simh-testsetgenerator/PDP18B/pdp18b_rp.c
Bob Supnik 2c2dd5ea33 Notes For V2.10-0
WARNING: V2.10 has reorganized and renamed some of the definition
files for the PDP-10, PDP-11, and VAX.  Be sure to delete all
previous source files before you unpack the Zip archive, or
unpack it into a new directory structure.

WARNING: V2.10 has a new, more comprehensive save file format.
Restoring save files from previous releases will cause 'invalid
register' errors and loss of CPU option flags, device enable/
disable flags, unit online/offline flags, and unit writelock
flags.

WARNING: If you are using Visual Studio .NET through the IDE,
be sure to turn off the /Wp64 flag in the project settings, or
dozens of spurious errors will be generated.

WARNING: Compiling Ethernet support under Windows requires
extra steps; see the Ethernet readme file.  Ethernet support is
currently available only for Windows, Linux, NetBSD, and OpenBSD.

1. New Features

1.1 SCP and Libraries

- The VT emulation package has been replaced by the capability
  to remote the console to a Telnet session.  Telnet clients
  typically have more complete and robust VT100 emulation.
- Simulated devices may now have statically allocated buffers,
  in addition to dynamically allocated buffers or disk-based
  data stores.
- The DO command now takes substitutable arguments (max 9).
  In command files, %n represents substitutable argument n.
- The initial command line is now interpreted as the command
  name and substitutable arguments for a DO command.  This is
  backward compatible to prior versions.
- The initial command line parses switches.  -Q is interpreted
  as quiet mode; informational messages are suppressed.
- The HELP command now takes an optional argument.  HELP <cmd>
  types help on the specified command.
- Hooks have been added for implementing GUI-based consoles,
  as well as simulator-specific command extensions.  A few
  internal data structures and definitions have changed.
- Two new routines (tmxr_open_master, tmxr_close_master) have
  been added to sim_tmxr.c.  The calling sequence for
  sim_accept_conn has been changed in sim_sock.c.
- The calling sequence for the VM boot routine has been modified
  to add an additional parameter.
- SAVE now saves, and GET now restores, controller and unit flags.
- Library sim_ether.c has been added for Ethernet support.

1.2 VAX

- Non-volatile RAM (NVR) can behave either like a memory or like
  a disk-based peripheral.  If unattached, it behaves like memory
  and is saved and restored by SAVE and RESTORE, respectively.
  If attached, its contents are loaded from disk by ATTACH and
  written back to disk at DETACH and EXIT.
- SHOW <device> VECTOR displays the device's interrupt vector.
  A few devices allow the vector to be changed with SET
  <device> VECTOR=nnn.
- SHOW CPU IOSPACE displays the I/O space address map.
- The TK50 (TMSCP tape) has been added.
- The DEQNA/DELQA (Qbus Ethernet controllers) have been added.
- Autoconfiguration support has been added.
- The paper tape reader has been removed from vax_stddev.c and
  now references a common implementation file, dec_pt.h.
- Examine and deposit switches now work on all devices, not just
  the CPU.
- Device address conflicts are not detected until simulation starts.

1.3 PDP-11

- SHOW <device> VECTOR displays the device's interrupt vector.
  Most devices allow the vector to be changed with SET
  <device> VECTOR=nnn.
- SHOW CPU IOSPACE displays the I/O space address map.
- The TK50 (TMSCP tape), RK611/RK06/RK07 (cartridge disk),
  RX211 (double density floppy), and KW11P programmable clock
  have been added.
- The DEQNA/DELQA (Qbus Ethernet controllers) have been added.
- Autoconfiguration support has been added.
- The paper tape reader has been removed from pdp11_stddev.c and
  now references a common implementation file, dec_pt.h.
- Device bootstraps now use the actual CSR specified by the
  SET ADDRESS command, rather than just the default CSR.  Note
  that PDP-11 operating systems may NOT support booting with
  non-standard addresses.
- Specifying more than 256KB of memory, or changing the bus
  configuration, causes all peripherals that are not compatible
  with the current bus configuration to be disabled.
- Device address conflicts are not detected until simulation starts.

1.4 PDP-10

- SHOW <device> VECTOR displays the device's interrupt vector.
  A few devices allow the vector to be changed with SET
  <device> VECTOR=nnn.
- SHOW CPU IOSPACE displays the I/O space address map.
- The RX211 (double density floppy) has been added; it is off
  by default.
- The paper tape now references a common implementation file,
  dec_pt.h.
- Device address conflicts are not detected until simulation starts.

1.5 PDP-1

- DECtape (then known as MicroTape) support has been added.
- The line printer and DECtape can be disabled and enabled.

1.6 PDP-8

- The RX28 (double density floppy) has been added as an option to
  the existing RX8E controller.
- SHOW <device> DEVNO displays the device's device number.  Most
  devices allow the device number to be changed with SET <device>
  DEVNO=nnn.
- Device number conflicts are not detected until simulation starts.

1.7 IBM 1620

- The IBM 1620 simulator has been released.

1.8 AltairZ80

- A hard drive has been added for increased storage.
- Several bugs have been fixed.

1.9 HP 2100

- The 12845A has been added and made the default line printer (LPT).
  The 12653A has been renamed LPS and is off by default.  It also
  supports the diagnostic functions needed to run the DCPC and DMS
  diagnostics.
- The 12557A/13210A disk defaults to the 13210A (7900/7901).
- The 12559A magtape is off by default.
- New CPU options (EAU/NOEAU) enable/disable the extended arithmetic
  instructions for the 2116.  These instructions are standard on
  the 2100 and 21MX.
- New CPU options (MPR/NOMPR) enable/disable memory protect for the
  2100 and 21MX.
- New CPU options (DMS/NODMS) enable/disable the dynamic mapping
  instructions for the 21MX.
- The 12539 timebase generator autocalibrates.

1.10 Simulated Magtapes

- Simulated magtapes recognize end of file and the marker
  0xFFFFFFFF as end of medium.  Only the TMSCP tape simulator
  can generate an end of medium marker.
- The error handling in simulated magtapes was overhauled to be
  consistent through all simulators.

1.11 Simulated DECtapes

- Added support for RT11 image file format (256 x 16b) to DECtapes.

2. Release Notes

2.1 Bugs Fixed

- TS11/TSV05 was not simulating the XS0_MOT bit, causing failures
  under VMS.  In addition, two of the CTL options were coded
  interchanged.
- IBM 1401 tape was not setting a word mark under group mark for
  load mode reads.  This caused the diagnostics to crash.
- SCP bugs in ssh_break and set_logon were fixed (found by Dave
  Hittner).
- Numerous bugs in the HP 2100 extended arithmetic, floating point,
  21MX, DMS, and IOP instructions were fixed.  Bugs were also fixed
  in the memory protect and DMS functions.  The moving head disks
  (DP, DQ) were revised to simulate the hardware more accurately.
  Missing functions in DQ (address skip, read address) were added.

2.2 HP 2100 Debugging

- The HP 2100 CPU nows runs all of the CPU diagnostics.
- The peripherals run most of the peripheral diagnostics.  There
  is still a problem in overlapped seek operation on the disks.
  See the file hp2100_diag.txt for details.

3. In Progress

These simulators are not finished and are available in a separate
Zip archive distribution.

- Interdata 16b/32b: coded, partially tested.  See the file
  id_diag.txt for details.
- SDS 940: coded, partially tested.
2011-04-15 08:33:49 -07:00

444 lines
15 KiB
C
Raw Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/* pdp18b_rp.c: RP15/RP02 disk pack simulator
Copyright (c) 1993-2002, Robert M Supnik
Permission is hereby granted, free of charge, to any person obtaining a
copy of this software and associated documentation files (the "Software"),
to deal in the Software without restriction, including without limitation
the rights to use, copy, modify, merge, publish, distribute, sublicense,
and/or sell copies of the Software, and to permit persons to whom the
Software is furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
ROBERT M SUPNIK BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
Except as contained in this notice, the name of Robert M Supnik shall not
be used in advertising or otherwise to promote the sale, use or other dealings
in this Software without prior written authorization from Robert M Supnik.
rp RP15/RP02 disk pack
05-Oct-02 RMS Added DIB, device number support
06-Jan-02 RMS Revised enable/disable support
29-Nov-01 RMS Added read only unit support
25-Nov-01 RMS Revised interrupt structure
Changed FLG to array
26-Apr-01 RMS Added device enable/disable support
14-Apr-99 RMS Changed t_addr to unsigned
29-Jun-96 RMS Added unit enable/disable support
*/
#include "pdp18b_defs.h"
/* Constants */
#define RP_NUMWD 256 /* words/sector */
#define RP_NUMSC 10 /* sectors/surface */
#define RP_NUMSF 20 /* surfaces/cylinder */
#define RP_NUMCY 203 /* cylinders/drive */
#define RP_NUMDR 8 /* drives/controller */
#define RP_SIZE (RP_NUMCY * RP_NUMSF * RP_NUMSC * RP_NUMWD) /* words/drive */
/* Unit specific flags */
#define UNIT_V_WLK (UNIT_V_UF + 0) /* hwre write lock */
#define UNIT_WLK (1u << UNIT_V_WLK)
#define UNIT_WPRT (UNIT_WLK | UNIT_RO) /* write protect */
/* Parameters in the unit descriptor */
#define CYL u3 /* current cylinder */
#define FUNC u4 /* function */
/* Status register A */
#define STA_V_UNIT 15 /* unit select */
#define STA_M_UNIT 07
#define STA_V_FUNC 12 /* function */
#define STA_M_FUNC 07
#define FN_IDLE 0
#define FN_READ 1
#define FN_WRITE 2
#define FN_RECAL 3
#define FN_SEEK 4
#define FN_RDALL 5
#define FN_WRALL 6
#define FN_WRCHK 7
#define FN_2ND 010 /* second state flag */
#define STA_IED 0004000 /* int enable done */
#define STA_IEA 0002000 /* int enable attn */
#define STA_GO 0001000 /* go */
#define STA_WPE 0000400 /* write lock error */
#define STA_NXC 0000200 /* nx cyl error */
#define STA_NXF 0000100 /* nx surface error */
#define STA_NXS 0000040 /* nx sector error */
#define STA_HNF 0000020 /* hdr not found */
#define STA_SUWP 0000010 /* sel unit wrt lock */
#define STA_SUSI 0000004 /* sel unit seek inc */
#define STA_DON 0000002 /* done */
#define STA_ERR 0000001 /* error */
#define STA_RW 0777000 /* read/write */
#define STA_EFLGS (STA_WPE | STA_NXC | STA_NXF | STA_NXS | \
STA_HNF | STA_SUSI) /* error flags */
#define STA_DYN (STA_SUWP | STA_SUSI) /* per unit status */
#define GET_UNIT(x) (((x) >> STA_V_UNIT) & STA_M_UNIT)
#define GET_FUNC(x) (((x) >> STA_V_FUNC) & STA_M_FUNC)
/* Status register B */
#define STB_V_ATT0 17 /* unit 0 attention */
#define STB_ATTN 0776000 /* attention flags */
#define STB_SUFU 0001000 /* sel unit unsafe */
#define STB_PGE 0000400 /* programming error */
#define STB_EOP 0000200 /* end of pack */
#define STB_TME 0000100 /* timing error */
#define STB_FME 0000040 /* format error */
#define STB_WCE 0000020 /* write check error */
#define STB_WPE 0000010 /* word parity error */
#define STB_LON 0000004 /* long parity error */
#define STB_SUSU 0000002 /* sel unit seeking */
#define STB_SUNR 0000001 /* sel unit not rdy */
#define STB_EFLGS (STB_SUFU | STB_PGE | STB_EOP | STB_TME | STB_FME | \
STB_WCE | STB_WPE | STB_LON ) /* error flags */
#define STB_DYN (STB_SUFU | STB_SUSU | STB_SUNR) /* per unit */
/* Disk address */
#define DA_V_SECT 0 /* sector */
#define DA_M_SECT 017
#define DA_V_SURF 5
#define DA_M_SURF 037
#define DA_V_CYL 10 /* cylinder */
#define DA_M_CYL 0377
#define GET_SECT(x) (((x) >> DA_V_SECT) & DA_M_SECT)
#define GET_SURF(x) (((x) >> DA_V_SURF) & DA_M_SURF)
#define GET_CYL(x) (((x) >> DA_V_CYL) & DA_M_CYL)
#define GET_DA(x) ((((GET_CYL (x) * RP_NUMSF) + GET_SURF (x)) * \
RP_NUMSC) + GET_SECT (x))
#define RP_MIN 2
#define MAX(x,y) (((x) > (y))? (x): (y))
extern int32 M[];
extern int32 int_hwre[API_HLVL+1], nexm;
extern UNIT cpu_unit;
int32 rp_sta = 0; /* status A */
int32 rp_stb = 0; /* status B */
int32 rp_ma = 0; /* memory address */
int32 rp_da = 0; /* disk address */
int32 rp_wc = 0; /* word count */
int32 rp_busy = 0; /* busy */
int32 rp_stopioe = 1; /* stop on error */
int32 rp_swait = 10; /* seek time */
int32 rp_rwait = 10; /* rotate time */
DEVICE rp_dev;
int32 rp63 (int32 pulse, int32 AC);
int32 rp64 (int32 pulse, int32 AC);
int32 rp_iors (void);
t_stat rp_svc (UNIT *uptr);
void rp_updsta (int32 newa, int32 newb);
t_stat rp_reset (DEVICE *dptr);
t_stat rp_attach (UNIT *uptr, char *cptr);
t_stat rp_detach (UNIT *uptr);
/* RP15 data structures
rp_dev RP device descriptor
rp_unit RP unit list
rp_reg RP register list
rp_mod RP modifier list
*/
DIB rp_dib = { DEV_RP, 2, &rp_iors, { &rp63, &rp64 } };
UNIT rp_unit[] = {
{ UDATA (&rp_svc, UNIT_FIX+UNIT_ATTABLE+UNIT_DISABLE, RP_SIZE) },
{ UDATA (&rp_svc, UNIT_FIX+UNIT_ATTABLE+UNIT_DISABLE, RP_SIZE) },
{ UDATA (&rp_svc, UNIT_FIX+UNIT_ATTABLE+UNIT_DISABLE, RP_SIZE) },
{ UDATA (&rp_svc, UNIT_FIX+UNIT_ATTABLE+UNIT_DISABLE, RP_SIZE) },
{ UDATA (&rp_svc, UNIT_FIX+UNIT_ATTABLE+UNIT_DISABLE, RP_SIZE) },
{ UDATA (&rp_svc, UNIT_FIX+UNIT_ATTABLE+UNIT_DISABLE, RP_SIZE) },
{ UDATA (&rp_svc, UNIT_FIX+UNIT_ATTABLE+UNIT_DISABLE, RP_SIZE) },
{ UDATA (&rp_svc, UNIT_FIX+UNIT_ATTABLE+UNIT_DISABLE, RP_SIZE) } };
REG rp_reg[] = {
{ ORDATA (STA, rp_sta, 18) },
{ ORDATA (STB, rp_stb, 18) },
{ ORDATA (DA, rp_da, 18) },
{ ORDATA (MA, rp_ma, 18) },
{ ORDATA (WC, rp_wc, 18) },
{ FLDATA (INT, int_hwre[API_RP], INT_V_RP) },
{ FLDATA (BUSY, rp_busy, 0) },
{ FLDATA (STOP_IOE, rp_stopioe, 0) },
{ DRDATA (STIME, rp_swait, 24), PV_LEFT },
{ DRDATA (RTIME, rp_rwait, 24), PV_LEFT },
{ ORDATA (DEVNO, rp_dib.dev, 6), REG_HRO },
{ NULL } };
MTAB rp_mod[] = {
{ UNIT_WLK, 0, "write enabled", "WRITEENABLED", NULL },
{ UNIT_WLK, UNIT_WLK, "write locked", "LOCKED", NULL },
{ MTAB_XTD|MTAB_VDV, 0, "DEVNO", "DEVNO", &set_devno, &show_devno },
{ 0 } };
DEVICE rp_dev = {
"RP", rp_unit, rp_reg, rp_mod,
RP_NUMDR, 8, 24, 1, 8, 18,
NULL, NULL, &rp_reset,
NULL, &rp_attach, &rp_detach,
&rp_dib, DEV_DISABLE };
/* IOT routines */
int32 rp63 (int32 pulse, int32 AC)
{
rp_updsta (0, 0);
if (pulse == 001) /* DPSF */
return ((rp_sta & (STA_DON | STA_ERR)) || (rp_stb & STB_ATTN))?
IOT_SKP + AC: AC;
if (pulse == 021) /* DPSA */
return (rp_stb & STB_ATTN)? IOT_SKP + AC: AC;
if (pulse == 041) /* DPSJ */
return (rp_sta & STA_DON)? IOT_SKP + AC: AC;
if (pulse == 061) /* DPSE */
return (rp_sta & STA_ERR)? IOT_SKP + AC: AC;
if (pulse == 002) return rp_sta; /* DPOSA */
if (pulse == 022) return rp_stb; /* DPOSB */
if (((pulse & 007) == 004) && rp_busy) { /* busy? */
rp_updsta (0, STB_PGE);
return AC; }
if (pulse == 004) { /* DPLA */
rp_da = AC;
if (GET_SECT (rp_da) >= RP_NUMSC) rp_updsta (STA_NXS, 0);
if (GET_SURF (rp_da) >= RP_NUMSF) rp_updsta (STA_NXF, 0);
if (GET_CYL (rp_da) >= RP_NUMCY) rp_updsta (STA_NXC, 0); }
if (pulse == 024) { /* DPCS */
rp_sta = rp_sta & ~(STA_HNF | STA_DON);
rp_stb = rp_stb & ~(STB_FME | STB_WPE | STB_LON | STB_WCE |
STB_TME | STB_PGE | STB_EOP);
rp_updsta (0, 0); }
if (pulse == 044) rp_ma = AC; /* DPCA */
if (pulse == 064) rp_wc = AC; /* DPWC */
return AC;
}
/* IOT 64 */
int32 rp64 (int32 pulse, int32 AC)
{
int32 u, f, c;
UNIT *uptr;
if (pulse == 021) return IOT_SKP + AC; /* DPSN */
if (pulse == 002) return rp_unit[GET_UNIT (rp_sta)].CYL; /* DPOU */
if (pulse == 022) return rp_da; /* DPOA */
if (pulse == 042) return rp_ma; /* DPOC */
if (pulse == 062) return rp_wc; /* DPOW */
if ((pulse & 007) != 004) return AC;
if (rp_busy) { /* busy? */
rp_updsta (0, STB_PGE);
return AC; }
if (pulse == 004) rp_sta = rp_sta & ~STA_RW; /* DPCF */
if (pulse == 024) rp_sta = rp_sta & (AC | ~STA_RW); /* DPLZ */
if (pulse == 044) rp_sta = rp_sta | (AC & STA_RW); /* DPLO */
if (pulse == 064) rp_sta = (rp_sta & ~STA_RW) | (AC & STA_RW); /* DPLF */
if (rp_sta & STA_GO) {
u = GET_UNIT (rp_sta); /* get unit num */
uptr = rp_dev.units + u; /* select unit */
if (sim_is_active (uptr)) return AC; /* can't if busy */
f = uptr->FUNC = GET_FUNC (rp_sta); /* get function */
rp_busy = 1; /* set ctrl busy */
rp_sta = rp_sta & ~(STA_HNF | STA_DON); /* clear flags */
rp_stb = rp_stb & ~(STB_FME | STB_WPE | STB_LON | STB_WCE |
STB_TME | STB_PGE | STB_EOP | (1 << (STB_V_ATT0 - u)));
if (((uptr->flags & UNIT_ATT) == 0) || (f == FN_IDLE) ||
(f == FN_SEEK) || (f == FN_RECAL))
sim_activate (uptr, RP_MIN); /* short delay */
else { c = GET_CYL (rp_da);
c = abs (c - uptr->CYL) * rp_swait; /* seek time */
sim_activate (uptr, MAX (RP_MIN, c + rp_rwait)); } }
rp_updsta (0, 0);
return AC;
}
/* Unit service
If function = idle, clear busy
If seek or recal initial state, clear attention line, compute seek time,
put on cylinder, set second state
If unit not attached, give error
If seek or recal second state, set attention line, compute errors
Else complete data transfer command
The unit control block contains the function and cylinder for
the current command.
*/
static int32 fill[RP_NUMWD] = { 0 };
t_stat rp_svc (UNIT *uptr)
{
int32 f, u, comp, cyl, sect, surf;
int32 err, pa, da, wc, awc, i;
u = uptr - rp_dev.units; /* get drv number */
f = uptr->FUNC; /* get function */
if (f == FN_IDLE) { /* idle? */
rp_busy = 0; /* clear busy */
return SCPE_OK; }
if ((f == FN_SEEK) || (f == FN_RECAL)) { /* seek or recal? */
rp_busy = 0; /* not busy */
cyl = (f == FN_SEEK)? GET_CYL (rp_da): 0; /* get cylinder */
sim_activate (uptr, MAX (RP_MIN, abs (cyl - uptr->CYL) * rp_swait));
uptr->CYL = cyl; /* on cylinder */
uptr->FUNC = FN_SEEK | FN_2ND; /* set second state */
rp_updsta (0, 0); /* update status */
return SCPE_OK; }
if (f == (FN_SEEK | FN_2ND)) { /* seek done? */
rp_updsta (0, rp_stb | (1 << (STB_V_ATT0 - u))); /* set attention */
return SCPE_OK; }
if ((uptr->flags & UNIT_ATT) == 0) { /* not attached? */
rp_updsta (STA_DON, STB_SUFU); /* done, unsafe */
return IORETURN (rp_stopioe, SCPE_UNATT); }
if ((f == FN_WRITE) && (uptr->flags & UNIT_WPRT)) { /* write locked? */
rp_updsta (STA_DON | STA_WPE, 0); /* error */
return SCPE_OK; }
if (GET_SECT (rp_da) >= RP_NUMSC) rp_updsta (STA_NXS, 0);
if (GET_SURF (rp_da) >= RP_NUMSF) rp_updsta (STA_NXF, 0);
if (GET_CYL (rp_da) >= RP_NUMCY) rp_updsta (STA_NXC, 0);
if (rp_sta & (STA_NXS | STA_NXF | STA_NXC)) { /* or bad disk addr? */
rp_updsta (STA_DON, STB_SUFU); /* done, unsafe */
return SCPE_OK; }
pa = rp_ma & ADDRMASK; /* get mem addr */
da = GET_DA (rp_da) * RP_NUMWD; /* get disk addr */
wc = 01000000 - rp_wc; /* get true wc */
if (((t_addr) (pa + wc)) > MEMSIZE) { /* memory overrun? */
nexm = 1; /* set nexm flag */
wc = MEMSIZE - pa; } /* limit xfer */
if ((da + wc) > RP_SIZE) { /* disk overrun? */
rp_updsta (0, STB_EOP); /* error */
wc = RP_SIZE - da; } /* limit xfer */
err = fseek (uptr->fileref, da * sizeof (int), SEEK_SET);
if ((f == FN_READ) && (err == 0)) { /* read? */
awc = fxread (&M[pa], sizeof (int32), wc, uptr->fileref);
for ( ; awc < wc; awc++) M[pa + awc] = 0;
err = ferror (uptr->fileref); }
if ((f == FN_WRITE) && (err == 0)) { /* write? */
fxwrite (&M[pa], sizeof (int32), wc, uptr->fileref);
err = ferror (uptr->fileref);
if ((err == 0) && (i = (wc & (RP_NUMWD - 1)))) {
fxwrite (fill, sizeof (int), i, uptr->fileref);
err = ferror (uptr->fileref); } }
if ((f == FN_WRCHK) && (err == 0)) { /* write check? */
for (i = 0; (err == 0) && (i < wc); i++) {
awc = fxread (&comp, sizeof (int32), 1, uptr->fileref);
if (awc == 0) comp = 0;
if (comp != M[pa + i]) rp_updsta (0, STB_WCE); }
err = ferror (uptr->fileref); }
rp_wc = (rp_wc + wc) & 0777777; /* final word count */
rp_ma = (rp_ma + wc) & 0777777; /* final mem addr */
da = (da + wc + (RP_NUMWD - 1)) / RP_NUMWD; /* final sector num */
cyl = da / (RP_NUMSC * RP_NUMSF); /* get cyl */
if (cyl >= RP_NUMCY) cyl = RP_NUMCY - 1;
surf = (da % (RP_NUMSC * RP_NUMSF)) / RP_NUMSC; /* get surface */
sect = (da % (RP_NUMSC * RP_NUMSF)) % RP_NUMSC; /* get sector */
rp_da = (cyl << DA_V_CYL) | (surf << DA_V_SURF) | (sect << DA_V_SECT);
rp_busy = 0; /* clear busy */
rp_updsta (STA_DON, 0); /* set done */
if (err != 0) { /* error? */
perror ("RP I/O error");
clearerr (uptr->fileref);
return IORETURN (rp_stopioe, SCPE_IOERR); }
return SCPE_OK;
}
/* Update status */
void rp_updsta (int32 newa, int32 newb)
{
int32 f;
UNIT *uptr;
uptr = rp_dev.units + GET_UNIT (rp_sta);
rp_sta = (rp_sta & ~(STA_DYN | STA_ERR)) | newa;
rp_stb = (rp_stb & ~STB_DYN) | newb;
if (uptr->flags & UNIT_WPRT) rp_sta = rp_sta | STA_SUWP;
if ((uptr->flags & UNIT_ATT) == 0) rp_stb = rp_stb | STB_SUFU | STB_SUNR;
else if (sim_is_active (uptr)) {
f = (uptr->FUNC) & STA_M_FUNC;
if ((f == FN_SEEK) || (f == FN_RECAL))
rp_stb = rp_stb | STB_SUSU | STB_SUNR; }
else if (uptr->CYL >= RP_NUMCY) rp_sta = rp_sta | STA_SUSI;
if ((rp_sta & STA_EFLGS) || (rp_stb & STB_EFLGS)) rp_sta = rp_sta | STA_ERR;
if (((rp_sta & (STA_ERR | STA_DON)) && (rp_sta & STA_IED)) ||
((rp_stb & STB_ATTN) && (rp_sta & STA_IEA))) SET_INT (RP);
else CLR_INT (RP);
return;
}
/* Reset routine */
t_stat rp_reset (DEVICE *dptr)
{
int32 i;
UNIT *uptr;
rp_sta = rp_stb = rp_da = rp_wc = rp_ma = rp_busy = 0;
CLR_INT (RP);
for (i = 0; i < RP_NUMDR; i++) {
uptr = rp_dev.units + i;
sim_cancel (uptr);
uptr->CYL = uptr->FUNC = 0; }
return SCPE_OK;
}
/* IORS routine */
int32 rp_iors (void)
{
return ((rp_sta & (STA_ERR | STA_DON)) || (rp_stb & STB_ATTN))? IOS_RP: 0;
}
/* Attach unit */
t_stat rp_attach (UNIT *uptr, char *cptr)
{
t_stat reason;
reason = attach_unit (uptr, cptr);
rp_updsta (0, 0);
return reason;
}
/* Detach unit */
t_stat rp_detach (UNIT *uptr)
{
t_stat reason;
reason = detach_unit (uptr);
rp_updsta (0, 0);
return reason;
}