */
|
||
IF_VPA, /* K */
|
||
IF_VPA, /* DN */
|
||
IF_VPA, /* RN */
|
||
IF_VPA, /* RA */
|
||
IF_VPA, /* WN */
|
||
IF_VPA, /* WA */
|
||
0, /* 40 */
|
||
0, /* NOP */
|
||
0, /* BB */
|
||
IF_VPA + IF_VQA, /* BD */
|
||
IF_VPA + IF_VQA, /* BNF */
|
||
IF_VPA + IF_VQA, /* BNR */
|
||
IF_VPA, /* BI */
|
||
IF_VPA, /* BNI */
|
||
0, /* H */
|
||
IF_VPA, /* B */
|
||
0, /* 50 */
|
||
0,
|
||
0,
|
||
0,
|
||
0,
|
||
IF_VPA + IF_VQA, /* BNG - disk sys */
|
||
0,
|
||
0,
|
||
0,
|
||
0,
|
||
IF_MII + IF_VPA, /* 60: BS */
|
||
IF_IDX + IF_VPA + IF_NQX, /* BX */
|
||
IF_IDX + IF_VPA + IF_IMM, /* BXM */
|
||
IF_IDX + IF_VPA + IF_NQX, /* BCX */
|
||
IF_IDX + IF_VPA + IF_IMM, /* BCXM */
|
||
IF_IDX + IF_VPA + IF_NQX, /* BLX */
|
||
IF_IDX + IF_VPA + IF_IMM, /* BLXM */
|
||
IF_IDX + IF_VPA + IF_NQX, /* BSX */
|
||
0,
|
||
0,
|
||
IF_IDX + IF_VPA + IF_VQA, /* 70: MA */
|
||
IF_EDT + IF_VPA + IF_VQA, /* MF */
|
||
IF_EDT + IF_VPA + IF_VQA, /* MF */
|
||
IF_EDT + IF_VPA + IF_VQA, /* TNF */
|
||
0,
|
||
0,
|
||
0,
|
||
0,
|
||
0,
|
||
0,
|
||
0, /* 80 */
|
||
0,
|
||
0,
|
||
0,
|
||
0,
|
||
0,
|
||
0,
|
||
0,
|
||
0,
|
||
0,
|
||
IF_BIN + IF_VPA + IF_4QA, /* 90: BBT */
|
||
IF_BIN + IF_VPA + IF_4QA, /* BMK */
|
||
IF_BIN + IF_VPA + IF_VQA, /* ORF */
|
||
IF_BIN + IF_VPA + IF_VQA, /* ANDF */
|
||
IF_BIN + IF_VPA + IF_VQA, /* CPLF */
|
||
IF_BIN + IF_VPA + IF_VQA, /* EORF */
|
||
IF_BIN + IF_VPA + IF_VQA, /* OTD */
|
||
IF_BIN + IF_VPA + IF_VQA, /* DTO */
|
||
0,
|
||
0
|
||
};
|
||
|
||
/* IO dispatch table */
|
||
|
||
t_stat (*iodisp[NUM_IO])(uint32 op, uint32 pa, uint32 f0, uint32 f1) = {
|
||
NULL, &tty, &ptp, &ptr, &cdp, /* 00 - 09 */
|
||
&cdr, NULL, &dp, NULL, &lpt,
|
||
NULL, NULL, NULL, NULL, NULL, /* 10 - 19 */
|
||
NULL, NULL, NULL, NULL, NULL,
|
||
NULL, NULL, NULL, NULL, NULL, /* 20 - 29 */
|
||
NULL, NULL, NULL, NULL, NULL,
|
||
NULL, NULL, &btp, &btr, NULL, /* 30 - 39 */
|
||
NULL, NULL, NULL, NULL, NULL,
|
||
NULL, NULL, NULL, NULL, NULL, /* 40 - 49 */
|
||
NULL, NULL, NULL, NULL, NULL,
|
||
NULL, NULL, NULL, NULL, NULL, /* 50 - 59 */
|
||
NULL, NULL, NULL, NULL, NULL,
|
||
NULL, NULL, NULL, NULL, NULL, /* 60 - 69 */
|
||
NULL, NULL, NULL, NULL, NULL,
|
||
NULL, NULL, NULL, NULL, NULL, /* 70 - 79 */
|
||
NULL, NULL, NULL, NULL, NULL,
|
||
NULL, NULL, NULL, NULL, NULL, /* 80 - 89 */
|
||
NULL, NULL, NULL, NULL, NULL,
|
||
NULL, NULL, NULL, NULL, NULL, /* 90 - 99 */
|
||
NULL, NULL, NULL, NULL, NULL };
|
||
|
||
/* Indicator table: -1 = illegal, +1 = resets when tested */
|
||
|
||
const int32 ind_table[NUM_IND] = {
|
||
-1, 0, 0, 0, 0, -1, 1, 1, -1, 1, /* 00 - 09 */
|
||
-1, 0, 0, 0, 1, 1, 1, 1, -1, 0, /* 10 - 19 */
|
||
-1, -1, -1, -1, -1, 0, -1, -1, -1, -1, /* 20 - 29 */
|
||
0, 0, 0, 1, 1, 0, 1, 1, 1, 0, /* 30 - 39 */
|
||
-1, -1, 1, -1, -1, -1, -1, -1, -1, -1, /* 40 - 49 */
|
||
-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, /* 50 - 59 */
|
||
-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, /* 60 - 69 */
|
||
-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, /* 70 - 79 */
|
||
-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, /* 80 - 89 */
|
||
-1, -1, -1, -1, -1, -1, -1, -1, -1, -1 }; /* 90 - 99 */
|
||
|
||
/* Add table for 1620 Model 1 */
|
||
|
||
const uint8 std_add_table[ADD_TABLE_LEN] = {
|
||
0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09,
|
||
0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x10,
|
||
0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x10, 0x11,
|
||
0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x10, 0x11, 0x12,
|
||
0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x10, 0x11, 0x12, 0x13,
|
||
0x05, 0x06, 0x07, 0x08, 0x09, 0x10, 0x11, 0x12, 0x13, 0x14,
|
||
0x06, 0x07, 0x08, 0x09, 0x10, 0x11, 0x12, 0x13, 0x14, 0x15,
|
||
0x07, 0x08, 0x09, 0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16,
|
||
0x08, 0x09, 0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17,
|
||
0x09, 0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17, 0x18 };
|
||
|
||
|
||
/* Add table for 1620 Model 2 ("hardware add") */
|
||
|
||
const uint8 sum_table[20] = {
|
||
0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09,
|
||
0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17, 0x18, 0x19 };
|
||
|
||
/* Multiply table */
|
||
|
||
const uint8 std_mul_table[MUL_TABLE_LEN] = {
|
||
0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
||
0, 0, 1, 0, 2, 0, 3, 0, 4, 0,
|
||
0, 0, 2, 0, 4, 0, 6, 0, 8, 0,
|
||
0, 0, 3, 0, 6, 0, 9, 0, 2, 1,
|
||
0, 0, 4, 0, 8, 0, 2, 1, 6, 1,
|
||
0, 0, 5, 0, 0, 1, 5, 1, 0, 2,
|
||
0, 0, 6, 0, 2, 1, 8, 1, 4, 2,
|
||
0, 0, 7, 0, 4, 1, 1, 2, 8, 2,
|
||
0, 0, 8, 0, 6, 1, 4, 2, 2, 3,
|
||
0, 0, 9, 0, 8, 1, 7, 2, 6, 3,
|
||
0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
||
5, 0, 6, 0, 7, 0, 8, 0, 9, 0,
|
||
0, 1, 2, 1, 4, 1, 6, 1, 8, 1,
|
||
5, 1, 8, 1, 1, 2, 4, 2, 7, 2,
|
||
0, 2, 4, 2, 8, 2, 2, 3, 6, 3,
|
||
5, 2, 0, 3, 5, 3, 0, 4, 5, 4,
|
||
0, 3, 6, 3, 2, 4, 8, 4, 4, 5,
|
||
5, 3, 2, 4, 9, 4, 6, 5, 3, 6,
|
||
0, 4, 8, 4, 6, 5, 4, 6, 2, 7,
|
||
5, 4, 4, 5, 3, 6, 2, 7, 1, 8 };
|
||
|
||
#define BRANCH(x) PCQ_ENTRY; PC = (x)
|
||
#define GET_IDXADDR(x) ((idxb? IDX_B: IDX_A) + ((x) * ADDR_LEN) + (ADDR_LEN - 1))
|
||
|
||
t_stat sim_instr (void)
|
||
{
|
||
uint32 PC, pla, qla, f0, f1;
|
||
int32 i, t, idx, flags, sta, dev, op;
|
||
t_stat reason;
|
||
|
||
/* Restore saved state */
|
||
|
||
PC = saved_PC;
|
||
if ((cpu_unit.flags & IF_IA) == 0) iae = 0;
|
||
if ((cpu_unit.flags & IF_IDX) == 0) idxe = idxb = 0;
|
||
upd_ind (); /* update indicators */
|
||
reason = 0;
|
||
|
||
/* Main instruction fetch/decode loop */
|
||
|
||
while (reason == 0) { /* loop until halted */
|
||
saved_PC = PC; /* commit prev instr */
|
||
if (sim_interval <= 0) { /* check clock queue */
|
||
if (reason = sim_process_event ()) break; }
|
||
|
||
if (sim_brk_summ && sim_brk_test (PC, SWMASK ('E'))) { /* breakpoint? */
|
||
reason = STOP_IBKPT; /* stop simulation */
|
||
break; }
|
||
|
||
sim_interval = sim_interval - 1;
|
||
|
||
/* Instruction fetch and address decode */
|
||
|
||
if (PC & 1) { /* PC odd? */
|
||
reason = STOP_INVIAD; /* stop */
|
||
break; }
|
||
|
||
op = get_2d (PC); /* get opcode */
|
||
if (op < 0) { /* invalid? */
|
||
reason = STOP_INVINS;
|
||
break; }
|
||
flags = op_table[op]; /* get op, flags */
|
||
if ((flags & ALLOPT) && /* need option? */
|
||
!(flags & ALLOPT & cpu_unit.flags)) { /* any set? */
|
||
reason = STOP_INVINS; /* no, error */
|
||
break; }
|
||
|
||
pla = ADDR_A (PC, I_PL); /* P last addr */
|
||
qla = ADDR_A (PC, I_QL); /* Q last addr */
|
||
if (flags & IF_VPA) { /* need P? */
|
||
reason = get_addr (pla, 5, TRUE, &PAR); /* get P addr */
|
||
if (reason != SCPE_OK) break; } /* stop if error */
|
||
if (flags & (IF_VQA | IF_4QA | IF_NQX)) { /* need Q? */
|
||
reason = get_addr (qla, /* get Q addr */
|
||
((flags & IF_4QA)? 4: 5), /* 4 or 5 digits */
|
||
((flags & IF_NQX)? FALSE: TRUE), /* not or indexed */
|
||
&QAR);
|
||
if (reason != SCPE_OK) { /* stop if invalid */
|
||
reason = reason + (STOP_INVQDG - STOP_INVPDG);
|
||
break; } }
|
||
else if (flags & IF_IMM) QAR = qla; /* immediate? */
|
||
PC = PC + INST_LEN; /* advance PC */
|
||
switch (op) { /* case on op */
|
||
|
||
/* Transmit digit - P,Q are valid */
|
||
|
||
case OP_TD:
|
||
case OP_TDM:
|
||
M[PAR] = M[QAR] & (FLAG | DIGIT); /* move dig, flag */
|
||
break;
|
||
|
||
/* Transmit field - P,Q are valid */
|
||
|
||
case OP_TF:
|
||
case OP_TFM:
|
||
reason = xmt_field (PAR, QAR, 1); /* xmit field */
|
||
break;
|
||
|
||
/* Transmit record - P,Q are valid */
|
||
|
||
case OP_TR:
|
||
reason = xmt_record (PAR, QAR, TRUE); /* xmit record */
|
||
break;
|
||
|
||
/* Transmit record no record mark - P,Q are valid */
|
||
|
||
case OP_TRNM:
|
||
reason = xmt_record (PAR, QAR, FALSE); /* xmit record but */
|
||
break; /* not rec mark */
|
||
|
||
/* Set flag - P is valid */
|
||
|
||
case OP_SF:
|
||
M[PAR] = M[PAR] | FLAG; /* set flag on P */
|
||
break;
|
||
|
||
/* Clear flag - P is valid */
|
||
|
||
case OP_CF:
|
||
M[PAR] = M[PAR] & ~FLAG; /* clear flag on P */
|
||
break;
|
||
|
||
/* Branch - P is valid */
|
||
|
||
case OP_B:
|
||
BRANCH (PAR); /* branch to P */
|
||
break;
|
||
|
||
/* Branch and transmit - P,Q are valid */
|
||
|
||
case OP_BT:
|
||
case OP_BTM:
|
||
reason = xmt_field (ADDR_S (PAR, 1), QAR, 1); /* xmit field to P-1 */
|
||
IR2 = PC; /* save PC */
|
||
BRANCH (PAR); /* branch to P */
|
||
break;
|
||
|
||
/* Branch and transmit floating - P,Q are valid */
|
||
|
||
case OP_BTFL:
|
||
reason = xmt_field (ADDR_S (PAR, 1), QAR, 3); /* skip 3 flags */
|
||
IR2 = PC; /* save PC */
|
||
BRANCH (PAR); /* branch to P */
|
||
break;
|
||
|
||
/* Branch and transmit address - P,Q are valid */
|
||
|
||
case OP_BTA:
|
||
case OP_BTAM:
|
||
reason = xmt_field (ADDR_S (PAR, 1), QAR, 4); /* skip 4 flags */
|
||
IR2 = PC; /* save PC */
|
||
BRANCH (PAR); /* branch to P */
|
||
break;
|
||
|
||
/* Branch back */
|
||
|
||
case OP_BB:
|
||
if (PR1 != 1) { /* PR1 valid? */
|
||
BRANCH (PR1); /* return to PR1 */
|
||
PR1 = 1; } /* invalidate */
|
||
else if (IR2 != 1) { /* IR2 valid? */
|
||
BRANCH (IR2); /* return to IR2 */
|
||
IR2 = 1; } /* invalidate */
|
||
else reason = STOP_INVRTN; /* MAR check */
|
||
break;
|
||
|
||
/* Branch on digit (zero) - P,Q are valid */
|
||
|
||
case OP_BD:
|
||
if ((M[QAR] & DIGIT) == 0) { /* digit == 0? */
|
||
BRANCH (PAR); } /* branch */
|
||
break;
|
||
|
||
/* Branch no flag - P,Q are valid */
|
||
|
||
case OP_BNF:
|
||
if ((M[QAR] & FLAG) == 0) { /* flag == 0? */
|
||
BRANCH (PAR); } /* branch */
|
||
break;
|
||
|
||
/* Branch no record mark (8-2 not set) - P,Q are valid */
|
||
|
||
case OP_BNR:
|
||
if ((M[QAR] & REC_MARK) != REC_MARK) { /* not rec mark? */
|
||
BRANCH (PAR); } /* branch */
|
||
break;
|
||
|
||
/* Branch no group mark - P,Q are valid */
|
||
|
||
case OP_BNG:
|
||
if ((M[QAR] & DIGIT) != GRP_MARK) { /* not grp mark? */
|
||
BRANCH (PAR); } /* branch */
|
||
break;
|
||
|
||
/* Branch (no) indicator - P is valid */
|
||
|
||
case OP_BI:
|
||
case OP_BNI:
|
||
upd_ind (); /* update indicators */
|
||
t = get_2d (ADDR_A (saved_PC, I_BR)); /* get ind number */
|
||
if ((t < 0) || (ind_table[t] < 0)) { /* not valid? */
|
||
reason = STOP_INVIND; /* stop */
|
||
break; }
|
||
if ((ind[t] != 0) ^ (op == OP_BNI)) { /* ind value correct? */
|
||
BRANCH (PAR); } /* branch */
|
||
if (ind_table[t] > 0) ind[t] = 0; /* reset if needed */
|
||
break;
|
||
|
||
/* Add/subtract/compare - P,Q are valid */
|
||
|
||
case OP_A:
|
||
case OP_AM:
|
||
reason = add_field (PAR, QAR, FALSE, TRUE, &sta); /* add, store */
|
||
if (sta == ADD_CARRY) ind[IN_OVF] = 1; /* cout => ovflo */
|
||
if (ar_stop && ind[IN_OVF]) reason = STOP_OVERFL;
|
||
break;
|
||
|
||
case OP_S:
|
||
case OP_SM:
|
||
reason = add_field (PAR, QAR, TRUE, TRUE, &sta); /* sub, store */
|
||
if (sta == ADD_CARRY) ind[IN_OVF] = 1; /* cout => ovflo */
|
||
if (ar_stop && ind[IN_OVF]) reason = STOP_OVERFL;
|
||
break;
|
||
|
||
case OP_C:
|
||
case OP_CM:
|
||
reason = add_field (PAR, QAR, TRUE, FALSE, &sta); /* sub, nostore */
|
||
if (sta == ADD_CARRY) ind[IN_OVF] = 1; /* cout => ovflo */
|
||
if (ar_stop && ind[IN_OVF]) reason = STOP_OVERFL;
|
||
break;
|
||
|
||
/* Multiply - P,Q are valid */
|
||
|
||
case OP_M:
|
||
case OP_MM:
|
||
reason = mul_field (PAR, QAR); /* multiply */
|
||
break;
|
||
|
||
/* IO instructions - P is valid */
|
||
|
||
case OP_RA:
|
||
case OP_WA:
|
||
if ((PAR & 1) == 0) { /* P even? */
|
||
reason = STOP_INVEAD; /* stop */
|
||
break; }
|
||
case OP_K:
|
||
case OP_DN:
|
||
case OP_RN:
|
||
case OP_WN:
|
||
dev = get_2d (ADDR_A (saved_PC, I_IO)); /* get IO dev */
|
||
f0 = M[ADDR_A (saved_PC, I_CTL)] & DIGIT; /* get function */
|
||
f1 = M[ADDR_A (saved_PC, I_CTL + 1)] & DIGIT;
|
||
if ((dev < 0) || (iodisp[dev] == NULL)) /* undefined dev? */
|
||
reason = STOP_INVIO; /* stop */
|
||
else reason = iodisp[dev] (op, PAR, f0, f1); /* call device */
|
||
break;
|
||
|
||
/* Divide special feature instructions */
|
||
|
||
case OP_LD:
|
||
case OP_LDM:
|
||
for (i = 0; i < PROD_AREA_LEN; i++) /* clear prod area */
|
||
M[PROD_AREA + i] = 0;
|
||
t = M[QAR] & FLAG; /* save Q sign */
|
||
reason = xmt_divd (PAR, QAR); /* xmit dividend */
|
||
M[PROD_AREA + PROD_AREA_LEN - 1] |= t; /* set sign */
|
||
break;
|
||
|
||
/* Divide - P,Q are valid */
|
||
|
||
case OP_D:
|
||
case OP_DM:
|
||
reason = div_field (PAR, QAR, &t); /* divide */
|
||
ind[IN_EZ] = t; /* set indicator */
|
||
if ((reason == STOP_OVERFL) && !ar_stop) /* ovflo stop? */
|
||
reason = SCPE_OK; /* no */
|
||
break;
|
||
|
||
/* Edit special feature instructions */
|
||
|
||
/* Move flag - P,Q are valid */
|
||
|
||
case OP_MF:
|
||
M[PAR] = (M[PAR] & ~FLAG) | (M[QAR] & FLAG); /* copy Q flag */
|
||
M[QAR] = M[QAR] & ~FLAG; /* clr Q flag */
|
||
break;
|
||
|
||
/* Transmit numeric strip - P,Q are valid, P is source */
|
||
|
||
case OP_TNS:
|
||
if ((PAR & 1) == 0) { /* P must be odd */
|
||
reason = STOP_INVEAD;
|
||
break; }
|
||
reason = xmt_tns (QAR, PAR); /* xmit and strip */
|
||
break;
|
||
|
||
/* Transmit numeric fill - P,Q are valid */
|
||
|
||
case OP_TNF:
|
||
if ((PAR & 1) == 0) { /* P must be odd */
|
||
reason = STOP_INVEAD;
|
||
break; }
|
||
reason = xmt_tnf (PAR, QAR); /* xmit and strip */
|
||
break;
|
||
|
||
/* Index special feature instructions */
|
||
|
||
/* Move address - P,Q are valid */
|
||
|
||
case OP_MA:
|
||
for (i = 0; i < ADDR_LEN; i++) { /* move 5 digits */
|
||
M[PAR] = (M[PAR] & FLAG) | (M[QAR] & DIGIT);
|
||
MM (PAR); MM (QAR); }
|
||
break;
|
||
|
||
/* Branch load index - P,Q are valid, Q not indexed */
|
||
|
||
case OP_BLX:
|
||
case OP_BLXM:
|
||
idx = get_idx (ADDR_A (saved_PC, I_QL - 1)); /* get index */
|
||
if (idx < 0) { /* invalid? */
|
||
reason = STOP_INVIDX; /* stop for now */
|
||
break; }
|
||
xmt_index (GET_IDXADDR (idx), QAR); /* copy Q to idx */
|
||
BRANCH (PAR); /* branch to P */
|
||
break;
|
||
|
||
/* Branch store index - P,Q are valid, Q not indexed */
|
||
|
||
case OP_BSX:
|
||
idx = get_idx (ADDR_A (saved_PC, I_QL - 1)); /* get index */
|
||
if (idx < 0) { /* invalid? */
|
||
reason = STOP_INVIDX; /* stop for now */
|
||
break; }
|
||
xmt_index (QAR, GET_IDXADDR (idx)); /* copy idx to Q */
|
||
BRANCH (PAR); /* branch to P */
|
||
break;
|
||
|
||
/* Branch and modify index - P,Q are valid, Q not indexed */
|
||
|
||
case OP_BX:
|
||
case OP_BXM:
|
||
idx = get_idx (ADDR_A (saved_PC, I_QL - 1)); /* get index */
|
||
if (idx < 0) { /* invalid? */
|
||
reason = STOP_INVIDX; /* stop for now */
|
||
break; }
|
||
reason = add_field (GET_IDXADDR (idx), QAR, FALSE, TRUE, &sta);
|
||
if (ar_stop && ind[IN_OVF]) reason = STOP_OVERFL;
|
||
BRANCH (PAR); /* branch to P */
|
||
break;
|
||
|
||
/* Branch conditionally and modify index - P,Q are valid, Q not indexed */
|
||
|
||
case OP_BCX:
|
||
case OP_BCXM:
|
||
idx = get_idx (ADDR_A (saved_PC, I_QL - 1)); /* get index */
|
||
if (idx < 0) { /* invalid? */
|
||
reason = STOP_INVIDX; /* stop for now */
|
||
break; }
|
||
reason = add_field (GET_IDXADDR (idx), QAR, FALSE, TRUE, &sta);
|
||
if (ar_stop && ind[IN_OVF]) reason = STOP_OVERFL;
|
||
if ((ind[IN_EZ] == 0) && (sta == ADD_NOCRY)) { /* ~z, ~c, ~schg? */
|
||
BRANCH (PAR); } /* branch */
|
||
break;
|
||
|
||
/* Branch and select - P is valid */
|
||
|
||
case OP_BS:
|
||
t = M[ADDR_A (saved_PC, I_SEL)] & DIGIT; /* get select */
|
||
switch (t) { /* case on select */
|
||
case 0:
|
||
idxe = idxb = 0; /* indexing off */
|
||
break;
|
||
case 1:
|
||
idxe = 1; idxb = 0; /* index band A */
|
||
break;
|
||
case 2:
|
||
idxe = idxb = 1; /* index band B */
|
||
break;
|
||
case 8:
|
||
iae = 0; /* indirect off */
|
||
break;
|
||
case 9:
|
||
iae = 1; /* indirect on */
|
||
break;
|
||
default:
|
||
reason = STOP_INVSEL; /* undefined */
|
||
break; }
|
||
BRANCH (PAR);
|
||
break;
|
||
|
||
/* Binary special feature instructions */
|
||
|
||
/* Branch on bit - P,Q are valid, Q is 4d address */
|
||
|
||
case OP_BBT:
|
||
t = M[ADDR_A (saved_PC, I_Q)]; /* get Q0 digit */
|
||
if (t & M[QAR] & DIGIT) { /* match to mem? */
|
||
BRANCH (PAR); } /* branch */
|
||
break;
|
||
|
||
/* Branch on mask - P,Q are valid, Q is 4d address */
|
||
|
||
case OP_BMK:
|
||
t = M[ADDR_A (saved_PC, I_Q)]; /* get Q0 digit */
|
||
if (((t ^ M[QAR]) & /* match to mem? */
|
||
((t & FLAG)? (FLAG + DIGIT): DIGIT)) == 0) {
|
||
BRANCH (PAR); } /* branch */
|
||
break;
|
||
|
||
/* Or - P,Q are valid */
|
||
|
||
case OP_ORF:
|
||
reason = or_field (PAR, QAR); /* OR fields */
|
||
break;
|
||
|
||
/* AND - P,Q are valid */
|
||
|
||
case OP_ANDF:
|
||
reason = and_field (PAR, QAR); /* AND fields */
|
||
break;
|
||
|
||
/* Exclusive or - P,Q are valid */
|
||
|
||
case OP_EORF:
|
||
reason = xor_field (PAR, QAR); /* XOR fields */
|
||
break;
|
||
|
||
/* Complement - P,Q are valid */
|
||
|
||
case OP_CPLF:
|
||
reason = com_field (PAR, QAR); /* COM field */
|
||
break;
|
||
|
||
/* Octal to decimal - P,Q are valid */
|
||
|
||
case OP_OTD:
|
||
reason = oct_to_dec (PAR, QAR); /* convert */
|
||
break;
|
||
|
||
/* Decimal to octal - P,Q are valid */
|
||
|
||
case OP_DTO:
|
||
reason = dec_to_oct (PAR, QAR, &t); /* convert */
|
||
ind[IN_EZ] = t; /* set indicator */
|
||
if (ar_stop && ind[IN_OVF]) reason = STOP_OVERFL;
|
||
break;
|
||
|
||
/* Floating point special feature instructions */
|
||
|
||
case OP_FADD:
|
||
reason = fp_add (PAR, QAR, FALSE); /* add */
|
||
if (ar_stop && ind[IN_EXPCHK]) reason = STOP_EXPCHK;
|
||
break;
|
||
|
||
case OP_FSUB:
|
||
reason = fp_add (PAR, QAR, TRUE); /* subtract */
|
||
if (ar_stop && ind[IN_EXPCHK]) reason = STOP_EXPCHK;
|
||
break;
|
||
|
||
case OP_FMUL:
|
||
reason = fp_mul (PAR, QAR); /* multiply */
|
||
if (ar_stop && ind[IN_EXPCHK]) reason = STOP_EXPCHK;
|
||
break;
|
||
|
||
case OP_FDIV:
|
||
reason = fp_div (PAR, QAR); /* divide */
|
||
if (ar_stop && ind[IN_OVF]) reason = STOP_FPDVZ;
|
||
if (ar_stop && ind[IN_EXPCHK]) reason = STOP_EXPCHK;
|
||
break;
|
||
|
||
case OP_FSL:
|
||
reason = fp_fsl (PAR, QAR); /* shift left */
|
||
break;
|
||
|
||
case OP_FSR:
|
||
reason = fp_fsr (PAR, QAR); /* shift right */
|
||
break;
|
||
|
||
/* Halt */
|
||
|
||
case OP_H:
|
||
saved_PC = PC; /* commit inst */
|
||
reason = STOP_HALT; /* stop */
|
||
break;
|
||
|
||
/* NOP */
|
||
|
||
case OP_NOP:
|
||
break;
|
||
|
||
/* Invalid instruction code */
|
||
|
||
default:
|
||
reason = STOP_INVINS; /* stop */
|
||
break; } /* end switch */
|
||
} /* end while */
|
||
|
||
/* Simulation halted */
|
||
|
||
pcq_r->qptr = pcq_p; /* update pc q ptr */
|
||
upd_ind ();
|
||
return reason;
|
||
}
|
||
|
||
/* Utility routines */
|
||
|
||
/* Get 2 digit field
|
||
|
||
Inputs:
|
||
ad = address of high digit
|
||
Outputs:
|
||
val = field converted to binary
|
||
-1 if bad digit
|
||
*/
|
||
|
||
int32 get_2d (uint32 ad)
|
||
{
|
||
int32 d, d1;
|
||
|
||
d = M[ad] & DIGIT; /* get 1st digit */
|
||
d1 = M[ADDR_A (ad, 1)] & DIGIT; /* get 2nd digit */
|
||
if (BAD_DIGIT (d) || BAD_DIGIT (d1)) return -1; /* bad? error */
|
||
return ((d * 10) + d1); /* cvt to binary */
|
||
}
|
||
|
||
/* Get address routine
|
||
|
||
Inputs:
|
||
alast = address of low digit
|
||
lnt = length
|
||
indexok = TRUE if indexing allowed
|
||
&addr = pointer to address output
|
||
Output:
|
||
return = error status (in terms of P address)
|
||
addr = address converted to binary
|
||
|
||
Notes:
|
||
- If indexing produces a negative result, the effective address is
|
||
the 10's complement of the result
|
||
- An address that exceeds memory produces a MAR check stop
|
||
*/
|
||
|
||
t_stat get_addr (uint32 alast, int32 lnt, t_bool indexok, uint32 *reta)
|
||
{
|
||
uint8 indir;
|
||
int32 cnt, idx, idxa, idxv, addr;
|
||
|
||
if (iae) indir = FLAG; /* init indirect */
|
||
else indir = 0;
|
||
|
||
cnt = 0; /* count depth */
|
||
do { indir = indir & M[alast]; /* get indirect */
|
||
if (cvt_addr (alast, lnt, FALSE, &addr)) /* cvt addr to bin */
|
||
return STOP_INVPDG; /* bad? */
|
||
idx = get_idx (ADDR_S (alast, 1)); /* get index addr */
|
||
if (indexok && (idx > 0)) { /* indexable? */
|
||
idxa = GET_IDXADDR (idx); /* get idx addr */
|
||
if (cvt_addr (idxa, ADDR_LEN, TRUE, &idxv)) /* cvt idx */
|
||
return STOP_INVPDG;
|
||
addr = addr + idxv; /* add in index */
|
||
if (addr < 0) addr = addr + 100000; } /* -? 10's comp */
|
||
if (addr >= (int32) MEMSIZE) return STOP_INVPAD;/* invalid addr? */
|
||
alast = addr; /* new address */
|
||
lnt = ADDR_LEN; } /* std len */
|
||
while (indir && (cnt++ < ind_max));
|
||
if (cnt > ind_max) return STOP_INVPIA; /* indir too deep? */
|
||
*reta = addr; /* return address */
|
||
return SCPE_OK;
|
||
}
|
||
|
||
/* Convert address to binary
|
||
|
||
Inputs:
|
||
alast = address of low digit
|
||
lnt = length
|
||
signok = TRUE if signed
|
||
val = address of output
|
||
Outputs:
|
||
status = 0 if ok, != 0 if error
|
||
*/
|
||
|
||
t_stat cvt_addr (uint32 alast, int32 lnt, t_bool signok, int32 *val)
|
||
{
|
||
int32 sign = 0, addr = 0, t;
|
||
|
||
if (signok && (M[alast] & FLAG)) sign = 1; /* signed? */
|
||
alast = alast - lnt; /* find start */
|
||
do { PP (alast); /* incr mem addr */
|
||
t = M[alast] & DIGIT; /* get digit */
|
||
if (BAD_DIGIT (t)) return STOP_INVDIG; /* bad? error */
|
||
addr = (addr * 10) + t; } /* cvt to bin */
|
||
while (--lnt > 0);
|
||
if (sign) *val = -addr; /* minus? */
|
||
else *val = addr;
|
||
return SCPE_OK;
|
||
}
|
||
|
||
/* Get index register number
|
||
|
||
Inputs:
|
||
aidx = address of low digit
|
||
Outputs:
|
||
index = >0 if indexed
|
||
=0 if not indexed
|
||
<0 if indexing disabled
|
||
*/
|
||
|
||
t_stat get_idx (uint32 aidx)
|
||
{
|
||
int32 i, idx = 0;
|
||
|
||
if (idxe == 0) return -1; /* indexing off? */
|
||
for (i = 0; i < 3; i++) { /* 3 flags worth */
|
||
if (M[aidx] & FLAG) idx = idx | (1 << i); /* test flag */
|
||
MM (aidx); } /* next digit */
|
||
return idx;
|
||
}
|
||
|
||
/* Update indicators routine */
|
||
|
||
void upd_ind (void)
|
||
{
|
||
ind[IN_HPEZ] = ind[IN_HP] | ind[IN_EZ]; /* HPEZ = HP | EZ */
|
||
ind[IN_DERR] = ind[IN_DACH] | ind[IN_DWLR] | ind[IN_DCYO];
|
||
ind[IN_ANYCHK] = ind[IN_RDCHK] | ind[IN_WRCHK] | /* ANYCHK = all chks */
|
||
ind[IN_MBREVEN] | ind[IN_MBRODD] |
|
||
ind[IN_PRCHK] | ind[IN_DACH];
|
||
ind[IN_IXN] = ind[IN_IXA] = ind[IN_IXB] = 0; /* clr index indics */
|
||
if (!idxe) ind[IN_IXN] = 1; /* off? */
|
||
else if (!idxb) ind[IN_IXA] = 1; /* on, band A? */
|
||
else ind[IN_IXB] = 1; /* no, band B */
|
||
return;
|
||
}
|
||
|
||
/* Transmit routines */
|
||
|
||
/* Transmit field from 's' to 'd' - ignore first 'skp' flags */
|
||
|
||
t_stat xmt_field (uint32 d, uint32 s, uint32 skp)
|
||
{
|
||
t_addr cnt = 0;
|
||
uint8 t;
|
||
|
||
do { t = M[d] = M[s] & (FLAG | DIGIT); /* copy src to dst */
|
||
MM (d); MM (s); /* decr mem addrs */
|
||
if (cnt++ >= MEMSIZE) return STOP_FWRAP; } /* (stop runaway) */
|
||
while (((t & FLAG) == 0) || (cnt <= skp)); /* until flag */
|
||
return SCPE_OK;
|
||
}
|
||
|
||
/* Transmit record from 's' to 'd' - copy record mark if 'cpy' = TRUE */
|
||
|
||
t_stat xmt_record (uint32 d, uint32 s, t_bool cpy)
|
||
{
|
||
t_addr cnt = 0;
|
||
|
||
while ((M[s] & REC_MARK) != REC_MARK) { /* until rec mark */
|
||
M[d] = M[s] & (FLAG | DIGIT); /* copy src to dst */
|
||
PP (d); PP (s); /* incr mem addrs */
|
||
if (cnt++ >= MEMSIZE) return STOP_RWRAP; } /* (stop runaway) */
|
||
if (cpy) M[d] = M[s] & (FLAG | DIGIT); /* copy rec mark */
|
||
return SCPE_OK;
|
||
}
|
||
|
||
/* Transmit index from 's' to 'd' - fixed five character field */
|
||
|
||
t_stat xmt_index (uint32 d, uint32 s)
|
||
{
|
||
int32 i;
|
||
|
||
M[d] = M[s] & (FLAG | DIGIT); /* preserve sign */
|
||
MM (d); MM (s); /* decr mem addrs */
|
||
for (i = 0; i < ADDR_LEN - 2; i++) { /* copy 3 digits */
|
||
M[d] = M[s] & DIGIT; /* without flags */
|
||
MM (d); MM (s); } /* decr mem addrs */
|
||
M[d] = (M[s] & DIGIT) | FLAG; /* set flag on last */
|
||
return SCPE_OK;
|
||
}
|
||
|
||
/* Transmit dividend from 'd' to 's' - clear flag on first digit */
|
||
|
||
t_stat xmt_divd (uint32 d, uint32 s)
|
||
{
|
||
t_addr cnt = 0;
|
||
|
||
M[d] = M[s] & DIGIT; /* first w/o flag */
|
||
do { MM (d); MM (s); /* decr mem addrs */
|
||
M[d] = M[s] & (FLAG | DIGIT); /* copy src to dst */
|
||
if (cnt++ >= MEMSIZE) return STOP_FWRAP; } /* (stop runaway) */
|
||
while ((M[d] & FLAG) == 0); /* until src flag */
|
||
return SCPE_OK;
|
||
}
|
||
|
||
/* Transmit numeric strip from 's' to 'd' - s is odd */
|
||
|
||
t_stat xmt_tns (uint32 d, uint32 s)
|
||
{
|
||
t_addr cnt = 0;
|
||
uint8 t, z;
|
||
|
||
t = M[s] & DIGIT; /* get units */
|
||
z = M[s - 1] & DIGIT; /* get zone */
|
||
if ((z == 1) || (z == 5) || ((z == 2) && (t == 0))) /* 1x, 5x, 20? */
|
||
M[d] = t | FLAG; /* set flag */
|
||
else M[d] = t; /* else clear flag */
|
||
do { MM (d); /* decr mem addrs */
|
||
s = ADDR_S (s, 2);
|
||
t = M[d] & FLAG; /* save dst flag */
|
||
M[d] = M[s] & (FLAG | DIGIT); /* copy src to dst */
|
||
if (cnt >= MEMSIZE) return STOP_FWRAP; /* (stop runaway) */
|
||
cnt = cnt + 2; }
|
||
while (t == 0); /* until dst flag */
|
||
M[d] = M[d] | FLAG; /* set flag at end */
|
||
return SCPE_OK;
|
||
}
|
||
|
||
/* Transmit numeric fill from 's' to 'd' - d is odd */
|
||
|
||
t_stat xmt_tnf (uint32 d, uint32 s)
|
||
{
|
||
t_addr cnt = 0;
|
||
uint8 t;
|
||
|
||
t = M[s]; /* get 1st digit */
|
||
M[d] = t & DIGIT; /* store */
|
||
M[d - 1] = (t & FLAG)? 5: 7; /* set sign from flag */
|
||
do { MM (s); /* decr mem addr */
|
||
d = ADDR_S (d, 2);
|
||
t = M[s]; /* get src digit */
|
||
M[d] = t & DIGIT; /* move to dst, no flag */
|
||
M[d - 1] = 7; /* set zone */
|
||
if (cnt >= MEMSIZE) return STOP_FWRAP; /* (stop runaway) */
|
||
cnt = cnt + 2; }
|
||
while ((t & FLAG) == 0); /* until src flag */
|
||
return SCPE_OK;
|
||
}
|
||
|
||
/* Add routine
|
||
|
||
Inputs:
|
||
d = destination field low (P)
|
||
s = source field low (Q)
|
||
sub = TRUE if subtracting
|
||
sto = TRUE if storing
|
||
Output:
|
||
return = status
|
||
sta = ADD_NOCRY: no carry out, no sign change
|
||
ADD_SCHNG: sign change
|
||
ADD_CARRY: carry out
|
||
|
||
Reference Manual: "When the sum is zero, the sign of the P field
|
||
is retained."
|
||
*/
|
||
|
||
t_stat add_field (uint32 d, uint32 s, t_bool sub, t_bool sto, int32 *sta)
|
||
{
|
||
uint32 cry, src, dst, res, comp, dp, dsv;
|
||
uint32 src_f = 0, cnt = 0, dst_f;
|
||
|
||
*sta = ADD_NOCRY; /* assume no cry */
|
||
dsv = d; /* save dst */
|
||
comp = ((M[d] ^ M[s]) & FLAG) ^ (sub? FLAG: 0); /* set compl flag */
|
||
cry = 0; /* clr carry */
|
||
ind[IN_HP] = ((M[d] & FLAG) == 0); /* set sign from res */
|
||
ind[IN_EZ] = 1; /* assume zero */
|
||
|
||
dst = M[d] & DIGIT; /* 1st digits */
|
||
src = M[s] & DIGIT;
|
||
if (BAD_DIGIT (dst) || BAD_DIGIT (src)) /* bad digit? */
|
||
return STOP_INVDIG;
|
||
if (comp) src = 10 - src; /* complement? */
|
||
res = add_one_digit (dst, src, &cry); /* add */
|
||
if (sto) M[d] = (M[d] & FLAG) | res; /* store */
|
||
MM (d); MM (s); /* decr mem addrs */
|
||
do { dst = M[d] & DIGIT; /* get dst digit */
|
||
dst_f = M[d] & FLAG; /* get dst flag */
|
||
if (src_f) src = 0; /* src done? src = 0 */
|
||
else {
|
||
src = M[s] & DIGIT; /* get src digit */
|
||
src_f = M[s] & FLAG; /* get src flag */
|
||
MM (s); } /* decr src addr */
|
||
if (BAD_DIGIT (dst) || BAD_DIGIT (src)) /* bad digit? */
|
||
return STOP_INVDIG;
|
||
if (comp) src = 9 - src; /* complement? */
|
||
res = add_one_digit (dst, src, &cry); /* add */
|
||
if (sto) M[d] = dst_f | res; /* store */
|
||
MM (d); /* decr dst addr */
|
||
if (cnt++ >= MEMSIZE) return STOP_FWRAP; } /* (stop runaway) */
|
||
while (dst_f == 0); /* until dst done */
|
||
if (!src_f) ind[IN_OVF] = 1; /* !src done? ovf */
|
||
if (comp && !cry && !ind[IN_EZ]) { /* recomp needed? */
|
||
ind[IN_HP] = ind[IN_HP] ^ 1; /* flip indicator */
|
||
if (sto) { /* storing? */
|
||
for (cry = 1, dp = dsv; dp != d; ) { /* rescan */
|
||
dst = M[dp] & DIGIT; /* get dst digit */
|
||
res = add_one_digit (9 - dst, 0, &cry); /* "add" */
|
||
M[dp] = (M[dp] & FLAG) | res; /* store */
|
||
MM (dp); } /* decr dst addr */
|
||
M[dsv] = M[dsv] ^ FLAG; } /* compl sign */
|
||
*sta = ADD_SIGNC; /* sign changed */
|
||
return SCPE_OK; } /* end if recomp */
|
||
if (ind[IN_EZ]) ind[IN_HP] = 0; /* res = 0? clr HP */
|
||
if (!comp && cry) *sta = ADD_CARRY; /* set status */
|
||
return SCPE_OK;
|
||
}
|
||
|
||
/* Add one digit via table (Model 1) or "hardware" (Model 2) */
|
||
|
||
uint32 add_one_digit (uint32 dst, uint32 src, uint32 *cry)
|
||
{
|
||
uint32 res;
|
||
|
||
if (*cry) src = src + 1; /* cry in? incr src */
|
||
if (src >= 10) { /* src > 10? */
|
||
src = src - 10; /* src -= 10 */
|
||
*cry = 1; } /* carry out */
|
||
else *cry = 0; /* else no carry */
|
||
if (cpu_unit.flags & IF_MII) /* Model 2? */
|
||
res = sum_table[dst + src]; /* "hardware" */
|
||
else res = M[ADD_TABLE + (dst * 10) + src]; /* table lookup */
|
||
if (res & FLAG) *cry = 1; /* carry out? */
|
||
if (res & DIGIT) ind[IN_EZ] = 0; /* nz? clr ind */
|
||
return res & DIGIT;
|
||
}
|
||
|
||
/* Multiply routine
|
||
|
||
Inputs:
|
||
mpc = multiplicand address
|
||
mpy = multiplier address
|
||
Outputs:
|
||
return = status
|
||
|
||
Reference manual: "A zero product may have a negative or positive sign,
|
||
depending on the signs of the fields at the P and Q addresses."
|
||
*/
|
||
|
||
t_stat mul_field (uint32 mpc, uint32 mpy)
|
||
{
|
||
int32 i;
|
||
uint32 pro; /* prod pointer */
|
||
uint32 mpyd, mpyf; /* mpy digit, flag */
|
||
t_addr cnt = 0; /* counter */
|
||
uint8 sign; /* final sign */
|
||
t_stat r;
|
||
|
||
PR1 = 1; /* step on PR1 */
|
||
for (i = 0; i < PROD_AREA_LEN; i++) /* clr prod area */
|
||
M[PROD_AREA + i] = 0;
|
||
sign = (M[mpc] & FLAG) ^ (M[mpy] & FLAG); /* get final sign */
|
||
ind[IN_HP] = (sign == 0); /* set indicators */
|
||
ind[IN_EZ] = 1;
|
||
pro = PROD_AREA + PROD_AREA_LEN - 1; /* product ptr */
|
||
|
||
/* Loop on multiplier (mpy) and product (pro) digits */
|
||
|
||
do { mpyd = M[mpy] & DIGIT; /* multiplier digit */
|
||
mpyf = (M[mpy] & FLAG) && (cnt != 0); /* last digit flag */
|
||
if (BAD_DIGIT (mpyd)) return STOP_INVDIG; /* bad? */
|
||
r = mul_one_digit (mpyd, mpc, pro, mpyf); /* prod += mpc*mpy_dig */
|
||
if (r != SCPE_OK) return r; /* error? */
|
||
MM (mpy); MM (pro); /* decr mpyr, prod addrs */
|
||
if (cnt++ > MEMSIZE) return STOP_FWRAP; } /* (stop runaway) */
|
||
while ((mpyf == 0) || (cnt <= 1)); /* until mpyr flag */
|
||
|
||
if (ind[IN_EZ]) ind[IN_HP] = 0; /* res = 0? clr HP */
|
||
M[PROD_AREA + PROD_AREA_LEN - 1] |= sign; /* set final sign */
|
||
return SCPE_OK;
|
||
}
|
||
|
||
/* Multiply step
|
||
|
||
Inputs:
|
||
mpyd = multiplier digit (tested valid)
|
||
mpcp = multiplicand low address
|
||
prop = product low address
|
||
last = last iteration flag (set flag on high product)
|
||
Outputs:
|
||
prod += multiplicand * multiplier_digit
|
||
return = status
|
||
|
||
The multiply table address is constructed as follows:
|
||
- double the multiplier digit
|
||
- use the 10's digit of the doubled result, + 1, as the 100's digit
|
||
of the table address
|
||
- use the multiplicand digit as the 10's digit of the table address
|
||
- use the unit digit of the doubled result as the unit digit of the
|
||
table address
|
||
EZ indicator is cleared if a non-zero digit is ever generated
|
||
*/
|
||
|
||
t_stat mul_one_digit (uint32 mpyd, uint32 mpcp, uint32 prop, uint32 last)
|
||
{
|
||
uint32 mpta, mptb; /* mult table */
|
||
uint32 mptd; /* mult table digit */
|
||
uint32 mpcd, mpcf; /* mpc digit, flag */
|
||
uint32 prwp; /* prod working ptr */
|
||
uint32 prod; /* product digit */
|
||
uint32 cry; /* carry */
|
||
t_addr mpcc, cryc; /* counters */
|
||
|
||
mptb = MUL_TABLE + ((mpyd <= 4)? (mpyd * 2): /* set mpy table 100's, */
|
||
(((mpyd - 5) * 2) + 100)); /* 1's digits */
|
||
|
||
/* Inner loop on multiplicand (mpcp) and product (prop) digits */
|
||
|
||
mpcc = 0; /* multiplicand ctr */
|
||
do { prwp = prop; /* product working ptr */
|
||
mpcd = M[mpcp] & DIGIT; /* multiplicand digit */
|
||
mpcf = M[mpcp] & FLAG; /* multiplicand flag */
|
||
if (BAD_DIGIT (mpcd)) return STOP_INVDIG; /* bad? */
|
||
mpta = mptb + (mpcd * 10); /* mpy table 10's digit */
|
||
cry = 0; /* init carry */
|
||
mptd = M[mpta] & DIGIT; /* mpy table digit */
|
||
if (BAD_DIGIT (mptd)) return STOP_INVDIG; /* bad? */
|
||
prod = M[prwp] & DIGIT; /* product digit */
|
||
if (BAD_DIGIT (prod)) return STOP_INVDIG; /* bad? */
|
||
M[prwp] = add_one_digit (prod, mptd, &cry); /* add mpy tbl to prod */
|
||
MM (prwp); /* decr working ptr */
|
||
mptd = M[mpta + 1] & DIGIT; /* mpy table digit */
|
||
if (BAD_DIGIT (mptd)) return STOP_INVDIG; /* bad? */
|
||
prod = M[prwp] & DIGIT; /* product digit */
|
||
if (BAD_DIGIT (prod)) return STOP_INVDIG; /* bad? */
|
||
M[prwp] = add_one_digit (prod, mptd, &cry); /* add mpy tbl to prod */
|
||
cryc = 0; /* (stop runaway) */
|
||
while (cry) { /* propagate carry */
|
||
MM (prwp); /* decr working ptr */
|
||
prod = M[prwp] & DIGIT; /* product digit */
|
||
if (BAD_DIGIT (prod)) return STOP_INVDIG; /* bad? */
|
||
M[prwp] = add_one_digit (prod, 0, &cry); /* add cry */
|
||
if (cryc++ > MEMSIZE) return STOP_FWRAP; }
|
||
MM (mpcp); MM (prop); /* decr mpc, prod ptrs */
|
||
if (mpcc++ > MEMSIZE) return STOP_FWRAP; }
|
||
while ((mpcf == 0) || (mpcc <= 1)); /* until mpcf flag */
|
||
if (last)
|
||
M[prop] = M[prop] | FLAG; /* flag high product */
|
||
return SCPE_OK;
|
||
}
|
||
|
||
/* Divide routine - comments from Geoff Kuenning's 1620 simulator
|
||
|
||
The destination of the divide is given by:
|
||
|
||
100 - <# digits in quotient>
|
||
|
||
Which is more easily calculated as:
|
||
|
||
100 - <# digits in divisor> - <# digits in dividend>
|
||
|
||
The quotient goes into 99 minus the divisor length. The
|
||
remainder goes into 99. The load dividend instruction (above)
|
||
should have specified a P address of 99 minus the size of the
|
||
divisor.
|
||
|
||
Note that this all implies that "dest" points to the *leftmost*
|
||
digit of the dividend.
|
||
|
||
After the division, the assumed decimal point will be as many
|
||
positions to the left as there are digits in the divisor. In
|
||
other words, a 4-digit divisor will produce 4 (assumed) decimal
|
||
places.
|
||
|
||
There are other ways to do these things. In particular, the
|
||
load-dividend instruction doesn't have to specify the above
|
||
formula; if it's done differently, then you don't have to get
|
||
decimal places. This is not well-explained in the books I have.
|
||
|
||
How to divide on a 1620:
|
||
|
||
The dividend is the field at 99:
|
||
|
||
90 = _1234567890
|
||
|
||
The divisor is somewhere else in memory:
|
||
|
||
_03
|
||
|
||
The divide operation specifies the left-most digit of the
|
||
dividend as the place to begin trial subtractions:
|
||
|
||
DM 90,3
|
||
|
||
The loop works as follows:
|
||
|
||
1. Call the left-most digit of the dividend "current_dividend".
|
||
Call the location current_dividend - <divisor_length>
|
||
"quotient_digit".
|
||
2. Clear the flag at current_dividend, and set one at
|
||
quotient_digit.
|
||
|
||
88 = _001234567890, q_d = 88, c_d = 90
|
||
[Not actually done; divisor length controls subtract.]
|
||
3. Subtract the divisor from the field at current-dividend,
|
||
using normal 1620 rules, except that signs are ignored.
|
||
Continue these subtractions until either 10 subtractions
|
||
have been done, or you get a negative result:
|
||
|
||
88 = _00_2234567890, q_d = 88, c_d = 90
|
||
4. If 10 subtractions have been done, set the overflow
|
||
indicator and abort. Otherwise, add the divisor back to
|
||
correct for the oversubtraction:
|
||
|
||
88 = _001234567890, q_d = 88, c_d = 90
|
||
5. Store the (net) number of subtractions in quotient_digit:
|
||
|
||
88 = _001234567890, q_d = 88, c_d = 90
|
||
6. If this is not the first pass, clear the flag at
|
||
quotient_digit. Increment quotient_digit and
|
||
current_dividend, and set a flag at the new
|
||
quotient_digit:
|
||
|
||
88 = _0_01234567890, q_d = 89, c_d = 91
|
||
[If first pass, set a flag at quotient digit.]
|
||
7. If current_dividend is not 100, repeat steps 3 through 7.
|
||
8. Set flags at 99 and quotient_digit - 1 according to the
|
||
rules of algebra: the quotient's sign is the exclusive-or
|
||
of the signs of the divisor and dividend, and the
|
||
remainder has the sign of the dividend:
|
||
|
||
10 / 3 = 3 remainder 1
|
||
10 / -3 = -3 remainder 1
|
||
-10 / 3 = -3 remainder -1
|
||
-10 / -3 = 3 remainder -1
|
||
|
||
This preserves the relationship dd = q * dv + r.
|
||
|
||
Our example continues as follows for steps 3 through 7:
|
||
|
||
3. 88 = _0_00_334567890, q_d = 89, c_d = 91
|
||
4. 88 = _0_00034567890
|
||
5. 88 = _0_40034567890
|
||
6. 88 = _04_0034567890, q_d = 90, c_d = 92
|
||
3. 88 = _04_00_34567890
|
||
4. 88 = _04_0004567890
|
||
5. 88 = _04_1004567890
|
||
6. 88 = _041_004567890, q_d = 91, c_d = 93
|
||
3. 88 = _041_00_2567890
|
||
4. 88 = _041_001567890
|
||
5. 88 = _041_101567890
|
||
6. 88 = _0411_01567890, q_d = 92, c_d = 94
|
||
3. 88 = _0411_00_367890
|
||
4. 88 = _0411_00067890
|
||
5. 88 = _0411_50067890
|
||
6. 88 = _04115_0067890, q_d = 93, c_d = 95
|
||
3. 88 = _04115_00_37890
|
||
4. 88 = _04115_0007890
|
||
5. 88 = _04115_2007890
|
||
6. 88 = _041152_007890, q_d = 94, c_d = 96
|
||
3. 88 = _041152_00_2890
|
||
4. 88 = _041152_001890
|
||
5. 88 = _041152_201890
|
||
6. 88 = _0411522_01890, q_d = 95, c_d = 97
|
||
3. 88 = _0411522_00_390
|
||
4. 88 = _0411522_00090
|
||
5. 88 = _0411522_60090
|
||
6. 88 = _04115226_0090, q_d = 96, c_d = 98
|
||
3. 88 = _04115226_00_30
|
||
4. 88 = _04115226_0000
|
||
5. 88 = _04115226_3000
|
||
6. 88 = _041152263_000, q_d = 97, c_d = 99
|
||
3. 88 = _041152263_00_3
|
||
4. 88 = _041152263_000
|
||
5. 88 = _041152263_000
|
||
6. 88 = _0411522630_00, q_d = 98, c_d = 100
|
||
|
||
In the actual code below, we elide several of these steps in
|
||
various ways for convenience and efficiency.
|
||
|
||
Note that the EZ indicator is NOT valid for divide, because it
|
||
is cleared by any non-zero result in an intermediate add. The
|
||
code maintains its own EZ indicator for the quotient.
|
||
*/
|
||
|
||
t_stat div_field (uint32 dvd, uint32 dvr, int32 *ez)
|
||
{
|
||
uint32 quop, quod, quos; /* quo ptr, dig, sign */
|
||
uint32 dvds; /* dvd sign */
|
||
t_bool first = TRUE; /* first pass */
|
||
t_stat r;
|
||
|
||
dvds = (M[PROD_AREA + PROD_AREA_LEN - 1]) & FLAG; /* dividend sign */
|
||
quos = dvds ^ (M[dvr] & FLAG); /* quotient sign */
|
||
ind[IN_HP] = (quos == 0); /* set indicators */
|
||
*ez = 1;
|
||
|
||
/* Loop on current dividend, high order digit at dvd */
|
||
|
||
do { r = div_one_digit (dvd, dvr, 10, &quod, &quop); /* dev quo digit */
|
||
if (r != SCPE_OK) return r; /* error? */
|
||
|
||
/* Store quotient digit and advance current dividend pointer */
|
||
|
||
if (first) { /* first pass? */
|
||
if (quod >= 10) { /* overflow? */
|
||
ind[IN_OVF] = 1; /* set indicator */
|
||
return STOP_OVERFL; } /* stop */
|
||
M[quop] = FLAG | quod; /* set flag on quo */
|
||
first = FALSE; }
|
||
else M[quop] = quod; /* store quo digit */
|
||
if (quod) *ez = 0; /* if nz, clr ind */
|
||
PP (dvd); } /* incr dvd ptr */
|
||
while (dvd != (PROD_AREA + PROD_AREA_LEN)); /* until end prod */
|
||
|
||
/* Division done. Set signs of quo, rem, set flag on high order remainder */
|
||
|
||
if (*ez) ind[IN_HP] = 0; /* res = 0? clr HP */
|
||
M[PROD_AREA + PROD_AREA_LEN - 1] |= dvds; /* remainder sign */
|
||
M[quop] = M[quop] | quos; /* quotient sign */
|
||
PP (quop); /* high remainder */
|
||
M[quop] = M[quop] | FLAG; /* set flag */
|
||
return SCPE_OK;
|
||
}
|
||
|
||
/* Divide step
|
||
|
||
Inputs:
|
||
dvd = current dividend address (high digit)
|
||
dvr = divisor address (low digit)
|
||
max = max number of iterations before overflow
|
||
&quod = address to store quotient digit
|
||
&quop = address to store quotient pointer (can be NULL)
|
||
Outputs:
|
||
return = status
|
||
|
||
Divide step calculates a quotient digit by repeatedly subtracting the
|
||
divisor from the current dividend. The divisor's length controls the
|
||
subtraction; dividend flags are ignored.
|
||
*/
|
||
|
||
t_stat div_one_digit (uint32 dvd, uint32 dvr, uint32 max,
|
||
uint32 *quod, uint32 *quop)
|
||
{
|
||
uint32 dvrp, dvrd, dvrf; /* dvr ptr, dig, flag */
|
||
uint32 dvdp, dvdd; /* dvd ptr, dig */
|
||
uint32 qd, cry; /* quo dig, carry */
|
||
t_addr cnt;
|
||
|
||
for (qd = 0; qd < max; qd++) { /* devel quo dig */
|
||
dvrp = dvr; /* divisor ptr */
|
||
dvdp = dvd; /* dividend ptr */
|
||
cnt = 0;
|
||
cry = 1; /* carry in = 1 */
|
||
do { /* sub dvr fm dvd */
|
||
dvdd = M[dvdp] & DIGIT; /* dividend digit */
|
||
if (BAD_DIGIT (dvdd)) return STOP_INVDIG; /* bad? */
|
||
dvrd = M[dvrp] & DIGIT; /* divisor digit */
|
||
dvrf = M[dvrp] & FLAG; /* divisor flag */
|
||
if (BAD_DIGIT (dvrd)) return STOP_INVDIG; /* bad? */
|
||
M[dvdp] = add_one_digit (dvdd, 9 - dvrd, &cry); /* sub */
|
||
MM (dvdp); MM (dvrp); /* decr ptrs */
|
||
if (cnt++ > MEMSIZE) return STOP_FWRAP; } /* (stop runaway) */
|
||
while ((dvrf == 0) || (cnt <= 1)); /* until dvr flag */
|
||
if (!cry) { /* !cry = borrow */
|
||
dvdd = M[dvdp] & DIGIT; /* borrow digit */
|
||
if (BAD_DIGIT (dvdd)) return STOP_INVDIG; /* bad? */
|
||
M[dvdp] = add_one_digit (dvdd, 9, &cry); } /* sub */
|
||
if (!cry) break; } /* !cry = negative */
|
||
|
||
/* Add back the divisor to correct for the negative result */
|
||
|
||
dvrp = dvr; /* divisor ptr */
|
||
dvdp = dvd; /* dividend ptr */
|
||
cnt = 0;
|
||
cry = 0; /* carry in = 0 */
|
||
do { dvdd = M[dvdp] & DIGIT; /* dividend digit */
|
||
dvrd = M[dvrp] & DIGIT; /* divisor digit */
|
||
dvrf = M[dvrp] & FLAG; /* divisor flag */
|
||
M[dvdp] = add_one_digit (dvdd, dvrd, &cry); /* add */
|
||
MM (dvdp); MM (dvrp); cnt++; } /* decr ptrs */
|
||
while ((dvrf == 0) || (cnt <= 1)); /* until dvr flag */
|
||
if (cry) { /* carry out? */
|
||
dvdd = M[dvdp] & DIGIT; /* borrow digit */
|
||
M[dvdp] = add_one_digit (dvdd, 0, &cry); } /* add */
|
||
if (quop != NULL) *quop = dvdp; /* set quo addr */
|
||
*quod = qd; /* set quo digit */
|
||
return SCPE_OK;
|
||
}
|
||
|
||
/* Logical operation routines (and, or, xor, complement)
|
||
|
||
Inputs:
|
||
d = destination address
|
||
s = source address
|
||
Output:
|
||
return = status
|
||
|
||
Destination flags are preserved; EZ reflects the result.
|
||
COM does not obey normal field length restrictions.
|
||
*/
|
||
|
||
t_stat or_field (uint32 d, uint32 s)
|
||
{
|
||
t_addr cnt = 0;
|
||
int32 t;
|
||
|
||
ind[IN_EZ] = 1; /* assume result zero */
|
||
do { t = M[s]; /* get src */
|
||
M[d] = (M[d] & FLAG) | ((M[d] | t) & 07); /* OR src to dst */
|
||
if (M[d] & DIGIT) ind[IN_EZ] = 0; /* nz dig? clr ind */
|
||
MM (d); MM (s); /* decr pointers */
|
||
if (cnt++ >= MEMSIZE) return STOP_FWRAP; } /* (stop runaway) */
|
||
while (((t & FLAG) == 0) || (cnt <= 1)); /* until src flag */
|
||
return SCPE_OK;
|
||
}
|
||
|
||
t_stat and_field (uint32 d, uint32 s)
|
||
{
|
||
t_addr cnt = 0;
|
||
int32 t;
|
||
|
||
ind[IN_EZ] = 1; /* assume result zero */
|
||
do { t = M[s]; /* get src */
|
||
M[d] = (M[d] & FLAG) | ((M[d] & t) & 07); /* AND src to dst */
|
||
if (M[d] & DIGIT) ind[IN_EZ] = 0; /* nz dig? clr ind */
|
||
MM (d); MM (s); /* decr pointers */
|
||
if (cnt++ >= MEMSIZE) return STOP_FWRAP; } /* (stop runaway) */
|
||
while (((t & FLAG) == 0) || (cnt <= 1)); /* until src flag */
|
||
return SCPE_OK;
|
||
}
|
||
|
||
t_stat xor_field (uint32 d, uint32 s)
|
||
{
|
||
t_addr cnt = 0;
|
||
int32 t;
|
||
|
||
ind[IN_EZ] = 1; /* assume result zero */
|
||
do { t = M[s]; /* get src */
|
||
M[d] = (M[d] & FLAG) | ((M[d] ^ t) & 07); /* XOR src to dst */
|
||
if (M[d] & DIGIT) ind[IN_EZ] = 0; /* nz dig? clr ind */
|
||
MM (d); MM (s); /* decr pointers */
|
||
if (cnt++ >= MEMSIZE) return STOP_FWRAP; } /* (stop runaway) */
|
||
while (((t & FLAG) == 0) || (cnt <= 1)); /* until src flag */
|
||
return SCPE_OK;
|
||
}
|
||
|
||
t_stat com_field (uint32 d, uint32 s)
|
||
{
|
||
t_addr cnt = 0;
|
||
int32 t;
|
||
|
||
ind[IN_EZ] = 1; /* assume result zero */
|
||
do { t = M[s]; /* get src */
|
||
M[d] = (t & FLAG) | ((t ^ 07) & 07); /* comp src to dst */
|
||
if (M[d] & DIGIT) ind[IN_EZ] = 0; /* nz dig? clr ind */
|
||
MM (d); MM (s); /* decr pointers */
|
||
if (cnt++ >= MEMSIZE) return STOP_FWRAP; } /* (stop runaway) */
|
||
while ((t & FLAG) == 0); /* until src flag */
|
||
return SCPE_OK;
|
||
}
|
||
|
||
/* Octal to decimal
|
||
|
||
Inputs:
|
||
tbl = conversion table address (low digit)
|
||
s = source address
|
||
Outputs:
|
||
product area = converted source
|
||
result = status
|
||
|
||
OTD is a cousin of multiply. The octal digits in the source are
|
||
multiplied by successive values in the conversion table, and the
|
||
results are accumulated in the product area. Although the manual
|
||
does not say, this code assumes that EZ and HP are affected.
|
||
*/
|
||
|
||
t_stat oct_to_dec (uint32 tbl, uint32 s)
|
||
{
|
||
t_addr cnt = 0, tblc;
|
||
uint32 i, sd, sf, tf, sign;
|
||
t_stat r;
|
||
|
||
for (i = 0; i < PROD_AREA_LEN; i++) /* clr prod area */
|
||
M[PROD_AREA + i] = 0;
|
||
sign = M[s] & FLAG; /* save sign */
|
||
ind[IN_EZ] = 1; /* set indicators */
|
||
ind[IN_HP] = (sign == 0);
|
||
do { sd = M[s] & DIGIT; /* src digit */
|
||
sf = M[s] & FLAG; /* src flag */
|
||
r = mul_one_digit (sd, tbl, PROD_AREA + PROD_AREA_LEN - 1, sf);
|
||
if (r != SCPE_OK) return r; /* err? */
|
||
MM (s); /* decr src addr */
|
||
MM (tbl); /* skip 1st tbl dig */
|
||
tblc = 0; /* count */
|
||
do { tf = M[tbl] & FLAG; /* get next */
|
||
MM (tbl); /* decr ptr */
|
||
if (tblc++ > MEMSIZE) return STOP_FWRAP; }
|
||
while (tf == 0); /* until flag */
|
||
if (cnt++ > MEMSIZE) return STOP_FWRAP; } /* (stop runaway) */
|
||
while (sf == 0);
|
||
if (ind[IN_EZ]) ind[IN_HP] = 0; /* res = 0? clr HP */
|
||
M[PROD_AREA + PROD_AREA_LEN - 1] |= sign; /* set sign */
|
||
return SCPE_OK;
|
||
}
|
||
|
||
/* Decimal to octal
|
||
|
||
Inputs:
|
||
d = destination address
|
||
tbl = conversion table address (low digit of highest power)
|
||
&ez = address of soft EZ indicator
|
||
product area = field to convert
|
||
Outputs:
|
||
return = status
|
||
|
||
DTO is a cousin to divide. The number in the product area is repeatedly
|
||
divided by successive values in the conversion table, and the quotient
|
||
digits are stored in the destination. Although the manual does not say,
|
||
this code assumes that EZ and HP are affected.
|
||
*/
|
||
|
||
t_stat dec_to_oct (uint32 d, uint32 tbl, int32 *ez)
|
||
{
|
||
uint32 sign, octd, t;
|
||
t_bool first = TRUE;
|
||
t_addr ctr = 0;
|
||
t_stat r;
|
||
|
||
sign = M[PROD_AREA + PROD_AREA_LEN - 1] & FLAG; /* input sign */
|
||
*ez = 1; /* set indicators */
|
||
ind[IN_HP] = (sign == 0);
|
||
for ( ;; ) {
|
||
r = div_one_digit (PROD_AREA + PROD_AREA_LEN - 1, /* divide */
|
||
tbl, 8, &octd, NULL);
|
||
if (r != SCPE_OK) return r; /* error? */
|
||
if (first) { /* first pass? */
|
||
if (octd >= 8) { /* overflow? */
|
||
ind[IN_OVF] = 1; /* set indicator */
|
||
return SCPE_OK; } /* stop */
|
||
M[d] = FLAG | octd; /* set flag on quo */
|
||
first = FALSE; }
|
||
else M[d] = octd; /* store quo digit */
|
||
if (octd) *ez = 0; /* if nz, clr ind */
|
||
PP (tbl); /* incr tbl addr */
|
||
if ((M[tbl] & REC_MARK) == REC_MARK) break; /* record mark? */
|
||
PP (tbl); /* skip flag */
|
||
if ((M[tbl] & REC_MARK) == REC_MARK) break; /* record mark? */
|
||
do { PP (tbl); /* look for F, rec mk */
|
||
t = M[tbl]; }
|
||
while (((t & FLAG) == 0) && ((t & REC_MARK) != REC_MARK));
|
||
MM (tbl); /* step back one */
|
||
PP (d); /* incr quo addr */
|
||
if (ctr++ > MEMSIZE) return STOP_FWRAP; } /* (stop runaway) */
|
||
if (*ez) ind[IN_HP] = 0; /* res = 0? clr HP */
|
||
M[d] = M[d] | sign; /* set result sign */
|
||
return SCPE_OK;
|
||
}
|
||
|
||
/* Reset routine */
|
||
|
||
t_stat cpu_reset (DEVICE *dptr)
|
||
{
|
||
int32 i;
|
||
static t_bool one_time = TRUE;
|
||
|
||
PR1 = IR2 = 1; /* invalidate PR1,IR2 */
|
||
ind[0] = 0;
|
||
for (i = IN_SW4 + 1; i < NUM_IND; i++) ind[i] = 0; /* init indicators */
|
||
if (cpu_unit.flags & IF_IA) iae = 1; /* indirect enabled? */
|
||
else iae = 0;
|
||
idxe = idxb = 0; /* indexing off */
|
||
pcq_r = find_reg ("PCQ", NULL, dptr); /* init old PC queue */
|
||
if (pcq_r) pcq_r->qptr = 0;
|
||
else return SCPE_IERR;
|
||
sim_brk_types = sim_brk_dflt = SWMASK ('E'); /* init breakpoints */
|
||
upd_ind (); /* update indicators */
|
||
if (one_time) cpu_set_table (&cpu_unit, 1, NULL, NULL); /* set default tables */
|
||
one_time = FALSE;
|
||
return SCPE_OK;
|
||
}
|
||
|
||
/* Memory examine */
|
||
|
||
t_stat cpu_ex (t_value *vptr, t_addr addr, UNIT *uptr, int32 sw)
|
||
{
|
||
if (addr >= MEMSIZE) return SCPE_NXM;
|
||
if (vptr != NULL) *vptr = M[addr] & (FLAG | DIGIT);
|
||
return SCPE_OK;
|
||
}
|
||
|
||
/* Memory deposit */
|
||
|
||
t_stat cpu_dep (t_value val, t_addr addr, UNIT *uptr, int32 sw)
|
||
{
|
||
if (addr >= MEMSIZE) return SCPE_NXM;
|
||
M[addr] = val & (FLAG | DIGIT);
|
||
return SCPE_OK;
|
||
}
|
||
|
||
/* Memory size change */
|
||
|
||
t_stat cpu_set_size (UNIT *uptr, int32 val, char *cptr, void *desc)
|
||
{
|
||
int32 mc = 0;
|
||
t_addr i;
|
||
|
||
if ((val <= 0) || (val > MAXMEMSIZE) || ((val % 1000) != 0))
|
||
return SCPE_ARG;
|
||
for (i = val; i < MEMSIZE; i++) mc = mc | M[i];
|
||
if ((mc != 0) && (!get_yn ("Really truncate memory [N]?", FALSE)))
|
||
return SCPE_OK;
|
||
MEMSIZE = val;
|
||
for (i = MEMSIZE; i < MAXMEMSIZE; i++) M[i] = 0;
|
||
return SCPE_OK;
|
||
}
|
||
|
||
/* Model change */
|
||
|
||
t_stat cpu_set_model (UNIT *uptr, int32 val, char *cptr, void *desc)
|
||
{
|
||
if (val) cpu_unit.flags = (cpu_unit.flags & (UNIT_SCP | UNIT_BCD | MII_OPT)) |
|
||
IF_DIV | IF_IA | IF_EDT;
|
||
else cpu_unit.flags = cpu_unit.flags & (UNIT_SCP | UNIT_BCD | MI_OPT);
|
||
return SCPE_OK;
|
||
}
|
||
|
||
/* Set/clear Model 1 option */
|
||
|
||
t_stat cpu_set_opt1 (UNIT *uptr, int32 val, char *cptr, void *desc)
|
||
{
|
||
if (cpu_unit.flags & IF_MII) {
|
||
printf ("Feature is standard on 1620 Model 2\n");
|
||
if (sim_log) fprintf (sim_log, "Feature is standard on 1620 Model 2\n");
|
||
return SCPE_NOFNC; }
|
||
return SCPE_OK;
|
||
}
|
||
|
||
/* Set/clear Model 2 option */
|
||
|
||
t_stat cpu_set_opt2 (UNIT *uptr, int32 val, char *cptr, void *desc)
|
||
{
|
||
if (!(cpu_unit.flags & IF_MII)) {
|
||
printf ("Feature is not available on 1620 Model 1\n");
|
||
if (sim_log) fprintf (sim_log, "Feature is not available on 1620 Model 1\n");
|
||
return SCPE_NOFNC; }
|
||
return SCPE_OK;
|
||
}
|
||
|
||
/* Front panel save */
|
||
|
||
t_stat cpu_set_save (UNIT *uptr, int32 val, char *cptr, void *desc)
|
||
{
|
||
if (saved_PC & 1) return SCPE_NOFNC;
|
||
PR1 = saved_PC;
|
||
return SCPE_OK;
|
||
}
|
||
|
||
/* Set standard add/multiply tables */
|
||
|
||
t_stat cpu_set_table (UNIT *uptr, int32 val, char *cptr, void *desc)
|
||
{
|
||
int32 i;
|
||
|
||
for (i = 0; i < MUL_TABLE_LEN; i++) /* set mul table */
|
||
M[MUL_TABLE + i] = std_mul_table[i];
|
||
if (((cpu_unit.flags & IF_MII) == 0) || val) { /* set add table */
|
||
for (i = 0; i < ADD_TABLE_LEN; i++)
|
||
M[ADD_TABLE + i] = std_add_table[i]; }
|
||
return SCPE_OK;
|
||
}
|