WARNING: V2.10 has reorganized and renamed some of the definition files for the PDP-10, PDP-11, and VAX. Be sure to delete all previous source files before you unpack the Zip archive, or unpack it into a new directory structure. WARNING: V2.10 has a new, more comprehensive save file format. Restoring save files from previous releases will cause 'invalid register' errors and loss of CPU option flags, device enable/ disable flags, unit online/offline flags, and unit writelock flags. WARNING: If you are using Visual Studio .NET through the IDE, be sure to turn off the /Wp64 flag in the project settings, or dozens of spurious errors will be generated. WARNING: Compiling Ethernet support under Windows requires extra steps; see the Ethernet readme file. Ethernet support is currently available only for Windows, Linux, NetBSD, and OpenBSD. 1. New Features 1.1 SCP and Libraries - The VT emulation package has been replaced by the capability to remote the console to a Telnet session. Telnet clients typically have more complete and robust VT100 emulation. - Simulated devices may now have statically allocated buffers, in addition to dynamically allocated buffers or disk-based data stores. - The DO command now takes substitutable arguments (max 9). In command files, %n represents substitutable argument n. - The initial command line is now interpreted as the command name and substitutable arguments for a DO command. This is backward compatible to prior versions. - The initial command line parses switches. -Q is interpreted as quiet mode; informational messages are suppressed. - The HELP command now takes an optional argument. HELP <cmd> types help on the specified command. - Hooks have been added for implementing GUI-based consoles, as well as simulator-specific command extensions. A few internal data structures and definitions have changed. - Two new routines (tmxr_open_master, tmxr_close_master) have been added to sim_tmxr.c. The calling sequence for sim_accept_conn has been changed in sim_sock.c. - The calling sequence for the VM boot routine has been modified to add an additional parameter. - SAVE now saves, and GET now restores, controller and unit flags. - Library sim_ether.c has been added for Ethernet support. 1.2 VAX - Non-volatile RAM (NVR) can behave either like a memory or like a disk-based peripheral. If unattached, it behaves like memory and is saved and restored by SAVE and RESTORE, respectively. If attached, its contents are loaded from disk by ATTACH and written back to disk at DETACH and EXIT. - SHOW <device> VECTOR displays the device's interrupt vector. A few devices allow the vector to be changed with SET <device> VECTOR=nnn. - SHOW CPU IOSPACE displays the I/O space address map. - The TK50 (TMSCP tape) has been added. - The DEQNA/DELQA (Qbus Ethernet controllers) have been added. - Autoconfiguration support has been added. - The paper tape reader has been removed from vax_stddev.c and now references a common implementation file, dec_pt.h. - Examine and deposit switches now work on all devices, not just the CPU. - Device address conflicts are not detected until simulation starts. 1.3 PDP-11 - SHOW <device> VECTOR displays the device's interrupt vector. Most devices allow the vector to be changed with SET <device> VECTOR=nnn. - SHOW CPU IOSPACE displays the I/O space address map. - The TK50 (TMSCP tape), RK611/RK06/RK07 (cartridge disk), RX211 (double density floppy), and KW11P programmable clock have been added. - The DEQNA/DELQA (Qbus Ethernet controllers) have been added. - Autoconfiguration support has been added. - The paper tape reader has been removed from pdp11_stddev.c and now references a common implementation file, dec_pt.h. - Device bootstraps now use the actual CSR specified by the SET ADDRESS command, rather than just the default CSR. Note that PDP-11 operating systems may NOT support booting with non-standard addresses. - Specifying more than 256KB of memory, or changing the bus configuration, causes all peripherals that are not compatible with the current bus configuration to be disabled. - Device address conflicts are not detected until simulation starts. 1.4 PDP-10 - SHOW <device> VECTOR displays the device's interrupt vector. A few devices allow the vector to be changed with SET <device> VECTOR=nnn. - SHOW CPU IOSPACE displays the I/O space address map. - The RX211 (double density floppy) has been added; it is off by default. - The paper tape now references a common implementation file, dec_pt.h. - Device address conflicts are not detected until simulation starts. 1.5 PDP-1 - DECtape (then known as MicroTape) support has been added. - The line printer and DECtape can be disabled and enabled. 1.6 PDP-8 - The RX28 (double density floppy) has been added as an option to the existing RX8E controller. - SHOW <device> DEVNO displays the device's device number. Most devices allow the device number to be changed with SET <device> DEVNO=nnn. - Device number conflicts are not detected until simulation starts. 1.7 IBM 1620 - The IBM 1620 simulator has been released. 1.8 AltairZ80 - A hard drive has been added for increased storage. - Several bugs have been fixed. 1.9 HP 2100 - The 12845A has been added and made the default line printer (LPT). The 12653A has been renamed LPS and is off by default. It also supports the diagnostic functions needed to run the DCPC and DMS diagnostics. - The 12557A/13210A disk defaults to the 13210A (7900/7901). - The 12559A magtape is off by default. - New CPU options (EAU/NOEAU) enable/disable the extended arithmetic instructions for the 2116. These instructions are standard on the 2100 and 21MX. - New CPU options (MPR/NOMPR) enable/disable memory protect for the 2100 and 21MX. - New CPU options (DMS/NODMS) enable/disable the dynamic mapping instructions for the 21MX. - The 12539 timebase generator autocalibrates. 1.10 Simulated Magtapes - Simulated magtapes recognize end of file and the marker 0xFFFFFFFF as end of medium. Only the TMSCP tape simulator can generate an end of medium marker. - The error handling in simulated magtapes was overhauled to be consistent through all simulators. 1.11 Simulated DECtapes - Added support for RT11 image file format (256 x 16b) to DECtapes. 2. Release Notes 2.1 Bugs Fixed - TS11/TSV05 was not simulating the XS0_MOT bit, causing failures under VMS. In addition, two of the CTL options were coded interchanged. - IBM 1401 tape was not setting a word mark under group mark for load mode reads. This caused the diagnostics to crash. - SCP bugs in ssh_break and set_logon were fixed (found by Dave Hittner). - Numerous bugs in the HP 2100 extended arithmetic, floating point, 21MX, DMS, and IOP instructions were fixed. Bugs were also fixed in the memory protect and DMS functions. The moving head disks (DP, DQ) were revised to simulate the hardware more accurately. Missing functions in DQ (address skip, read address) were added. 2.2 HP 2100 Debugging - The HP 2100 CPU nows runs all of the CPU diagnostics. - The peripherals run most of the peripheral diagnostics. There is still a problem in overlapped seek operation on the disks. See the file hp2100_diag.txt for details. 3. In Progress These simulators are not finished and are available in a separate Zip archive distribution. - Interdata 16b/32b: coded, partially tested. See the file id_diag.txt for details. - SDS 940: coded, partially tested.
773 lines
23 KiB
C
773 lines
23 KiB
C
/* vax_fpa.c - VAX floating point accelerator simulator
|
||
|
||
Copyright (c) 1998-2002, Robert M Supnik
|
||
|
||
Permission is hereby granted, free of charge, to any person obtaining a
|
||
copy of this software and associated documentation files (the "Software"),
|
||
to deal in the Software without restriction, including without limitation
|
||
the rights to use, copy, modify, merge, publish, distribute, sublicense,
|
||
and/or sell copies of the Software, and to permit persons to whom the
|
||
Software is furnished to do so, subject to the following conditions:
|
||
|
||
The above copyright notice and this permission notice shall be included in
|
||
all copies or substantial portions of the Software.
|
||
|
||
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
||
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
||
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
|
||
ROBERT M SUPNIK BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
|
||
IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
|
||
CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
|
||
|
||
Except as contained in this notice, the name of Robert M Supnik shall not
|
||
be used in advertising or otherwise to promote the sale, use or other dealings
|
||
in this Software without prior written authorization from Robert M Supnik.
|
||
|
||
05-Jul-02 RMS Changed internal routine names for C library conflict
|
||
17-Apr-02 RMS Fixed bug in EDIV zero quotient
|
||
|
||
This module contains the instruction simulators for
|
||
|
||
- 64 bit arithmetic (ASHQ, EMUL, EDIV)
|
||
- single precision floating point
|
||
- double precision floating point, D and G format
|
||
|
||
To make life easier (for me), this module assumes that 64b
|
||
integer operations are available. Feel free to rewrite this
|
||
in 32b arithmetic...
|
||
*/
|
||
|
||
#include "vax_defs.h"
|
||
#include <setjmp.h>
|
||
|
||
#define M32 0xFFFFFFFF /* 32b */
|
||
#define ONES 0xFFFFFFFFFFFFFFFF /* 64b */
|
||
#define FD_V_EXP 7 /* f/d exponent */
|
||
#define FD_M_EXP 0xFF
|
||
#define FD_BIAS 0x80 /* f/d bias */
|
||
#define FD_EXP (FD_M_EXP << FD_V_EXP)
|
||
#define FD_HB (1 << FD_V_EXP) /* f/d hidden bit */
|
||
#define FD_FRACW (0xFFFF & ~(FD_EXP | FPSIGN))
|
||
#define FD_FRACL (FD_FRACW | 0xFFFF0000) /* f/d fraction */
|
||
#define G_V_EXP 4 /* g exponent */
|
||
#define G_M_EXP 0x7FF
|
||
#define G_BIAS 0x400 /* g bias */
|
||
#define G_EXP (G_M_EXP << G_V_EXP)
|
||
#define G_HB (1 << G_V_EXP) /* g hidden bit */
|
||
#define G_FRACW (0xFFFF & ~(G_EXP | FPSIGN))
|
||
#define G_FRACL (G_FRACW | 0xFFFF0000) /* g fraction */
|
||
#define FD_GETEXP(x) (((x) >> FD_V_EXP) & FD_M_EXP)
|
||
#define G_GETEXP(x) (((x) >> G_V_EXP) & G_M_EXP)
|
||
#define UNSCRAM(h,l) (((((t_uint64) (h)) << 48) & 0xFFFF000000000000) | \
|
||
((((t_uint64) (h)) << 16) & 0x0000FFFF00000000) | \
|
||
((((t_uint64) (l)) << 16) & 0x00000000FFFF0000) | \
|
||
((((t_uint64) (l)) >> 16) & 0x000000000000FFFF))
|
||
#define CONCAT(h,l) ((((t_uint64) (h)) << 32) | \
|
||
((uint32) (l)))
|
||
|
||
struct ufp {
|
||
int32 sign;
|
||
int32 exp;
|
||
t_uint64 frac; };
|
||
|
||
typedef struct ufp UFP;
|
||
|
||
#define UF_NM 0x8000000000000000 /* normalized */
|
||
#define UF_FMSK 0xFFFFFF0000000000 /* F fraction */
|
||
#define UF_FRND 0x0000008000000000 /* F round */
|
||
#define UF_DMSK 0xFFFFFFFFFFFFFF00 /* D fraction */
|
||
#define UF_DRND 0x0000000000000080 /* D round */
|
||
#define UF_GMSK 0xFFFFFFFFFFFFF800 /* G fraction */
|
||
#define UF_GRND 0x0000000000000400 /* G round */
|
||
#define UF_V_NM 63
|
||
#define UF_V_FDHI 40
|
||
#define UF_V_FDLO (UF_V_FDHI - 32)
|
||
#define UF_V_GHI 43
|
||
#define UF_V_GLO (UF_V_GHI - 32)
|
||
#define UF_GETFDHI(x) (int32) ((((x) >> (16 + UF_V_FDHI)) & FD_FRACW) | \
|
||
(((x) >> (UF_V_FDHI - 16)) & ~0xFFFF))
|
||
#define UF_GETFDLO(x) (int32) ((((x) >> (16 + UF_V_FDLO)) & 0xFFFF) | \
|
||
(((x) << (16 - UF_V_FDLO)) & ~0xFFFF))
|
||
#define UF_GETGHI(x) (int32) ((((x) >> (16 + UF_V_GHI)) & G_FRACW) | \
|
||
(((x) >> (UF_V_GHI - 16)) & ~0xFFFF))
|
||
#define UF_GETGLO(x) (int32) ((((x) >> (16 + UF_V_GLO)) & 0xFFFF) | \
|
||
(((x) << (16 - UF_V_GLO)) & ~0xFFFF))
|
||
|
||
extern int32 R[16];
|
||
extern int32 PSL;
|
||
extern int32 p1;
|
||
extern jmp_buf save_env;
|
||
|
||
extern int32 Read (t_addr va, int32 size, int32 acc);
|
||
void unpackf (int32 hi, UFP *a);
|
||
void unpackd (int32 hi, int32 lo, UFP *a);
|
||
void unpackg (int32 hi, int32 lo, UFP *a);
|
||
void norm (UFP *a);
|
||
int32 rpackfd (UFP *a, int32 *rh);
|
||
int32 rpackg (UFP *a, int32 *rh);
|
||
void vax_fadd (UFP *a, UFP *b, t_int64 mask);
|
||
void vax_fmul (UFP *a, UFP *b, int32 prec, int32 bias, t_int64 mask);
|
||
void vax_fdiv (UFP *b, UFP *a, int32 prec, int32 bias);
|
||
void vax_fmod (UFP *a, int32 bias, int32 *intgr, int32 *flg);
|
||
|
||
/* Quadword arithmetic shift
|
||
|
||
opnd[0] = shift count (cnt.rb)
|
||
opnd[1:2] = source (src.rq)
|
||
opnd[3:4] = destination (dst.wq)
|
||
*/
|
||
|
||
int32 op_ashq (int32 *opnd, int32 *rh, int32 *flg)
|
||
{
|
||
t_int64 src, r;
|
||
int32 sc = opnd[0];
|
||
|
||
src = CONCAT (opnd[2], opnd[1]); /* build src */
|
||
if (sc & BSIGN) { /* right shift? */
|
||
*flg = 0; /* no ovflo */
|
||
sc = 0x100 - sc; /* |shift| */
|
||
if (sc > 63) r = (opnd[2] & LSIGN)? -1: 0; /* sc > 63? */
|
||
else r = src >> sc; }
|
||
else { if (sc > 63) { /* left shift */
|
||
r = 0; /* sc > 63? */
|
||
*flg = (src != 0); } /* ovflo test */
|
||
else { r = src << sc; /* do shift */
|
||
*flg = (src != (r >> sc)); } } /* ovflo test */
|
||
*rh = (int32) (r >> 32); /* hi result */
|
||
return ((int32) r); /* lo result */
|
||
}
|
||
|
||
/* Extended multiply subroutine */
|
||
|
||
int32 op_emul (int32 mpy, int32 mpc, int32 *rh)
|
||
{
|
||
t_int64 lmpy = mpy;
|
||
t_int64 lmpc = mpc;
|
||
|
||
lmpy = lmpy * lmpc;
|
||
*rh = ((int32) (lmpy >> 32));
|
||
return (int32) lmpy;
|
||
}
|
||
|
||
/* Extended divide
|
||
|
||
opnd[0] = divisor (non-zero)
|
||
opnd[1:2] = dividend
|
||
*/
|
||
|
||
int32 op_ediv (int32 *opnd, int32 *rh, int32 *flg)
|
||
{
|
||
t_int64 ldvd, ldvr;
|
||
int32 quo, rem;
|
||
|
||
*flg = CC_V; /* assume error */
|
||
*rh = 0;
|
||
ldvr = ((opnd[0] & LSIGN)? -opnd[0]: opnd[0]) & M32; /* |divisor| */
|
||
ldvd = CONCAT (opnd[2], opnd[1]); /* 64b dividend */
|
||
if (opnd[2] & LSIGN) ldvd = -ldvd; /* |dividend| */
|
||
if (((ldvd >> 32) & M32) >= ldvr) return opnd[1]; /* divide work? */
|
||
quo = (int32) (ldvd / ldvr); /* do divide */
|
||
rem = (int32) (ldvd % ldvr);
|
||
if ((opnd[0] ^ opnd[2]) & LSIGN) { /* result -? */
|
||
quo = -quo; /* negate */
|
||
if (quo && ((quo & LSIGN) == 0)) return opnd[1]; } /* right sign? */
|
||
else if (quo & LSIGN) return opnd[1];
|
||
if (opnd[2] & LSIGN) rem = -rem; /* sign of rem */
|
||
*flg = 0; /* no overflow */
|
||
*rh = rem; /* set rem */
|
||
return quo; /* return quo */
|
||
}
|
||
|
||
/* Move/test/move negated floating
|
||
|
||
Note that only the high 32b is processed.
|
||
If the high 32b is not zero, it is unchanged.
|
||
*/
|
||
|
||
int32 op_movfd (int32 val)
|
||
{
|
||
if (val & FD_EXP) return val;
|
||
if (val & FPSIGN) RSVD_OPND_FAULT;
|
||
return 0;
|
||
}
|
||
|
||
int32 op_mnegfd (int32 val)
|
||
{
|
||
if (val & FD_EXP) return (val ^ FPSIGN);
|
||
if (val & FPSIGN) RSVD_OPND_FAULT;
|
||
return 0;
|
||
}
|
||
|
||
int32 op_movg (int32 val)
|
||
{
|
||
if (val & G_EXP) return val;
|
||
if (val & FPSIGN) RSVD_OPND_FAULT;
|
||
return 0;
|
||
}
|
||
|
||
int32 op_mnegg (int32 val)
|
||
{
|
||
if (val & G_EXP) return (val ^ FPSIGN);
|
||
if (val & FPSIGN) RSVD_OPND_FAULT;
|
||
return 0;
|
||
}
|
||
|
||
/* Compare floating */
|
||
|
||
int32 op_cmpfd (int32 h1, int32 l1, int32 h2, int32 l2)
|
||
{
|
||
t_uint64 n1, n2;
|
||
|
||
if ((h1 & FD_EXP) == 0) {
|
||
if (h1 & FPSIGN) RSVD_OPND_FAULT;
|
||
h1 = l1 = 0; }
|
||
if ((h2 & FD_EXP) == 0) {
|
||
if (h2 & FPSIGN) RSVD_OPND_FAULT;
|
||
h2 = l2 = 0; }
|
||
if ((h1 ^ h2) & FPSIGN) return ((h1 & FPSIGN)? CC_N: 0);
|
||
n1 = UNSCRAM (h1, l1);
|
||
n2 = UNSCRAM (h2, l2);
|
||
if (n1 == n2) return CC_Z;
|
||
return (((n1 < n2) ^ ((h1 & FPSIGN) != 0))? CC_N: 0);
|
||
}
|
||
|
||
int32 op_cmpg (int32 h1, int32 l1, int32 h2, int32 l2)
|
||
{
|
||
t_uint64 n1, n2;
|
||
|
||
if ((h1 & G_EXP) == 0) {
|
||
if (h1 & FPSIGN) RSVD_OPND_FAULT;
|
||
h1 = l1 = 0; }
|
||
if ((h2 & G_EXP) == 0) {
|
||
if (h2 & FPSIGN) RSVD_OPND_FAULT;
|
||
h2 = l2 = 0; }
|
||
if ((h1 ^ h2) & FPSIGN) return ((h1 & FPSIGN)? CC_N: 0);
|
||
n1 = UNSCRAM (h1, l1);
|
||
n2 = UNSCRAM (h2, l2);
|
||
if (n1 == n2) return CC_Z;
|
||
return (((n1 < n2) ^ ((h1 & FPSIGN) != 0))? CC_N: 0);
|
||
}
|
||
|
||
/* Integer to floating convert */
|
||
|
||
int32 op_cvtifdg (int32 val, int32 *rh, int32 opc)
|
||
{
|
||
UFP a;
|
||
|
||
if (val == 0) {
|
||
if (rh) *rh = 0;
|
||
return 0; }
|
||
if (val < 0) {
|
||
a.sign = FPSIGN;
|
||
val = - val; }
|
||
else a.sign = 0;
|
||
a.exp = 32 + ((opc & 0x100)? G_BIAS: FD_BIAS);
|
||
a.frac = ((t_uint64) val) << (UF_V_NM - 31);
|
||
norm (&a);
|
||
if (opc & 0x100) return rpackg (&a, rh);
|
||
return rpackfd (&a, rh);
|
||
}
|
||
|
||
/* Floating to integer convert */
|
||
|
||
int32 op_cvtfdgi (int32 *opnd, int32 *flg, int32 opc)
|
||
{
|
||
UFP a;
|
||
int32 lnt = opc & 03;
|
||
int32 ubexp;
|
||
static t_uint64 maxv[4] = { 0x7F, 0x7FFF, 0x7FFFFFFF, 0x7FFFFFFF };
|
||
|
||
*flg = 0;
|
||
if (opc & 0x100) {
|
||
unpackg (opnd[0], opnd[1], &a);
|
||
ubexp = a.exp - G_BIAS; }
|
||
else { if (opc & 0x20) unpackd (opnd[0], opnd[1], &a);
|
||
else unpackf (opnd[0], &a);
|
||
ubexp = a.exp - FD_BIAS; }
|
||
if ((a.exp == 0) || (ubexp < 0)) return 0;
|
||
if (ubexp <= UF_V_NM) {
|
||
a.frac = a.frac >> (UF_V_NM - ubexp); /* leave rnd bit */
|
||
if ((opc & 03) == 03) a.frac = a.frac + 1; /* if CVTR, round */
|
||
a.frac = a.frac >> 1; /* now justified */
|
||
if (a.frac > (maxv[lnt] + (a.sign != 0))) *flg = CC_V; }
|
||
else { if (ubexp > (UF_V_NM + 32)) return 0;
|
||
a.frac = a.frac << (ubexp - UF_V_NM - 1); /* no rnd bit */
|
||
*flg = CC_V; }
|
||
return ((int32) (a.sign? (a.frac ^ M32) + 1: a.frac));
|
||
}
|
||
|
||
/* Floating to floating convert
|
||
F to D is essentially done with MOVFD
|
||
*/
|
||
|
||
int32 op_cvtdf (int32 *opnd)
|
||
{
|
||
UFP a;
|
||
|
||
unpackd (opnd[0], opnd[1], &a);
|
||
return rpackfd (&a, NULL);
|
||
}
|
||
|
||
int32 op_cvtfg (int32 *opnd, int32 *rh)
|
||
{
|
||
UFP a;
|
||
|
||
unpackf (opnd[0], &a);
|
||
a.exp = a.exp - FD_BIAS + G_BIAS;
|
||
return rpackg (&a, rh);
|
||
}
|
||
|
||
int32 op_cvtgf (int32 *opnd)
|
||
{
|
||
UFP a;
|
||
|
||
unpackg (opnd[0], opnd[1], &a);
|
||
a.exp = a.exp - G_BIAS + FD_BIAS;
|
||
return rpackfd (&a, NULL);
|
||
}
|
||
|
||
/* Floating add and subtract */
|
||
|
||
int32 op_addf (int32 *opnd, t_bool sub)
|
||
{
|
||
UFP a, b;
|
||
|
||
unpackf (opnd[0], &a); /* F format */
|
||
unpackf (opnd[1], &b);
|
||
if (sub) a.sign = a.sign ^ FPSIGN; /* sub? -s1 */
|
||
vax_fadd (&a, &b, 0); /* add fractions */
|
||
return rpackfd (&a, NULL);
|
||
}
|
||
|
||
int32 op_addd (int32 *opnd, int32 *rh, t_bool sub)
|
||
{
|
||
UFP a, b;
|
||
|
||
unpackd (opnd[0], opnd[1], &a);
|
||
unpackd (opnd[2], opnd[3], &b);
|
||
if (sub) a.sign = a.sign ^ FPSIGN; /* sub? -s1 */
|
||
vax_fadd (&a, &b, 0); /* add fractions */
|
||
return rpackfd (&a, rh);
|
||
}
|
||
|
||
int32 op_addg (int32 *opnd, int32 *rh, t_bool sub)
|
||
{
|
||
UFP a, b;
|
||
|
||
unpackg (opnd[0], opnd[1], &a);
|
||
unpackg (opnd[2], opnd[3], &b);
|
||
if (sub) a.sign = a.sign ^ FPSIGN; /* sub? -s1 */
|
||
vax_fadd (&a, &b, 0); /* add fractions */
|
||
return rpackg (&a, rh); /* round and pack */
|
||
}
|
||
|
||
void vax_fadd (UFP *a, UFP *b, t_int64 mask)
|
||
{
|
||
int32 ediff;
|
||
UFP t;
|
||
|
||
if (a->exp == 0) { /* s1 = 0? */
|
||
*a = *b;
|
||
return; }
|
||
if (b->exp == 0) return; /* s2 = 0? */
|
||
if (a->exp < b->exp) { /* s1 < s2? swap */
|
||
t = *a;
|
||
*a = *b;
|
||
*b = t; }
|
||
ediff = a->exp - b->exp; /* exp diff */
|
||
if (a->sign ^ b->sign) { /* eff sub? */
|
||
if (ediff) { /* exp diff? */
|
||
b->frac = (ediff > 63)? ONES: /* shift b */
|
||
((-((t_int64) b->frac) >> ediff) |
|
||
(ONES << (64 - ediff))); /* preserve sign */
|
||
a->frac = a->frac + b->frac; } /* add frac */
|
||
else { if (a->frac < b->frac) { /* same, check magn */
|
||
a->frac = b->frac - a->frac; /* b > a */
|
||
a->sign = b->sign; }
|
||
else a->frac = a->frac - b->frac; } /* a >= b */
|
||
a->frac = a->frac & ~mask;
|
||
norm (a); } /* normalize */
|
||
else { if (ediff >= 64) b->frac = 0;
|
||
else b->frac = b->frac >> ediff; /* add, denorm */
|
||
a->frac = a->frac + b->frac; /* add frac */
|
||
if (a->frac < b->frac) { /* chk for carry */
|
||
a->frac = UF_NM | (a->frac >> 1); /* shift in carry */
|
||
a->exp = a->exp + 1; } /* skip norm */
|
||
a->frac = a->frac & ~mask; }
|
||
return;
|
||
}
|
||
|
||
/* Floating multiply
|
||
|
||
Note that when the fractions are multiplied, the fraction position
|
||
must be adjusted to maintain the right precision.
|
||
*/
|
||
|
||
int32 op_mulf (int32 *opnd)
|
||
{
|
||
UFP a, b;
|
||
|
||
unpackf (opnd[0], &a); /* F format */
|
||
unpackf (opnd[1], &b);
|
||
vax_fmul (&a, &b, 24, FD_BIAS, 0); /* do multiply */
|
||
return rpackfd (&a, NULL); /* round and pack */
|
||
}
|
||
|
||
int32 op_muld (int32 *opnd, int32 *rh)
|
||
{
|
||
UFP a, b;
|
||
|
||
unpackd (opnd[0], opnd[1], &a);
|
||
unpackd (opnd[2], opnd[3], &b);
|
||
vax_fmul (&a, &b, 56, FD_BIAS, 0); /* do multiply */
|
||
return rpackfd (&a, rh); /* round and pack */
|
||
}
|
||
|
||
int32 op_mulg (int32 *opnd, int32 *rh)
|
||
{
|
||
UFP a, b;
|
||
|
||
unpackg (opnd[0], opnd[1], &a); /* G format */
|
||
unpackg (opnd[2], opnd[3], &b);
|
||
vax_fmul (&a, &b, 53, G_BIAS, 0); /* do multiply */
|
||
return rpackg (&a, rh); /* round and pack */
|
||
}
|
||
|
||
/* Floating multiply - 64b * 64b with cross products
|
||
Where is Alpha's UMULH when you need it?
|
||
*/
|
||
|
||
void vax_fmul (UFP *a, UFP *b, int32 prec, int32 bias, t_int64 mask)
|
||
{
|
||
t_uint64 ah, bh, al, bl, rhi, rlo, rmid1, rmid2;
|
||
|
||
if ((a->exp == 0) || (b->exp == 0)) { /* zero argument? */
|
||
a->frac = a->sign = a->exp = 0; /* result is zero */
|
||
return; }
|
||
a->sign = a->sign ^ b->sign; /* sign of result */
|
||
a->exp = a->exp + b->exp - bias; /* add exponents */
|
||
ah = (a->frac >> 32) & M32; /* split operands */
|
||
bh = (b->frac >> 32) & M32; /* into 32b chunks */
|
||
rhi = ah * bh; /* high result */
|
||
if (prec > 32) { /* 64b needed? */
|
||
al = a->frac & M32;
|
||
bl = b->frac & M32;
|
||
rmid1 = ah * bl;
|
||
rmid2 = al * bh;
|
||
rlo = al * bl;
|
||
rhi = rhi + ((rmid1 >> 32) & M32) + ((rmid2 >> 32) & M32);
|
||
rmid1 = rlo + (rmid1 << 32); /* add mid1 to lo */
|
||
if (rmid1 < rlo) rhi = rhi + 1; /* carry? incr hi */
|
||
rmid2 = rmid1 + (rmid2 << 32); /* add mid2 to to */
|
||
if (rmid2 < rmid1) rhi = rhi + 1; } /* carry? incr hi */
|
||
a->frac = rhi & ~mask; /* mask out */
|
||
norm (a); /* normalize */
|
||
return;
|
||
}
|
||
|
||
/* Floating divide */
|
||
|
||
int32 op_divf (int32 *opnd)
|
||
{
|
||
UFP a, b;
|
||
|
||
unpackf (opnd[0], &a); /* F format */
|
||
unpackf (opnd[1], &b);
|
||
vax_fdiv (&a, &b, 26, FD_BIAS); /* do divide */
|
||
return rpackfd (&b, NULL); /* round and pack */
|
||
}
|
||
|
||
int32 op_divd (int32 *opnd, int32 *rh)
|
||
{
|
||
UFP a, b;
|
||
|
||
unpackd (opnd[0], opnd[1], &a);
|
||
unpackd (opnd[2], opnd[3], &b);
|
||
vax_fdiv (&a, &b, 58, FD_BIAS); /* do divide */
|
||
return rpackfd (&b, rh); /* round and pack */
|
||
}
|
||
|
||
int32 op_divg (int32 *opnd, int32 *rh)
|
||
{
|
||
UFP a, b;
|
||
|
||
unpackg (opnd[0], opnd[1], &a); /* G format */
|
||
unpackg (opnd[2], opnd[3], &b);
|
||
vax_fdiv (&a, &b, 55, G_BIAS); /* do divide */
|
||
return rpackg (&b, rh); /* round and pack */
|
||
}
|
||
|
||
/* Floating divide
|
||
Needs to develop at least one rounding bit. Since the first
|
||
divide step can fail, caller should specify 2 more bits than
|
||
the precision of the fraction.
|
||
*/
|
||
|
||
void vax_fdiv (UFP *a, UFP *b, int32 prec, int32 bias)
|
||
{
|
||
int32 i;
|
||
t_uint64 quo = 0;
|
||
|
||
if (a->exp == 0) FLT_DZRO_FAULT; /* divr = 0? */
|
||
if (b->exp == 0) return; /* divd = 0? */
|
||
b->sign = b->sign ^ a->sign; /* result sign */
|
||
b->exp = b->exp - a->exp + bias + 1; /* unbiased exp */
|
||
a->frac = a->frac >> 1; /* allow 1 bit left */
|
||
b->frac = b->frac >> 1;
|
||
for (i = 0; (i < prec) && b->frac; i++) { /* divide loop */
|
||
quo = quo << 1; /* shift quo */
|
||
if (b->frac >= a->frac) { /* div step ok? */
|
||
b->frac = b->frac - a->frac; /* subtract */
|
||
quo = quo + 1; } /* quo bit = 1 */
|
||
b->frac = b->frac << 1; } /* shift divd */
|
||
b->frac = quo << (UF_V_NM - i + 1); /* shift quo */
|
||
norm (b); /* normalize */
|
||
return;
|
||
}
|
||
|
||
/* Extended modularize
|
||
|
||
One of three floating point instructions dropped from the architecture,
|
||
EMOD presents two sets of complications. First, it requires an extended
|
||
fraction multiply, with precise (and unusual) truncation conditions.
|
||
Second, it has two write operands, a dubious distinction it shares
|
||
with EDIV.
|
||
*/
|
||
|
||
int32 op_emodf (int32 *opnd, int32 *intgr, int32 *flg)
|
||
{
|
||
UFP a, b;
|
||
|
||
unpackf (opnd[1], &a); /* unpack operands */
|
||
unpackf (opnd[2], &b);
|
||
a.frac = a.frac | (((t_uint64) opnd[0]) << 32); /* extend src1 */
|
||
vax_fmul (&a, &b, 32, FD_BIAS, M32); /* multiply */
|
||
vax_fmod (&a, FD_BIAS, intgr, flg); /* sep int & frac */
|
||
return rpackfd (&a, NULL); /* return frac */
|
||
}
|
||
|
||
int32 op_emodd (int32 *opnd, int32 *flo, int32 *intgr, int32 *flg)
|
||
{
|
||
UFP a, b;
|
||
|
||
unpackd (opnd[1], opnd[2], &a); /* unpack operands */
|
||
unpackd (opnd[3], opnd[4], &b);
|
||
a.frac = a.frac | opnd[0]; /* extend src1 */
|
||
vax_fmul (&a, &b, 64, FD_BIAS, 0); /* multiply */
|
||
vax_fmod (&a, FD_BIAS, intgr, flg); /* sep int & frac */
|
||
return rpackfd (&a, flo); /* return frac */
|
||
}
|
||
|
||
int32 op_emodg (int32 *opnd, int32 *flo, int32 *intgr, int32 *flg)
|
||
{
|
||
UFP a, b;
|
||
|
||
unpackg (opnd[1], opnd[2], &a); /* unpack operands */
|
||
unpackg (opnd[3], opnd[4], &b);
|
||
a.frac = a.frac | (opnd[0] >> 5);
|
||
vax_fmul (&a, &b, 64, G_BIAS, 0); /* multiply */
|
||
vax_fmod (&a, G_BIAS, intgr, flg); /* sep int & frac */
|
||
return rpackg (&a, flo); /* return frac */
|
||
}
|
||
|
||
void vax_fmod (UFP *a, int32 bias, int32 *intgr, int32 *flg)
|
||
{
|
||
if (a->exp <= bias) *intgr = 0; /* 0 or <1? int = 0 */
|
||
else if (a->exp <= (bias + 64)) { /* in range? */
|
||
*intgr = (int32) (a->frac >> (64 - (a->exp - bias)));
|
||
a->frac = a->frac << (a->exp - bias); }
|
||
else *intgr = 0; /* out of range */
|
||
if (a->sign) *intgr = -*intgr; /* -? comp int */
|
||
if ((a->exp >= (bias + 32)) || (((a->sign) != 0) && (*intgr < 0)))
|
||
*flg = CC_V; /* test ovflo */
|
||
else *flg = 0;
|
||
norm (a); /* normalize */
|
||
return;
|
||
}
|
||
|
||
/* Polynomial evaluation
|
||
The most mis-implemented instruction in the VAX (probably here too).
|
||
POLY requires a precise combination of masking versus normalizing
|
||
to achieve the desired answer. In particular, both the multiply
|
||
and add steps are masked prior to normalization. In addition,
|
||
negative small fractions must not be treated as 0 during denorm.
|
||
*/
|
||
|
||
void op_polyf (int32 *opnd, int32 acc)
|
||
{
|
||
UFP r, a, c;
|
||
int32 deg = opnd[1];
|
||
int32 ptr = opnd[2];
|
||
int32 i, wd, res;
|
||
|
||
if (deg > 31) RSVD_OPND_FAULT; /* degree > 31? fault */
|
||
unpackf (opnd[0], &a); /* unpack arg */
|
||
wd = Read (ptr, L_LONG, RD); /* get C0 */
|
||
ptr = ptr + 4;
|
||
unpackf (wd, &r); /* unpack C0 */
|
||
res = rpackfd (&r, NULL); /* first result */
|
||
for (i = 0; (i < deg) && a.exp; i++) { /* loop */
|
||
unpackf (res, &r); /* unpack result */
|
||
vax_fmul (&r, &a, 32, FD_BIAS, M32); /* r = r * arg */
|
||
wd = Read (ptr, L_LONG, RD); /* get Cnext */
|
||
ptr = ptr + 4;
|
||
unpackf (wd, &c); /* unpack Cnext */
|
||
vax_fadd (&r, &c, M32); /* r = r + Cnext */
|
||
res = rpackfd (&r, NULL); } /* round and pack */
|
||
R[0] = res;
|
||
R[1] = R[2] = 0;
|
||
R[3] = opnd[2] + 4 + (opnd[1] << 2);
|
||
return;
|
||
}
|
||
|
||
void op_polyd (int32 *opnd, int32 acc)
|
||
{
|
||
UFP r, a, c;
|
||
int32 deg = opnd[2];
|
||
int32 ptr = opnd[3];
|
||
int32 i, wd, wd1, res, resh;
|
||
|
||
if (deg > 31) RSVD_OPND_FAULT; /* degree > 31? fault */
|
||
unpackd (opnd[0], opnd[1], &a); /* unpack arg */
|
||
wd = Read (ptr, L_LONG, RD); /* get C0 */
|
||
wd1 = Read (ptr + 4, L_LONG, RD);
|
||
ptr = ptr + 8;
|
||
unpackd (wd, wd1, &r); /* unpack C0 */
|
||
res = rpackfd (&r, &resh); /* first result */
|
||
for (i = 0; (i < deg) && a.exp; i++) { /* loop */
|
||
unpackd (res, resh, &r); /* unpack result */
|
||
vax_fmul (&r, &a, 32, FD_BIAS, 0); /* r = r * arg */
|
||
wd = Read (ptr, L_LONG, RD); /* get Cnext */
|
||
wd1 = Read (ptr + 4, L_LONG, RD);
|
||
ptr = ptr + 8;
|
||
unpackd (wd, wd1, &c); /* unpack Cnext */
|
||
vax_fadd (&r, &c, 0); /* r = r + Cnext */
|
||
res = rpackfd (&r, &resh); } /* round and pack */
|
||
R[0] = res;
|
||
R[1] = resh;
|
||
R[2] = 0;
|
||
R[3] = opnd[3] + 4 + (opnd[2] << 2);
|
||
return;
|
||
}
|
||
|
||
void op_polyg (int32 *opnd, int32 acc)
|
||
{
|
||
UFP r, a, c;
|
||
int32 deg = opnd[2];
|
||
int32 ptr = opnd[3];
|
||
int32 i, wd, wd1, res, resh;
|
||
|
||
if (deg > 31) RSVD_OPND_FAULT; /* degree > 31? fault */
|
||
unpackg (opnd[0], opnd[1], &a); /* unpack arg */
|
||
wd = Read (ptr, L_LONG, RD); /* get C0 */
|
||
wd1 = Read (ptr + 4, L_LONG, RD);
|
||
ptr = ptr + 8;
|
||
unpackg (wd, wd1, &r); /* unpack C0 */
|
||
res = rpackg (&r, &resh); /* first result */
|
||
for (i = 0; (i < deg) && a.exp; i++) { /* loop */
|
||
unpackg (res, resh, &r); /* unpack result */
|
||
vax_fmul (&r, &a, 32, G_BIAS, 0); /* r = r * arg */
|
||
wd = Read (ptr, L_LONG, RD); /* get Cnext */
|
||
wd1 = Read (ptr + 4, L_LONG, RD);
|
||
ptr = ptr + 8;
|
||
unpackg (wd, wd1, &c); /* unpack Cnext */
|
||
vax_fadd (&r, &c, 0); /* r = r + Cnext */
|
||
res = rpackg (&r, &resh); } /* round and pack */
|
||
R[0] = res;
|
||
R[1] = resh;
|
||
R[2] = 0;
|
||
R[3] = opnd[3] + 4 + (opnd[2] << 2);
|
||
return;
|
||
}
|
||
|
||
/* Support routines */
|
||
|
||
void unpackf (int32 hi, UFP *r)
|
||
{
|
||
r->sign = hi & FPSIGN; /* get sign */
|
||
r->exp = FD_GETEXP (hi); /* get exponent */
|
||
if (r->exp == 0) { /* exp = 0? */
|
||
if (r->sign) RSVD_OPND_FAULT; /* if -, rsvd op */
|
||
r->frac = 0; /* else 0 */
|
||
return; }
|
||
hi = (((hi & FD_FRACW) | FD_HB) << 16) | ((hi >> 16) & 0xFFFF);
|
||
r->frac = ((t_uint64) hi) << (32 + UF_V_FDLO);
|
||
return;
|
||
}
|
||
|
||
void unpackd (int32 hi, int32 lo, UFP *r)
|
||
{
|
||
r->sign = hi & FPSIGN; /* get sign */
|
||
r->exp = FD_GETEXP (hi); /* get exponent */
|
||
if (r->exp == 0) { /* exp = 0? */
|
||
if (r->sign) RSVD_OPND_FAULT; /* if -, rsvd op */
|
||
r->frac = 0; /* else 0 */
|
||
return; }
|
||
hi = (hi & FD_FRACL) | FD_HB; /* canonical form */
|
||
r->frac = UNSCRAM (hi, lo) << UF_V_FDLO; /* guard bits */
|
||
return;
|
||
}
|
||
|
||
void unpackg (int32 hi, int32 lo, UFP *r)
|
||
{
|
||
r->sign = hi & FPSIGN; /* get sign */
|
||
r->exp = G_GETEXP (hi); /* get exponent */
|
||
if (r->exp == 0) { /* exp = 0? */
|
||
if (r->sign) RSVD_OPND_FAULT; /* if -, rsvd op */
|
||
r->frac = 0; /* else 0 */
|
||
return; }
|
||
hi = (hi & G_FRACL) | G_HB; /* canonical form */
|
||
r->frac = UNSCRAM (hi, lo) << UF_V_GLO; /* guard bits */
|
||
return;
|
||
}
|
||
|
||
void norm (UFP *r)
|
||
{
|
||
int32 i;
|
||
static t_uint64 normmask[5] = {
|
||
0xc000000000000000, 0xf000000000000000, 0xff00000000000000,
|
||
0xffff000000000000, 0xffffffff00000000 };
|
||
static int32 normtab[6] = { 1, 2, 4, 8, 16, 32};
|
||
|
||
if (r->frac == 0) { /* if fraction = 0 */
|
||
r->sign = r->exp = 0; /* result is 0 */
|
||
return; }
|
||
while ((r->frac & UF_NM) == 0) { /* normalized? */
|
||
for (i = 0; i < 5; i++) { /* find first 1 */
|
||
if (r->frac & normmask[i]) break; }
|
||
r->frac = r->frac << normtab[i]; /* shift frac */
|
||
r->exp = r->exp - normtab[i]; } /* decr exp */
|
||
return;
|
||
}
|
||
|
||
int32 rpackfd (UFP *r, int32 *rh)
|
||
{
|
||
if (rh) *rh = 0; /* assume 0 */
|
||
if (r->frac == 0) return 0; /* result 0? */
|
||
r->frac = r->frac + (rh? UF_DRND: UF_FRND); /* round */
|
||
if ((r->frac & UF_NM) == 0) { /* carry out? */
|
||
r->frac = r->frac >> 1; /* renormalize */
|
||
r->exp = r->exp + 1; }
|
||
if (r->exp > (int32) FD_M_EXP) FLT_OVFL_FAULT; /* ovflo? fault */
|
||
if (r->exp <= 0) { /* underflow? */
|
||
if (PSL & PSW_FU) FLT_UNFL_FAULT; /* fault if fu */
|
||
return 0; } /* else 0 */
|
||
if (rh) *rh = UF_GETFDLO (r->frac); /* get low */
|
||
return r->sign | (r->exp << FD_V_EXP) | UF_GETFDHI (r->frac);
|
||
}
|
||
|
||
int32 rpackg (UFP *r, int32 *rh)
|
||
{
|
||
*rh = 0; /* assume 0 */
|
||
if (r->frac == 0) return 0; /* result 0? */
|
||
r->frac = r->frac + UF_GRND; /* round */
|
||
if ((r->frac & UF_NM) == 0) { /* carry out? */
|
||
r->frac = r->frac >> 1; /* renormalize */
|
||
r->exp = r->exp + 1; }
|
||
if (r->exp > (int32) G_M_EXP) FLT_OVFL_FAULT; /* ovflo? fault */
|
||
if (r->exp <= 0) { /* underflow? */
|
||
if (PSL & PSW_FU) FLT_UNFL_FAULT; /* fault if fu */
|
||
return 0; } /* else 0 */
|
||
if (rh) *rh = UF_GETGLO (r->frac); /* get low */
|
||
return r->sign | (r->exp << G_V_EXP) | UF_GETGHI (r->frac);
|
||
}
|