simh-testsetgenerator/PDP11/pdp11_xq.c
Bob Supnik 2c2dd5ea33 Notes For V2.10-0
WARNING: V2.10 has reorganized and renamed some of the definition
files for the PDP-10, PDP-11, and VAX.  Be sure to delete all
previous source files before you unpack the Zip archive, or
unpack it into a new directory structure.

WARNING: V2.10 has a new, more comprehensive save file format.
Restoring save files from previous releases will cause 'invalid
register' errors and loss of CPU option flags, device enable/
disable flags, unit online/offline flags, and unit writelock
flags.

WARNING: If you are using Visual Studio .NET through the IDE,
be sure to turn off the /Wp64 flag in the project settings, or
dozens of spurious errors will be generated.

WARNING: Compiling Ethernet support under Windows requires
extra steps; see the Ethernet readme file.  Ethernet support is
currently available only for Windows, Linux, NetBSD, and OpenBSD.

1. New Features

1.1 SCP and Libraries

- The VT emulation package has been replaced by the capability
  to remote the console to a Telnet session.  Telnet clients
  typically have more complete and robust VT100 emulation.
- Simulated devices may now have statically allocated buffers,
  in addition to dynamically allocated buffers or disk-based
  data stores.
- The DO command now takes substitutable arguments (max 9).
  In command files, %n represents substitutable argument n.
- The initial command line is now interpreted as the command
  name and substitutable arguments for a DO command.  This is
  backward compatible to prior versions.
- The initial command line parses switches.  -Q is interpreted
  as quiet mode; informational messages are suppressed.
- The HELP command now takes an optional argument.  HELP <cmd>
  types help on the specified command.
- Hooks have been added for implementing GUI-based consoles,
  as well as simulator-specific command extensions.  A few
  internal data structures and definitions have changed.
- Two new routines (tmxr_open_master, tmxr_close_master) have
  been added to sim_tmxr.c.  The calling sequence for
  sim_accept_conn has been changed in sim_sock.c.
- The calling sequence for the VM boot routine has been modified
  to add an additional parameter.
- SAVE now saves, and GET now restores, controller and unit flags.
- Library sim_ether.c has been added for Ethernet support.

1.2 VAX

- Non-volatile RAM (NVR) can behave either like a memory or like
  a disk-based peripheral.  If unattached, it behaves like memory
  and is saved and restored by SAVE and RESTORE, respectively.
  If attached, its contents are loaded from disk by ATTACH and
  written back to disk at DETACH and EXIT.
- SHOW <device> VECTOR displays the device's interrupt vector.
  A few devices allow the vector to be changed with SET
  <device> VECTOR=nnn.
- SHOW CPU IOSPACE displays the I/O space address map.
- The TK50 (TMSCP tape) has been added.
- The DEQNA/DELQA (Qbus Ethernet controllers) have been added.
- Autoconfiguration support has been added.
- The paper tape reader has been removed from vax_stddev.c and
  now references a common implementation file, dec_pt.h.
- Examine and deposit switches now work on all devices, not just
  the CPU.
- Device address conflicts are not detected until simulation starts.

1.3 PDP-11

- SHOW <device> VECTOR displays the device's interrupt vector.
  Most devices allow the vector to be changed with SET
  <device> VECTOR=nnn.
- SHOW CPU IOSPACE displays the I/O space address map.
- The TK50 (TMSCP tape), RK611/RK06/RK07 (cartridge disk),
  RX211 (double density floppy), and KW11P programmable clock
  have been added.
- The DEQNA/DELQA (Qbus Ethernet controllers) have been added.
- Autoconfiguration support has been added.
- The paper tape reader has been removed from pdp11_stddev.c and
  now references a common implementation file, dec_pt.h.
- Device bootstraps now use the actual CSR specified by the
  SET ADDRESS command, rather than just the default CSR.  Note
  that PDP-11 operating systems may NOT support booting with
  non-standard addresses.
- Specifying more than 256KB of memory, or changing the bus
  configuration, causes all peripherals that are not compatible
  with the current bus configuration to be disabled.
- Device address conflicts are not detected until simulation starts.

1.4 PDP-10

- SHOW <device> VECTOR displays the device's interrupt vector.
  A few devices allow the vector to be changed with SET
  <device> VECTOR=nnn.
- SHOW CPU IOSPACE displays the I/O space address map.
- The RX211 (double density floppy) has been added; it is off
  by default.
- The paper tape now references a common implementation file,
  dec_pt.h.
- Device address conflicts are not detected until simulation starts.

1.5 PDP-1

- DECtape (then known as MicroTape) support has been added.
- The line printer and DECtape can be disabled and enabled.

1.6 PDP-8

- The RX28 (double density floppy) has been added as an option to
  the existing RX8E controller.
- SHOW <device> DEVNO displays the device's device number.  Most
  devices allow the device number to be changed with SET <device>
  DEVNO=nnn.
- Device number conflicts are not detected until simulation starts.

1.7 IBM 1620

- The IBM 1620 simulator has been released.

1.8 AltairZ80

- A hard drive has been added for increased storage.
- Several bugs have been fixed.

1.9 HP 2100

- The 12845A has been added and made the default line printer (LPT).
  The 12653A has been renamed LPS and is off by default.  It also
  supports the diagnostic functions needed to run the DCPC and DMS
  diagnostics.
- The 12557A/13210A disk defaults to the 13210A (7900/7901).
- The 12559A magtape is off by default.
- New CPU options (EAU/NOEAU) enable/disable the extended arithmetic
  instructions for the 2116.  These instructions are standard on
  the 2100 and 21MX.
- New CPU options (MPR/NOMPR) enable/disable memory protect for the
  2100 and 21MX.
- New CPU options (DMS/NODMS) enable/disable the dynamic mapping
  instructions for the 21MX.
- The 12539 timebase generator autocalibrates.

1.10 Simulated Magtapes

- Simulated magtapes recognize end of file and the marker
  0xFFFFFFFF as end of medium.  Only the TMSCP tape simulator
  can generate an end of medium marker.
- The error handling in simulated magtapes was overhauled to be
  consistent through all simulators.

1.11 Simulated DECtapes

- Added support for RT11 image file format (256 x 16b) to DECtapes.

2. Release Notes

2.1 Bugs Fixed

- TS11/TSV05 was not simulating the XS0_MOT bit, causing failures
  under VMS.  In addition, two of the CTL options were coded
  interchanged.
- IBM 1401 tape was not setting a word mark under group mark for
  load mode reads.  This caused the diagnostics to crash.
- SCP bugs in ssh_break and set_logon were fixed (found by Dave
  Hittner).
- Numerous bugs in the HP 2100 extended arithmetic, floating point,
  21MX, DMS, and IOP instructions were fixed.  Bugs were also fixed
  in the memory protect and DMS functions.  The moving head disks
  (DP, DQ) were revised to simulate the hardware more accurately.
  Missing functions in DQ (address skip, read address) were added.

2.2 HP 2100 Debugging

- The HP 2100 CPU nows runs all of the CPU diagnostics.
- The peripherals run most of the peripheral diagnostics.  There
  is still a problem in overlapped seek operation on the disks.
  See the file hp2100_diag.txt for details.

3. In Progress

These simulators are not finished and are available in a separate
Zip archive distribution.

- Interdata 16b/32b: coded, partially tested.  See the file
  id_diag.txt for details.
- SDS 940: coded, partially tested.
2011-04-15 08:33:49 -07:00

1376 lines
39 KiB
C

/* pdp11_xq.c: DEQNA/DELQA ethernet controller simulator
------------------------------------------------------------------------------
Copyright (c) 2002, David T. Hittner
Permission is hereby granted, free of charge, to any person obtaining a
copy of this software and associated documentation files (the "Software"),
to deal in the Software without restriction, including without limitation
the rights to use, copy, modify, merge, publish, distribute, sublicense,
and/or sell copies of the Software, and to permit persons to whom the
Software is furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
THE AUTHOR BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
Except as contained in this notice, the name of the author shall not be
used in advertising or otherwise to promote the sale, use or other dealings
in this Software without prior written authorization from the author.
------------------------------------------------------------------------------
This DELQA/DEQNA simulation is based on:
Digital DELQA Users Guide, Part# EK-DELQA-UG-002
Digital DEQNA Users Guide, Part# EK-DEQNA-UG-001
Certain adaptations have been made because this is an emulation:
The default MAC address is 08-00-2B-AA-BB-CC unless set otherwise.
Ethernet transceiver power flag CSR<12> is ON when attached.
External Loopback does not go out to the physical adapter, it is
implemented more like an extended Internal Loopback
Time Domain Reflectometry (TDR) numbers are faked
The 10-second approx. hardware/software reset delay does not exist
Some physical ethernet receive events like Runts, Overruns, etc. are never
reported back, since the packet-level driver never sees them
Certain advantages are derived from this emulation:
If the real ethernet controller is faster than 10Mbit, the speed is
passed on since there are no minimum response times.
------------------------------------------------------------------------------
Modification history:
31-Oct-02 DTH Cleaned up pointer warnings (found by Federico Schwindt)
Corrected unattached and no network behavior
Added message when SHOW XQ ETH finds no devices
23-Oct-02 DTH Beta 5 released
22-Oct-02 DTH Added all_multicast and promiscuous support
21-Oct-02 DTH Added write buffer max size check (code by Jason Thorpe)
Corrected copyright again
Implemented NXM testing and recovery
16-Oct-02 DTH Beta 4 released
Added and debugged Sanity Timer code
Corrected copyright
15-Oct-02 DTH Rollback to known good Beta3 and roll forward; TCP broken
12-Oct-02 DTH Fixed VAX network bootstrap; setup packets must return non-zero TDR
11-Oct-02 DTH Added SET/SHOW XQ TYPE and SET/SHOW XQ SANITY commands
10-Oct-02 DTH Beta 3 released; Integrated with 2.10-0b1
Fixed off-by-1 bug on xq.setup.macs[7..13]
Added make_checksum
Added rejection of multicast addresses in SET XQ MAC
08-Oct-02 DTH Beta 2 released; Integrated with 2.10-0p4
Added variable vector (fixes PDP11) and copyrights
03-Oct-02 DTH Beta version of xq/sim_ether released for SIMH 2.09-11
24-Sep-02 DTH Moved more code to Sim_Ether module, added SHOW ETH command
23-Sep-02 DTH Added SET/SHOW MAC command
22-Sep-02 DTH Multinet TCP/IP loaded, tests OK via SET HOST/TELNET
20-Sep-02 DTH Cleaned up code fragments, fixed non-DECNET MAC use
19-Sep-02 DTH DECNET finally stays up; successful SET HOST to another node
15-Sep-02 DTH Added ethernet packet read/write
13-Sep-02 DTH DECNET starts, but circuit keeps going up & down
26-Aug-02 DTH DECNET loaded, returns device timeout
22-Aug-02 DTH VMS 7.2 recognizes device as XQA0
18-Aug-02 DTH VAX sees device as XQA0; shows hardcoded MAC correctly
15-Aug-02 DTH Started XQ simulation
------------------------------------------------------------------------------
Known Bugs or Unsupported features:
1) DEQNA and DEQNA-LOCK modes not implemented fully
2) Sanity Timer not implemented [done! 16-Oct-02]
3) MOP functionality not implemented
4) Multicast support is weak [done! 22-Oct-02]
5) Promiscuous mode not implemented [done! 22-Oct-02]
6) Cannot VMScluster node
7) Cannot bootstrap module on VAX (>>> B XQA0)
8) PDP11 bootstrap code missing
9) Automatic ID broadcast every 8-10 minutes
10) External loopback packet processing
11) NXM detection/protection [done! 21-Oct-02]
------------------------------------------------------------------------------
*/
/* compiler directives to help the Author keep the code clean :-) */
#if defined (__BORLANDC__) && defined (XQ_DEBUG)
#pragma warn +8070 /* function should return value */
/* #pragma warn +8071 */ /* conversion may lose significant digits */
#pragma warn +8075 /* suspicious pointer conversion */
#pragma warn +8079 /* mixing different char pointers */
#pragma warn +8080 /* variable declared but not used */
#endif /* __BORLANDC__ && XQ_DEBUG */
#include <assert.h>
#include "pdp11_xq.h"
extern int32 int_req[IPL_HLVL];
extern int32 tmr_poll, clk_tps;
struct xq_device xq = {
100, /* rtime */
{0x08, 0x00, 0x2B, 0xAA, 0xBB, 0xCC}, /* mac */
XQ_T_DELQA, /* type */
{0} /* sanity */
};
/* forward declarations */
t_stat xq_rd(int32* data, int32 PA, int32 access);
t_stat xq_wr(int32 data, int32 PA, int32 access);
t_stat xq_svc(UNIT * uptr);
t_stat xq_sansvc(UNIT * uptr);
t_stat xq_reset (DEVICE * dptr);
t_stat xq_attach (UNIT * uptr, char * cptr);
t_stat xq_detach (UNIT * uptr);
t_stat xq_showmac (FILE* st, UNIT* uptr, int32 val, void* desc);
t_stat xq_setmac (UNIT* uptr, int32 val, char* cptr, void* desc);
t_stat xq_show_type (FILE* st, UNIT* uptr, int32 val, void* desc);
t_stat xq_set_type (UNIT* uptr, int32 val, char* cptr, void* desc);
t_stat xq_show_sanity (FILE* st, UNIT* uptr, int32 val, void* desc);
t_stat xq_set_sanity (UNIT* uptr, int32 val, char* cptr, void* desc);
t_stat xq_showeth (FILE* st, UNIT* uptr, int32 val, void* desc);
t_stat xq_process_xbdl(void);
t_stat xq_dispatch_xbdl(void);
void xq_start_receiver(void);
void xq_sw_reset(void);
int32 xq_inta (void);
t_stat xq_ex (t_value *vptr, t_addr addr, UNIT *uptr, int32 sw);
t_stat xq_dep (t_value val, t_addr addr, UNIT *uptr, int32 sw);
void xq_start_santmr(void);
void xq_cancel_santmr(void);
void xq_reset_santmr(void);
/* SIMH device structures */
DIB xq_dib = { IOBA_XQ, IOLN_XQ, &xq_rd, &xq_wr,
1, IVCL (XQ), 0, { &xq_inta } };
UNIT xq_unit[] = {
{ UDATA (&xq_svc, UNIT_ATTABLE + UNIT_DISABLE, 0) },
{ UDATA (&xq_sansvc, UNIT_DIS, 0) } /* sanity timer */
};
REG xq_reg[] = {
{ GRDATA ( SA0, xq.addr[0], XQ_RDX, 16, 0), REG_RO},
{ GRDATA ( SA1, xq.addr[1], XQ_RDX, 16, 0), REG_RO},
{ GRDATA ( SA2, xq.addr[2], XQ_RDX, 16, 0), REG_RO},
{ GRDATA ( SA3, xq.addr[3], XQ_RDX, 16, 0), REG_RO},
{ GRDATA ( SA4, xq.addr[4], XQ_RDX, 16, 0), REG_RO},
{ GRDATA ( SA5, xq.addr[5], XQ_RDX, 16, 0), REG_RO},
{ GRDATA ( RBDL, xq.rbdl, XQ_RDX, 32, 0) },
{ GRDATA ( XBDL, xq.xbdl, XQ_RDX, 32, 0) },
{ GRDATA ( VAR, xq.var, XQ_RDX, 16, 0) },
{ GRDATA ( CSR, xq.csr, XQ_RDX, 16, 0) },
{ NULL },
};
MTAB xq_mod[] = {
#if defined (VM_PDP11)
{ MTAB_XTD|MTAB_VDV, 004, "ADDRESS", "ADDRESS",
&set_addr, &show_addr, NULL },
#else
{ MTAB_XTD|MTAB_VDV, 004, "ADDRESS", NULL,
NULL, &show_addr, NULL },
#endif
{ MTAB_XTD|MTAB_VDV, 0, "VECTOR", NULL,
NULL, &show_vec, NULL },
{ MTAB_XTD | MTAB_VDV, 0, "MAC", "MAC",
&xq_setmac, &xq_showmac, &xq.mac },
{ MTAB_XTD | MTAB_VDV | MTAB_NMO, 0, "ETH", "ETH",
0, &xq_showeth, 0 },
{ MTAB_XTD | MTAB_VDV, 0, "TYPE", "TYPE",
&xq_set_type, &xq_show_type, 0 },
{ MTAB_XTD | MTAB_VDV, 0, "SANITY", "SANITY",
&xq_set_sanity, &xq_show_sanity, 0 },
{ 0 },
};
DEVICE xq_dev = {
"XQ", xq_unit, xq_reg, xq_mod,
2, XQ_RDX, 0, 1, XQ_RDX, 8,
&xq_ex, &xq_dep, &xq_reset,
NULL, &xq_attach, &xq_detach,
&xq_dib, DEV_DISABLE | DEV_QBUS
};
#ifdef XQ_DEBUG
const char* const xq_csr_bits[] = {
"RE ", "SR ", "NI ", "BD ", "XL ", "RL ", "IE ", "XI ",
"IL ", "EL ", "SE ", "RR ", "OK ", "CA ", "PE ", "RI"
};
/* internal debugging routines */
void xq_debug_setup(void);
void xq_dump_csr(void);
void xq_dump_var(void);
void xq_csr_changes(uint16 data);
void xq_var_changes(uint16 data);
/* sanity timer debugging */
#include <sys\timeb.h>
struct timeb start, finish;
#endif /* XQ_DEBUG */
/*
================================================================================
Queue Management
================================================================================
*/
void xq_clear_queue(struct xq_msg_que* que)
{
int i;
struct xq_msg_itm* item;
for (i = 0; i < XQ_QUE_MAX; i++) {
item = &que->item[i];
item->type = 0;
item->packet.len = 0;
item->status = 0;
}
que->count = que->head = que->tail = que->loss = 0;
}
void xq_remove_queue(struct xq_msg_que* que)
{
struct xq_msg_itm* item = &que->item[que->head];
if (que->count) {
item->type = 0;
item->packet.len = 0;
item->status = 0;
if (++que->head == XQ_QUE_MAX)
que->head = 0;
que->count--;
}
}
void xq_insert_queue(struct xq_msg_que* que, int32 type, ETH_PACK packet, int32 status)
{
struct xq_msg_itm* item;
/* if queue empty, set pointers to beginning */
if (!que->count) {
que->head = 0;
que->tail = -1;
}
/* find new tail of the circular queue */
if (++que->tail == XQ_QUE_MAX)
que->tail = 0;
if (++que->count > XQ_QUE_MAX) {
que->count = XQ_QUE_MAX;
/* lose oldest packet */
if (++que->head == XQ_QUE_MAX)
que->head = 0;
que->loss++;
}
/* set information in (new) tail item */
item = &que->item[que->tail];
item->type = type;
item->packet = packet;
item->status = status;
}
/*
================================================================================
*/
/* stop simh from reading non-existant unit data stream */
t_stat xq_ex (t_value *vptr, t_addr addr, UNIT *uptr, int32 sw)
{
return SCPE_NOFNC;
}
/* stop simh from writing non-existant unit data stream */
t_stat xq_dep (t_value val, t_addr addr, UNIT *uptr, int32 sw)
{
return SCPE_NOFNC;
}
t_stat xq_showmac (FILE* st, UNIT* uptr, int32 val, void* desc)
{
ETH_MAC* mac = (ETH_MAC*) desc;
char buffer[20];
if (!desc) return SCPE_IERR;
eth_mac_fmt(mac, buffer);
fprintf(st, "MAC=%s", buffer);
return SCPE_OK;
}
void make_checksum(void)
{
/* checksum calculation routine detailed in vaxboot.zip/xqbtdrivr.mar */
uint32 checksum = 0;
const uint32 wmask = 0xFFFF;
int i;
for (i = 0; i < sizeof(ETH_MAC); i += 2) {
checksum <<= 1;
if (checksum > wmask)
checksum -= wmask;
checksum += (xq.mac[i] << 8) | xq.mac[i+1];
if (checksum > wmask)
checksum -= wmask;
}
if (checksum == wmask)
checksum = 0;
/* set checksum bytes */
xq.mac_checksum[0] = checksum & 0xFF;
xq.mac_checksum[1] = checksum >> 8;
}
t_stat xq_setmac (UNIT* uptr, int32 val, char* cptr, void* desc)
{
int i, j, len;
short int num;
ETH_MAC newmac = {0,0,0,0,0,0};
const ETH_MAC zeros = {0,0,0,0,0,0};
const ETH_MAC ones = {0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF};
if ((!cptr) || (!desc)) return SCPE_IERR;
/* parse new mac and validate */
len = strlen(cptr);
if (len != 17) return SCPE_ARG;
/* make sure byte separators are OK */
for (i=2; i<len; i=i+3) {
if ((cptr[i] != '-') && (cptr[i] != '.')) return SCPE_ARG;
cptr[i] = '\0';
}
/* get and set address bytes */
for (i=0, j=0; i<len; i=i+3, j++) {
int valid = strspn(&cptr[i], "0123456789abcdefABCDEF");
if (valid < 2) return SCPE_ARG;
sscanf(&cptr[i], "%hx", &num);
newmac[j] = (unsigned char) num;
}
/* final check - cannot be broadcast or multicast address */
if (!memcmp(newmac, zeros, sizeof(ETH_MAC)) || /* broadcast */
!memcmp(newmac, ones, sizeof(ETH_MAC)) || /* broadcast */
(newmac[0] & 0x01) /* multicast */
)
return SCPE_ARG;
/* set mac, it's OK */
memcpy(xq.mac, newmac, sizeof(ETH_MAC));
/* calculate MAC checksum */
make_checksum();
return SCPE_OK;
}
t_stat xq_showeth (FILE* st, UNIT* uptr, int32 val, void* desc)
{
#define XQ_MAX_LIST 10
int i;
ETH_LIST list[XQ_MAX_LIST];
int number = eth_devices(XQ_MAX_LIST, list);
fprintf(st, "ETH devices:\n");
if (number)
for (i=0; i<number; i++)
fprintf(st," %d %s (%s)\n", i, list[i].name, list[i].desc);
else
fprintf(st, " no network devices are available\n");
return SCPE_OK;
}
t_stat xq_show_type (FILE* st, UNIT* uptr, int32 val, void* desc)
{
fprintf(st, "type=");
switch (xq.type) {
case XQ_T_DEQNA: fprintf(st, "DEQNA"); break;
case XQ_T_DELQA: fprintf(st, "DELQA"); break;
}
return SCPE_OK;
}
t_stat xq_set_type (UNIT* uptr, int32 val, char* cptr, void* desc)
{
if (!cptr) return SCPE_IERR;
/* this assumes that the parameter has already been upcased */
if (!strcmp(cptr, "DEQNA")) xq.type = XQ_T_DEQNA;
else if (!strcmp(cptr, "DELQA")) xq.type = XQ_T_DELQA;
else return SCPE_ARG;
return SCPE_OK;
}
t_stat xq_show_sanity (FILE* st, UNIT* uptr, int32 val, void* desc)
{
fprintf(st, "sanity=");
switch (xq.sanity.enabled) {
case 0: fprintf(st, "OFF"); break;
case 1: fprintf(st, "ON"); break;
}
return SCPE_OK;
}
t_stat xq_set_sanity (UNIT* uptr, int32 val, char* cptr, void* desc)
{
if (!cptr) return SCPE_IERR;
/* this assumes that the parameter has already been upcased */
if (!strcmp(cptr, "ON")) xq.sanity.enabled = 1;
else if (!strcmp(cptr, "OFF")) xq.sanity.enabled = 0;
else return SCPE_ARG;
return SCPE_OK;
}
t_stat xq_nxm_error(void)
{
/* set NXM and associated bits in CSR */
xq.csr |= (XQ_CSR_NI | XQ_CSR_XI | XQ_CSR_XL | XQ_CSR_RL);
/* interrupt if required */
if (xq.csr & XQ_CSR_IE)
SET_INT(XQ);
return SCPE_OK;
}
/*
** write callback
*/
void xq_write_callback (int status)
{
t_stat rstatus;
int32 wstatus;
const uint16 TDR = 100 + xq.write_buffer.len * 8; /* arbitrary value */
uint16 write_success[2] = {0};
uint16 write_failure[2] = {XQ_DSC_C};
#if 0
write_success[1] = TDR;
write_failure[1] = TDR;
#else
write_success[1] = TDR & 0x03FF; /* Does TDR get set on successful packets ?? */
write_failure[1] = TDR & 0x03FF; /* TSW2<09:00> */
#endif
/* update write status words */
if (status == 0) { /* success */
wstatus = Map_WriteW(xq.xbdl_ba + 8, 4, write_success, NOMAP);
} else { /* failure */
wstatus = Map_WriteW(xq.xbdl_ba + 8, 4, write_failure, NOMAP);
}
if (wstatus) {
xq_nxm_error();
return;
}
/* update csr */
xq.csr |= XQ_CSR_XI;
if (xq.csr & XQ_CSR_IE)
SET_INT(XQ);
/* reset sanity timer */
xq_reset_santmr();
/* clear write buffer */
xq.write_buffer.len = 0;
/* next descriptor (implicit) */
xq.xbdl_ba += 12;
/* finish processing xbdl */
rstatus = xq_process_xbdl();
}
/* read registers: */
t_stat xq_rd(int32* data, int32 PA, int32 access)
{
int index = (PA >> 1) & 07; /* word index */
switch (index) {
case 0:
case 1:
/* return checksum in external loopback mode */
if (xq.csr & XQ_CSR_EL)
*data = 0xFF00 | xq.mac_checksum[index];
else
*data = 0xFF00 | xq.mac[index];
break;
case 2:
case 3:
case 4:
case 5:
*data = 0xFF00 | xq.mac[index];
break;
case 6:
#if 0
#ifdef XQ_DEBUG
xq_dump_var();
#endif
#endif
*data = xq.var;
break;
case 7:
#ifdef XQ_DEBUG
xq_dump_csr();
#endif
*data = xq.csr;
break;
}
return SCPE_OK;
}
/* dispatch ethernet read request
procedure documented in sec. 3.2.2 */
t_stat xq_process_rbdl(void)
{
int32 rstatus, wstatus;
uint16 b_length, w_length, rbl;
t_addr address;
struct xq_msg_itm* item;
#ifdef XQ_DEBUG
printf("CSR: Processing read\n");
#endif
/* process buffer descriptors */
while(1) {
/* get receive bdl from memory */
xq.rbdl_buf[0] = 0xFFFF;
wstatus = Map_WriteW(xq.rbdl_ba, 2, &xq.rbdl_buf[0], NOMAP);
rstatus = Map_ReadW (xq.rbdl_ba + 2, 6, &xq.rbdl_buf[1], NOMAP);
if (rstatus || wstatus) return xq_nxm_error();
/* invalid buffer? */
if (~xq.rbdl_buf[1] & XQ_DSC_V) {
xq.csr |= XQ_CSR_RL;
if (xq.csr & XQ_CSR_IE)
SET_INT(XQ);
return SCPE_OK;
}
/* explicit chain buffer? */
if (xq.rbdl_buf[1] & XQ_DSC_C) {
xq.rbdl_ba = ((xq.rbdl_buf[1] & 0x3F) << 16) | xq.rbdl_buf[2];
continue;
}
/* stop processing if nothing in read queue */
if (!xq.ReadQ.count) break;
/* get status words */
rstatus = Map_ReadW(xq.rbdl_ba + 8, 4, &xq.rbdl_buf[4], NOMAP);
if (rstatus) return xq_nxm_error();
/* get host memory address */
address = ((xq.rbdl_buf[1] & 0x3F) << 16) | xq.rbdl_buf[2];
/* decode buffer length - two's complement (in words) */
w_length = ~xq.rbdl_buf[3] + 1;
b_length = w_length * 2;
if (xq.rbdl_buf[1] & XQ_DSC_H) b_length -= 1;
if (xq.rbdl_buf[1] & XQ_DSC_L) b_length -= 1;
item = &xq.ReadQ.item[xq.ReadQ.head];
rbl = item->packet.len;
/* make sure entire packet fits in buffer */
assert(rbl <= b_length);
/* send data to host */
wstatus = Map_WriteB(address, item->packet.len, item->packet.msg, NOMAP);
if (wstatus) return xq_nxm_error();
/* set receive size into RBL - RBL<10:8> maps into Status1<10:8>,
RBL<7:0> maps into Status2<7:0>, and Status2<15:8> (copy) */
xq.rbdl_buf[4] = 0;
switch (item->type) {
case 0: /* setup packet */
xq.rbdl_buf[4] = 0x2700; /* set esetup and RBL 10:8 */
break;
case 1: /* loopback packet */
xq.rbdl_buf[4] = 0x2000; /* loopback flag */
xq.rbdl_buf[4] |= (rbl & 0x0700); /* high bits of rbl */
break;
case 2: /* normal packet */
rbl -= 60; /* keeps max packet size in 11 bits */
xq.rbdl_buf[4] = (rbl & 0x0700); /* high bits of rbl */
break;
}
xq.rbdl_buf[5] = ((rbl & 0x00FF) << 8) | (rbl & 0x00FF);
if (xq.ReadQ.loss) {
xq.rbdl_buf[4] |= 0x0001; /* set overflow bit */
xq.ReadQ.loss = 0; /* reset loss counter */
}
/* update read status words*/
wstatus = Map_WriteW(xq.rbdl_ba + 8, 4, &xq.rbdl_buf[4], NOMAP);
if (wstatus) return xq_nxm_error();
/* remove packet from queue */
xq_remove_queue(&xq.ReadQ);
/* reset sanity timer */
xq_reset_santmr();
/* mark transmission complete */
xq.csr |= XQ_CSR_RI;
if (xq.csr & XQ_CSR_IE)
SET_INT(XQ);
/* set to next bdl (implicit chain) */
xq.rbdl_ba += 12;
} /* while */
return SCPE_OK;
}
t_stat xq_process_mop(void)
{
t_addr address;
uint16 size;
int32 wstatus;
struct xq_meb* meb = (struct xq_meb*) &xq.write_buffer.msg[0200];
const struct xq_meb* limit = (struct xq_meb*) &xq.write_buffer.msg[0400];
if (xq.type == XQ_T_DEQNA) /* DEQNA's don't MOP */
return SCPE_NOFNC;
while ((meb->type != 0) && (meb < limit)) {
address = (meb->add_hi << 16) || (meb->add_mi << 8) || meb->add_lo;
size = (meb->siz_hi << 8) || meb->siz_lo;
/* MOP stuff here - NOT YET FULLY IMPLEMENTED */
#ifdef XQ_DEBUG
printf("Processing MEB type: %d\n", meb->type);
#endif
switch (meb->type) {
case 0: /* MOP Termination */
break;
case 1: /* MOP Read Ethernet Address */
wstatus = Map_WriteB(address, sizeof(ETH_MAC), (uint8*) &xq.setup.macs[0], NOMAP);
if (wstatus) return xq_nxm_error();
break;
case 2: /* MOP Reset System ID */
break;
case 3: /* MOP Read Last MOP Boot */
break;
case 4: /* MOP Read Boot Password */
break;
case 5: /* MOP Write Boot Password */
break;
case 6: /* MOP Read System ID */
break;
case 7: /* MOP Write System ID */
break;
case 8: /* MOP Read Counters */
break;
case 9: /* Mop Read/Clear Counters */
break;
} /* switch */
/* process next meb */
meb += sizeof(struct xq_meb);
} /* while */
return SCPE_OK;
}
t_stat xq_process_setup(void)
{
int i,j;
int count = 0;
float secs;
t_stat status;
ETH_MAC zeros = {0, 0, 0, 0, 0, 0};
ETH_MAC filters[XQ_FILTER_MAX + 1];
/* extract filter addresses from setup packet */
for (i = 0; i < 7; i++)
for (j = 0; j < 6; j++) {
xq.setup.macs[i] [j] = xq.write_buffer.msg[(i + 01) + (j * 8)];
if (xq.write_buffer.len > 112)
xq.setup.macs[i+7][j] = xq.write_buffer.msg[(i + 0101) + (j * 8)];
}
/* process high byte count */
if (xq.write_buffer.len > 128) {
uint16 len = xq.write_buffer.len;
uint16 led, san;
if (len & XQ_SETUP_MC)
xq.setup.multicast = 1;
if (len & XQ_SETUP_PM)
xq.setup.promiscuous = 1;
if (led = (len & XQ_SETUP_LD) >> 2) {
switch (led) {
case 1: xq.setup.l1 = 0; break;
case 2: xq.setup.l2 = 0; break;
case 3: xq.setup.l3 = 0; break;
} /* switch */
} /* if led */
/* set sanity timer timeout */
san = (len & XQ_SETUP_ST) >> 4;
switch(san) {
case 0: secs = 0.25; break; /* 1/4 second */
case 1: secs = 1; break; /* 1 second */
case 2: secs = 4; break; /* 4 seconds */
case 3: secs = 16; break; /* 16 seconds */
case 4: secs = 1 * 60; break; /* 1 minute */
case 5: secs = 4 * 60; break; /* 4 minutes */
case 6: secs = 16 * 60; break; /* 16 minutes */
case 7: secs = 64 * 60; break; /* 64 minutes */
}
xq.sanity.quarter_secs = (int) (secs * 4);
/* if sanity timer enabled, start sanity timer */
if (xq.csr & XQ_CSR_SE || xq.sanity.enabled)
xq_start_santmr();
else
xq_cancel_santmr();
}
/* set ethernet filter */
/* memcpy (filters[count++], xq.mac, sizeof(ETH_MAC)); */
for (i = 0; i < XQ_FILTER_MAX; i++)
if (memcmp(zeros, &xq.setup.macs[i], sizeof(ETH_MAC)))
memcpy (filters[count++], xq.setup.macs[i], sizeof(ETH_MAC));
status = eth_filter (xq.etherface, count, filters, xq.setup.multicast, xq.setup.promiscuous);
/* process MOP information */
if (xq.write_buffer.msg[0])
status = xq_process_mop();
#ifdef XQ_DEBUG
xq_debug_setup();
#endif
return SCPE_OK;
}
/*
Dispatch Write Operation
The DELQA manual does not explicitly state whether or not multiple packets
can be written in one transmit operation, so a maximum of 1 packet is assumed.
*/
t_stat xq_process_xbdl()
{
const uint16 implicit_chain_status[2] = {XQ_DSC_L | XQ_DSC_C, 0};
const uint16 write_success[2] = {0, 1 /*Non-Zero TDR*/};
uint16 b_length, w_length;
int32 rstatus, wstatus;
t_addr address;
t_stat status;
#ifdef XQ_DEBUG
printf("CSR: Processing write\n");
#endif
/* clear write buffer */
xq.write_buffer.len = 0;
/* process buffer descriptors until not valid */
while (1) {
/* Get transmit bdl from memory */
xq.xbdl_buf[0] = 0xFFFF;
wstatus = Map_WriteW(xq.xbdl_ba, 2, &xq.xbdl_buf[0], NOMAP);
rstatus = Map_ReadW (xq.xbdl_ba + 2, 6, &xq.xbdl_buf[1], NOMAP);
if (rstatus || wstatus) return xq_nxm_error();
/* invalid buffer? */
if (~xq.xbdl_buf[1] & XQ_DSC_V) {
xq.csr |= XQ_CSR_XL;
if (xq.csr & XQ_CSR_IE)
SET_INT(XQ);
return SCPE_OK;
}
/* explicit chain buffer? */
if (xq.xbdl_buf[1] & XQ_DSC_C) {
xq.xbdl_ba = ((xq.xbdl_buf[1] & 0x3F) << 16) | xq.xbdl_buf[2];
continue;
}
/* get status words */
rstatus = Map_ReadW(xq.xbdl_ba + 8, 4, &xq.xbdl_buf[4], NOMAP);
if (rstatus) return xq_nxm_error();
/* get host memory address */
address = ((xq.xbdl_buf[1] & 0x3F) << 16) | xq.xbdl_buf[2];
/* decode buffer length - two's complement (in words) */
w_length = ~xq.xbdl_buf[3] + 1;
b_length = w_length * 2;
if (xq.xbdl_buf[1] & XQ_DSC_H) b_length -= 1;
if (xq.xbdl_buf[1] & XQ_DSC_L) b_length -= 1;
/* add to transmit buffer, making sure it's not too big */
if ((xq.write_buffer.len + b_length) > sizeof(xq.write_buffer.msg))
b_length = sizeof(xq.write_buffer.msg) - xq.write_buffer.len;
rstatus = Map_ReadB(address, b_length, &xq.write_buffer.msg[xq.write_buffer.len], NOMAP);
if (rstatus) return xq_nxm_error();
xq.write_buffer.len += b_length;
/* end of message? */
if (xq.xbdl_buf[1] & XQ_DSC_E) {
if (((~xq.csr & XQ_CSR_RE) && ((~xq.csr & XQ_CSR_IL) || (xq.csr & XQ_CSR_EL))) || /* loopback */
(xq.xbdl_buf[1] & XQ_DSC_S)) { /* or setup packet (forces loopback regardless of state) */
if (xq.xbdl_buf[1] & XQ_DSC_S) { /* setup packet */
status = xq_process_setup();
/* put packet in read buffer */
xq_insert_queue (&xq.ReadQ, 0, xq.write_buffer, status);
} else { /* loopback */
/* put packet in read buffer */
xq_insert_queue (&xq.ReadQ, 1, xq.write_buffer, 0);
}
/* update write status */
wstatus = Map_WriteW(xq.xbdl_ba + 8, 4, (uint16*) write_success, NOMAP);
if (wstatus) return xq_nxm_error();
/* clear write buffer */
xq.write_buffer.len = 0;
/* reset sanity timer */
xq_reset_santmr();
/* mark transmission complete */
xq.csr |= XQ_CSR_XI;
if (xq.csr & XQ_CSR_IE)
SET_INT(XQ);
/* now trigger "read" of setup or loopback packet */
if (~xq.csr & XQ_CSR_RL)
status = xq_process_rbdl();
} else { /* not loopback */
status = eth_write(xq.etherface, &xq.write_buffer, &xq_write_callback);
if (status != SCPE_OK) /* not implemented or unattached */
xq_write_callback(1); /* fake failure */
return SCPE_OK;
} /* loopback/non-loopback */
} else { /* not at end-of-message */
/* update bdl status words */
wstatus = Map_WriteW(xq.xbdl_ba + 8, 4, (uint16*) implicit_chain_status, NOMAP);
if(wstatus) return xq_nxm_error();
}
/* set to next bdl (implicit chain) */
xq.xbdl_ba += 12;
} /* while */
}
t_stat xq_dispatch_rbdl(void)
{
int i;
int32 rstatus, wstatus;
t_stat status;
#ifdef XQ_DEBUG
printf("CSR: Dispatching read\n");
#endif
/* mark receive bdl valid */
xq.csr &= ~XQ_CSR_RL;
/* init receive bdl buffer */
for (i=0; i<6; i++)
xq.rbdl_buf[i] = 0;
/* get address of first receive buffer */
xq.rbdl_ba = ((xq.rbdl[1] & 0x3F) << 16) | (xq.rbdl[0] & ~01);
/* get first receive buffer */
xq.rbdl_buf[0] = 0xFFFF;
wstatus = Map_WriteW(xq.rbdl_ba, 2, &xq.rbdl_buf[0], NOMAP);
rstatus = Map_ReadW (xq.rbdl_ba + 2, 6, &xq.rbdl_buf[1], NOMAP);
if (rstatus || wstatus) return xq_nxm_error();
/* is buffer valid? */
if (~xq.rbdl_buf[1] & XQ_DSC_V) {
xq.csr |= XQ_CSR_RL;
if (xq.csr & XQ_CSR_IE)
SET_INT(XQ);
return SCPE_OK;
}
/* process any waiting packets in receive queue */
if (xq.ReadQ.count)
status = xq_process_rbdl();
return SCPE_OK;
}
t_stat xq_dispatch_xbdl()
{
int i;
t_stat status;
#ifdef XQ_DEBUG
printf("CSR: Dispatching write\n");
#endif
/* mark transmit bdl valid */
xq.csr &= ~XQ_CSR_XL;
/* initialize transmit bdl buffers */
for (i=0; i<6; i++)
xq.xbdl_buf[i] = 0;
/* clear transmit buffer */
xq.write_buffer.len = 0;
/* get base address of first transmit descriptor */
xq.xbdl_ba = ((xq.xbdl[1] & 0x3F) << 16) | (xq.xbdl[0] & ~01);
/* process xbdl */
status = xq_process_xbdl();
return status;
}
void xq_read_callback(int status)
{
t_stat rstatus;
if (xq.csr & XQ_CSR_RE) { /* receiver enabled */
/* add packet to read queue */
xq_insert_queue(&xq.ReadQ, 2, xq.read_buffer, status);
/* process packet if receive list is valid */
if (~xq.csr & XQ_CSR_RL)
rstatus = xq_process_rbdl();
}
}
void xq_sw_reset(void)
{
/* cancel sanity timer */
xq_cancel_santmr();
/* disconnect ethernet reception */
sim_cancel(&xq_unit[0]);
/* reset csr bits */
xq.csr = XQ_CSR_XL | XQ_CSR_RL;
if (xq.etherface)
xq.csr |= XQ_CSR_OK;
/* flush read queue */
xq_clear_queue(&xq.ReadQ);
/* clear setup info */
memset (&xq.setup, 0, 6 * XQ_FILTER_MAX);
xq.setup.promiscuous = 0;
}
/* write registers: */
t_stat xq_wr_var(int32 data)
{
#ifdef XQ_DEBUG
xq_var_changes(data);
#endif
switch (xq.type) {
case XQ_T_DEQNA:
xq.var = (data & XQ_VEC_IV);
break;
case XQ_T_DELQA:
xq.var = (xq.var & XQ_VEC_RO) | (data & XQ_VEC_RW);
/* if switching to DEQNA-LOCK mode clear VAR<14:10> */
if (~xq.var & XQ_VEC_MS)
xq.var &= ~(XQ_VEC_OS | XQ_VEC_RS | XQ_VEC_ST);
break;
}
/* set vector of SIMH device */
if (data & XQ_VEC_IV)
xq_dib.vec = (data & XQ_VEC_IV) + VEC_Q;
else
xq_dib.vec = 0;
return SCPE_OK;
}
t_stat xq_wr_csr(int32 data)
{
uint16 saved_csr = xq.csr;
#ifdef XQ_DEBUG
xq_csr_changes(data);
#endif
/* reset controller when SR transitions to cleared */
if (xq.csr & XQ_CSR_SR & ~data) {
xq_sw_reset();
return SCPE_OK;
}
/* write the writeable bits */
xq.csr = (xq.csr & XQ_CSR_RO) | (data & XQ_CSR_RW);
/* clear write-one-to-clear bits */
xq.csr &= ~(data & XQ_CSR_W1);
if (data & XQ_CSR_XI) /* clearing XI clears NI too */
xq.csr &= ~XQ_CSR_NI;
/* start receiver when RE transitions to set */
if (~saved_csr & XQ_CSR_RE & data) {
//xq_start_receiver();
sim_activate(&xq_unit[0], xq.rtime);
}
return SCPE_OK;
}
t_stat xq_wr(int32 data, int32 PA, int32 access)
{
t_stat status;
switch ((PA >> 1) & 07) {
case 0: /* these should not be written */
case 1:
break;
case 2: /* receive bdl low bits */
xq.rbdl[0] = data;
break;
case 3: /* receive bdl high bits */
xq.rbdl[1] = data;
status = xq_dispatch_rbdl(); /* start receive operation */
break;
case 4: /* transmit bdl low bits */
xq.xbdl[0] = data;
break;
case 5: /* transmit bdl high bits */
xq.xbdl[1] = data;
status = xq_dispatch_xbdl(); /* start transmit operation */
break;
case 6: /* vector address register */
status = xq_wr_var(data);
break;
case 7: /* control and status register */
status = xq_wr_csr(data);
break;
}
return SCPE_OK;
}
/* reset device */
t_stat xq_reset(DEVICE* dptr)
{
t_stat status;
/* calculate MAC checksum */
make_checksum();
/* init vector address register */
switch (xq.type) {
case XQ_T_DEQNA:
xq.var = 0;
break;
case XQ_T_DELQA:
xq.var = XQ_VEC_MS | XQ_VEC_OS;
break;
}
xq_dib.vec = 0;
/* init control status register */
xq.csr = XQ_CSR_RL | XQ_CSR_XL;
/* reset ethernet interface */
if (xq.etherface) {
status = eth_filter (xq.etherface, 1, &xq.mac, 0, 0);
xq.csr |= XQ_CSR_OK;
}
/* clear read queue */
xq_clear_queue(&xq.ReadQ);
/* start sanity timer if power-on SANITY is set */
switch (xq.type) {
case XQ_T_DEQNA:
if (xq.sanity.enabled) {
xq.sanity.quarter_secs = 4 * (4 * 60); /* default is 4 minutes */;
xq_start_santmr();
}
break;
case XQ_T_DELQA:
/* note that the DELQA in NORMAL mode has no power-on SANITY state! */
break;
};
return SCPE_OK;
}
void xq_start_santmr(void)
{
/* must be recalculated each time since tmr_poll is a dynamic number */
const int32 quarter_sec = (clk_tps * tmr_poll) / 4;
#if 0
#ifdef XQ_DEBUG
printf("SANITY TIMER: enabled, qsecs: %d, poll:%d\n", xq.sanity.quarter_secs, tmr_poll);
#endif
#endif
if (sim_is_active(&xq_unit[1])) /* cancel timer, just in case */
sim_cancel(&xq_unit[1]);
xq_reset_santmr();
sim_activate(&xq_unit[1], quarter_sec);
}
void xq_cancel_santmr(void)
{
/* can't cancel hardware switch sanity timer */
if (sim_is_active(&xq_unit[1]) && !xq.sanity.enabled) {
#if 0
#ifdef XQ_DEBUG
printf("SANITY TIMER: cancelled, qsecs: %d\n", xq.sanity.quarter_secs);
#endif
#endif
sim_cancel(&xq_unit[1]);
}
}
void xq_reset_santmr(void)
{
#if 0
#ifdef XQ_DEBUG
ftime(&start);
printf("SANITY TIMER: resetting, qsecs: %d\n", xq.sanity.quarter_secs);
#endif
#endif
xq.sanity.countdown = xq.sanity.quarter_secs;
}
t_stat xq_sansvc(UNIT* uptr)
{
if (--xq.sanity.countdown) {
/* must be recalculated each time since tmr_poll is a dynamic number */
const int32 quarter_sec = (clk_tps * tmr_poll) / 4;
/* haven't hit the end of the countdown timer yet, resubmit */
sim_activate(&xq_unit[1], quarter_sec);
} else {
/*
If this section is entered, it means that the sanity timer has expired
without being reset, and the controller must reboot the processor.
The manual says the hardware should force Qbus BDCOK low for
3.6 microseconds, which will cause the host to reboot.
Since the SIMH Qbus emulator does not have this functionality, we call
a special STOP_ code, and let the CPU stop dispatch routine decide
what the appropriate cpu-specific behavior should be.
*/
#if 0
#ifdef XQ_DEBUG
ftime(&finish);
printf("SANITY TIMER: EXPIRED, qsecs: %d, poll: %d, elapsed: %d\n",
xq.sanity.quarter_secs, tmr_poll, finish.time - start.time);
#endif
#endif
return STOP_SANITY;
}
return SCPE_OK;
}
/*
** service routine - used for ethernet reading loop
*/
t_stat xq_svc(UNIT* uptr)
{
t_stat status;
/* read a packet from the ethernet - processing is via the callback */
status = eth_read (xq.etherface, &xq.read_buffer, &xq_read_callback);
/* resubmit if still receive enabled */
if (xq.csr & XQ_CSR_RE)
sim_activate(&xq_unit[0], xq.rtime);
return SCPE_OK;
}
/* attach device: */
t_stat xq_attach(UNIT* uptr, char* cptr)
{
t_stat status;
char* tptr;
tptr = malloc(strlen(cptr) + 1);
if (tptr == NULL) return SCPE_MEM;
strcpy(tptr, cptr);
xq.etherface = malloc(sizeof(ETH_DEV));
if (!xq.etherface) return SCPE_MEM;
status = eth_open(xq.etherface, cptr);
if (status != SCPE_OK) {
free(tptr);
free(xq.etherface);
xq.etherface = 0;
return status;
}
uptr->filename = tptr;
uptr->flags |= UNIT_ATT;
/* turn on transceiver power indicator */
xq.csr |= XQ_CSR_OK;
return SCPE_OK;
}
/* detach device: */
t_stat xq_detach(UNIT* uptr)
{
t_stat status;
if (uptr->flags & UNIT_ATT) {
status = eth_close (xq.etherface);
free(xq.etherface);
xq.etherface = 0;
free(uptr->filename);
uptr->filename = NULL;
uptr->flags &= ~UNIT_ATT;
}
/* turn off transceiver power indicator */
xq.csr &= ~XQ_CSR_OK;
return SCPE_OK;
}
int32 xq_inta (void)
{
return xq_dib.vec;
}
/*==============================================================================
/ debugging routines
/=============================================================================*/
#ifdef XQ_DEBUG
void xq_dump_csr (void)
{
/* tell user what is changing in register */
int i;
int mask = 1;
uint16 csr = xq.csr;
char hi[256] = "Set: ";
char lo[256] = "Reset: ";
for (i=0; i<16; i++, mask <<= 1) {
if ((csr & mask)) strcat (hi, xq_csr_bits[i]);
if ((~csr & mask)) strcat (lo, xq_csr_bits[i]);
}
printf ("CSR read: %s %s\n", hi, lo);
}
void xq_dump_var (void)
{
/* tell user what is changing in register */
uint16 var = xq.var;
char hi[256] = "Set: ";
char lo[256] = "Reset: ";
int vec = (var & XQ_VEC_IV) >> 2;
strcat((var & XQ_VEC_MS) ? hi : lo, "MS ");
strcat((var & XQ_VEC_OS) ? hi : lo, "OS ");
strcat((var & XQ_VEC_RS) ? hi : lo, "RS ");
strcat((var & XQ_VEC_S3) ? hi : lo, "S3 ");
strcat((var & XQ_VEC_S2) ? hi : lo, "S2 ");
strcat((var & XQ_VEC_S1) ? hi : lo, "S1 ");
strcat((var & XQ_VEC_RR) ? hi : lo, "RR ");
strcat((var & XQ_VEC_ID) ? hi : lo, "ID ");
printf ("VAR read: %s %s - Vec: %d \n", hi, lo, vec);
}
void xq_csr_changes (uint16 data)
{
/* tell user what is changing in register */
int i;
int mask = 1;
uint16 csr = xq.csr;
char hi[256] = "Setting: ";
char lo[256] = "Resetting: ";
for (i=0; i<16; i++, mask <<= 1) {
if ((csr & mask) && (~data & mask)) strcat (lo, xq_csr_bits[i]);
if ((~csr & mask) && (data & mask)) strcat (hi, xq_csr_bits[i]);
}
/* write-one-to-clear bits*/
if (data & XQ_CSR_RI) strcat(lo, "RI ");
if (data & XQ_CSR_XI) strcat(lo, "XI ");
printf ("CSR write: %s %s\n", hi, lo);
}
void xq_var_changes (uint16 data)
{
/* tell user what is changing in register */
uint16 vec;
uint16 var = xq.var;
char hi[256] = "Setting: ";
char lo[256] = "Resetting: ";
if (~var & XQ_VEC_MS & data) strcat (hi, "MS ");
if (var & XQ_VEC_MS & ~data) strcat (lo, "MS ");
if (~var & XQ_VEC_OS & data) strcat (hi, "OS ");
if (var & XQ_VEC_OS & ~data) strcat (lo, "OS ");
if (~var & XQ_VEC_RS & data) strcat (hi, "RS ");
if (var & XQ_VEC_RS & ~data) strcat (lo, "RS ");
if (~var & XQ_VEC_ID & data) strcat (hi, "ID ");
if (var & XQ_VEC_ID & ~data) strcat (lo, "ID ");
if ((var & XQ_VEC_IV) != (data & XQ_VEC_IV))
vec = (data & XQ_VEC_IV) >> 2;
printf ("VAR write: %s %s - Vec: %d\n", hi, lo, vec);
}
void xq_debug_setup(void)
{
int i;
char buffer[20];
if (xq.write_buffer.msg[0])
printf ("Setup: MOP info present!\n");
for (i = 0; i < XQ_FILTER_MAX; i++) {
eth_mac_fmt(&xq.setup.macs[i], buffer);
printf ("Setup: set addr[%d]: %s\n", i, buffer);
}
if (xq.write_buffer.len > 128) {
char buffer[20] = {0};
uint16 len = xq.write_buffer.len;
if (len & XQ_SETUP_MC) strcat(buffer, "MC ");
if (len & XQ_SETUP_PM) strcat(buffer, "PM ");
if (len & XQ_SETUP_LD) strcat(buffer, "LD ");
if (len & XQ_SETUP_ST) strcat(buffer, "ST ");
printf ("Setup: Length [%d] info: %s\n", len, buffer);
}
}
#endif