771 lines
35 KiB
C
771 lines
35 KiB
C
/* h316_mi.c- BBN ARPAnet IMP/TIP Modem Interface
|
|
Based on the SIMH simulator package written by Robert M Supnik.
|
|
|
|
Copyright (c) 2013 Robert Armstrong, bob@jfcl.com.
|
|
|
|
Permission is hereby granted, free of charge, to any person obtaining a
|
|
copy of this software and associated documentation files (the "Software"),
|
|
to deal in the Software without restriction, including without limitation
|
|
the rights to use, copy, modify, merge, publish, distribute, sublicense,
|
|
and/or sell copies of the Software, and to permit persons to whom the
|
|
Software is furnished to do so, subject to the following conditions:
|
|
|
|
The above copyright notice and this permission notice shall be included in
|
|
all copies or substantial portions of the Software.
|
|
|
|
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
|
|
ROBERT ARMSTRONG BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
|
|
IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
|
|
CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
|
|
|
|
Except as contained in this notice, the name of Robert Armstrong shall not be
|
|
used in advertising or otherwise to promote the sale, use or other dealings
|
|
in this Software without prior written authorization from Robert Armstrong.
|
|
|
|
|
|
REVISION HISTORY
|
|
|
|
mi modem interface
|
|
|
|
21-May-13 RLA New file
|
|
|
|
|
|
OVERVIEW
|
|
|
|
The modem interface is one of the BBN engineered devices unique to the
|
|
ARPAnet IMP/TIP. The original hardware was a full duplex synchronous serial
|
|
line interface operating at 56k bps. The hardware was fairly smart and was
|
|
able to handle line synchronization (SYN), packet start (STX) and end (ETX),
|
|
and data escape (DLE) autonomously. Data is transferred directly to and
|
|
from H316 main memory using the DMC mechanism. The modem interface also
|
|
calculated a 24 bit "parity" (and by that I assume they meant some form of
|
|
CRC) value. This was automatically appended to the end of the transmitted
|
|
data and automatically verified by the receiving modem.
|
|
|
|
CONNECTIONS
|
|
|
|
This module provides two basic options for emulating the modem. Option 1
|
|
takes the data packets from H316 memory, wraps them in a UDP packet, and
|
|
sends them to another simh instance. The remote simh then unwraps the data
|
|
packet and loads it directly into H316 memory. In this instance,
|
|
synchronization, start of text/end of text, and data escapes are pointless
|
|
and are not used. The words are simply moved verbatim from one H316 to
|
|
another.
|
|
|
|
The other option is to logically connect the emulated modem to a physical
|
|
serial port on this PC. In that case we attempt to emulate the actions
|
|
of the original modem as closely as possible, including the synchronization,
|
|
start of text/end of text and data escape characters. Synchronization is
|
|
pointless on an asynchronous interface, of course, but we do it anyway in
|
|
the interest of compatability. We also attempt to calculate a 24 bit CRC
|
|
using (as best I can determine) the same algorithm as the original modems.
|
|
|
|
MULTIPLE INSTANCES
|
|
|
|
Each IMP can support up to five modem lines, and fitting this into simh
|
|
presents an architectural problem. The temptation is to treat all modems as
|
|
one device with multiple units (each unit corresponding to one line), but
|
|
that's a problem. The simh view of units is like a disk or tape - there's
|
|
a single controller that has one IO address, one interrupt and one DMA/DMC
|
|
channel. That controller then has multiple units attached to it that are
|
|
selected by bits in a controller register and all units share the same
|
|
IO, interrupt and DMA/DMC assignments.
|
|
|
|
The modems aren't like that at all - each of the five cards is completely
|
|
independent with its own distinct IO address, interrupt and DMC assignments.
|
|
It's analagous to five instances of the same controller installed in the
|
|
machine, but simh unfortunately has limited support for multiple instances
|
|
of the same controller. The few instances of prior art in simh that I can
|
|
find (e.g. xq, xqb on the PDP11/VAX) have just been done ad hoc by
|
|
duplicating all the device data. Rather than rewrite simh, that's the
|
|
approach I took here, even though with five instances it gets awkward.
|
|
|
|
POLLING AND SERVICE
|
|
|
|
The IMP software turns out to be extraordinarily sensitive to modem timing.
|
|
It actually goes to the trouble of measuring the effective line speed by
|
|
using the RTC to time how long it takes to send a message, and one thing that
|
|
especially annoys the IMP are variations in the effective line speed. They
|
|
had a lot of trouble with AT&T Long Lines back in the Old Days, and the IMP
|
|
has quite a bit of code to monitor line quality. Even fairly minor variations
|
|
in speed will cause it to mark the line as "down" and sent a trouble report
|
|
back to BBN.
|
|
|
|
To combat this, we actually let the RTC code time the transmitter interrupts.
|
|
When the IMP software does a "start modem output" OCP the entire packet will
|
|
be extracted from H316 memory and transmitted via UDP at that instant, BUT
|
|
the transmitter done interrupt will be deferred. The delay is computed from
|
|
the length of the packet and the simulated line speed, and then the RTC is
|
|
used to count down the interval. When the time expires, the interrupt request
|
|
is generated. It's unfortunate to have to couple the RTC and the modem in
|
|
this way, but since the IMP code is using the RTC to measure the line speed
|
|
AND since the RTC determines when the transmit done occurs, it guarantees
|
|
that the IMP always sees exactly the same delay.
|
|
|
|
The modem receiver is completely independent of the transmitter and is polled
|
|
by the usual simh event queue mechanism and mi_service() routine. When the
|
|
IMP code executes a "start modem input" OCP a read pending flag is set in the
|
|
modem status but nothing else occurs. Each poll checks the UDP socket for
|
|
incoming data and, if a packet was received AND a read operation is pending,
|
|
then the read completes that moment and the interrupt request is asserted.
|
|
The UDP socket is polled regardless of whether a read is pending and if data
|
|
arrives without a read then it's discarded. That's exactly what a real modem
|
|
would do.
|
|
|
|
ERROR HANDLING
|
|
|
|
Transmitter error handling is easy - fatal errors print a message and abort
|
|
the simulation, but any other errors are simply ignored. The IMP modems had
|
|
no kind of error dection on the transmitter side and no way to report them
|
|
anyway so we do the same. Any data packet associated with the error is just
|
|
discarded. In particular with both UDP and COM ports there's no way to tell
|
|
whether anybody is on the other end listening, so even packets that are
|
|
successfully transmitted may disappear into the ether. This isn't a problem
|
|
for the IMP - the real world was like that too and the IMP is able to handle
|
|
retransmitting packets without our help.
|
|
|
|
Receiver errors set the error flag in the modem status; this flag can be
|
|
tested and cleared by the "skip on modem error" SKS instruction. The only
|
|
receiver error that can be detected is buffer overrun (i.e. the sender's
|
|
message was longer than the receiver's buffer). With a serial connection
|
|
checksum errors are also possible, but those never occur with UDP.
|
|
|
|
Transmitting or receiving on a modem that's not attached isn't an error - it
|
|
simply does nothing. It's analogous to a modem with the phone line unplugged.
|
|
Hard I/O errors for UDP or COM ports print an error message and then detach
|
|
the modem connection. It's up to the user to interrupt the simulation and
|
|
reattach if he wants to try again.
|
|
|
|
STATE
|
|
|
|
Modem state is maintained in the following variables -
|
|
|
|
RXPOLL 24 receiver polling interval
|
|
RXPEND 1 an input operation is pending
|
|
RXERR 1 receiver error flag
|
|
RXIEN 1 receiver interrupt enable
|
|
RXIRQ 1 receiver interrupt request
|
|
RXTOT 32 count of total messages received
|
|
TXDLY 32 RTC ticks until TX done interrupt
|
|
TXIEN 1 transmitter interrupt enable
|
|
TXIRQ 1 transmitter interrupt request
|
|
TXTOT 32 count of total messages transmitted
|
|
LINKNO 32 link number for h316_udp module
|
|
BPS 32 simulated bps for UDP delay calculations
|
|
actual baud rate for physical COM ports
|
|
ILOOP 1 interface (local) loopback enabled
|
|
RLOOP 1 remote (line) loopback enabled
|
|
|
|
Most of these values will be found in the Modem Information Data Block (aka
|
|
"MIDB") but a few are stored elsewhere (e.g. IRQ/IEN are in the CPU's dev_int
|
|
and dev_enb vectors).
|
|
|
|
TODO
|
|
|
|
Implement checksum handling
|
|
Implement remote loopback
|
|
*/
|
|
#ifdef VM_IMPTIP
|
|
#include "h316_defs.h" // H316 emulator definitions
|
|
#include "h316_imp.h" // ARPAnet IMP/TIP definitions
|
|
|
|
// Externals from other parts of simh ...
|
|
extern uint16 dev_ext_int, dev_ext_enb; // current IRQ and IEN bit vectors
|
|
extern int32 PC; // current PC (for debug messages)
|
|
extern int32 stop_inst; // needed by IOBADFNC()
|
|
extern uint16 M[]; // main memory (for DMC access)
|
|
|
|
// Forward declarations ...
|
|
int32 mi_io (uint16 line, int32 inst, int32 fnc, int32 dat, int32 dev);
|
|
int32 mi1_io (int32 inst, int32 fnc, int32 dat, int32 dev);
|
|
int32 mi2_io (int32 inst, int32 fnc, int32 dat, int32 dev);
|
|
int32 mi3_io (int32 inst, int32 fnc, int32 dat, int32 dev);
|
|
int32 mi4_io (int32 inst, int32 fnc, int32 dat, int32 dev);
|
|
int32 mi5_io (int32 inst, int32 fnc, int32 dat, int32 dev);
|
|
t_stat mi_rx_service (UNIT *uptr);
|
|
void mi_rx_local (uint16 line, uint16 txnext, uint16 txcount);
|
|
t_stat mi_reset (DEVICE *dptr);
|
|
t_stat mi_attach (UNIT *uptr, CONST char *cptr);
|
|
t_stat mi_detach (UNIT *uptr);
|
|
t_stat mi_set_loopback (UNIT *uptr, int32 val, CONST char *cptr, void *desc);
|
|
t_stat mi_show_loopback (FILE *st, UNIT *uptr, int32 val, CONST void *desc);
|
|
|
|
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
////////////////////// D A T A S T R U C T U R E S //////////////////////
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
|
|
// simh requires several data structures for every device - a DIB, one or more
|
|
// UNITS, a modifier table, a register list, and a device definition. The sit-
|
|
// uation here is even more complicated because we have five identical modems to
|
|
// define, and so lots of clever macros are used to handle the repetition and
|
|
// save some typing.
|
|
|
|
// Modem Information Data Blocks ...
|
|
// The MIDB is our own internal data structure for each modem. It keeps data
|
|
// about the current state, COM port, UDP connection, etc.
|
|
#define MI_MIDB(N) {FALSE, FALSE, 0, 0, 0, FALSE, FALSE, NOLINK, MI_TXBPS}
|
|
MIDB mi1_db = MI_MIDB(1), mi2_db = MI_MIDB(2);
|
|
MIDB mi3_db = MI_MIDB(3), mi4_db = MI_MIDB(4);
|
|
MIDB mi5_db = MI_MIDB(5);
|
|
|
|
// Modem Device Information Blocks ...
|
|
// The DIB is the structure simh uses to keep track of the device IO address
|
|
// and IO service routine. It can also hold the DMC channel, but we don't use
|
|
// that because it's unit specific.
|
|
#define MI_DIB(N) {MI##N, 1, MI##N##_RX_DMC, MI##N##_TX_DMC, \
|
|
INT_V_MI##N##RX, INT_V_MI##N##TX, &mi##N##_io, N}
|
|
DIB mi1_dib = MI_DIB(1), mi2_dib = MI_DIB(2);
|
|
DIB mi3_dib = MI_DIB(3), mi4_dib = MI_DIB(4);
|
|
DIB mi5_dib = MI_DIB(5);
|
|
|
|
// Modem Device Unit data ...
|
|
// simh uses the unit data block primarily to schedule device service events.
|
|
#define mline u3 // our modem line number is stored in user data 3
|
|
#define MI_UNIT(N) {UDATA (&mi_rx_service, UNIT_ATTABLE, 0), MI_RXPOLL, N, 0, 0, 0}
|
|
UNIT mi1_unit = MI_UNIT(1), mi2_unit = MI_UNIT(2);
|
|
UNIT mi3_unit = MI_UNIT(3), mi4_unit = MI_UNIT(4);
|
|
UNIT mi5_unit = MI_UNIT(5);
|
|
|
|
// Modem Device Registers ...
|
|
// These are the simh device "registers" - they c can be viewed with the
|
|
// "EXAMINE MIn STATE" command and modified by "DEPOSIT MIn ..."
|
|
#define MI_REG(N) { \
|
|
{ DRDATA (RXPOLL, mi##N##_unit.wait, 24), REG_NZ + PV_LEFT }, \
|
|
{ FLDATA (RXPEND, mi##N##_db.rxpending, 0), REG_RO + PV_RZRO }, \
|
|
{ FLDATA (RXERR, mi##N##_db.rxerror, 0), PV_RZRO }, \
|
|
{ FLDATA (RXIEN, dev_ext_enb, INT_V_MI##N##RX-INT_V_EXTD) }, \
|
|
{ FLDATA (RXIRQ, dev_ext_int, INT_V_MI##N##RX-INT_V_EXTD) }, \
|
|
{ DRDATA (RXTOT, mi##N##_db.rxtotal, 32), REG_RO + PV_LEFT }, \
|
|
{ DRDATA (TXDLY, mi##N##_db.txdelay, 32), PV_LEFT }, \
|
|
{ FLDATA (TXIEN, dev_ext_enb, INT_V_MI##N##TX-INT_V_EXTD) }, \
|
|
{ FLDATA (TXIRQ, dev_ext_int, INT_V_MI##N##TX-INT_V_EXTD) }, \
|
|
{ DRDATA (TXTOT, mi##N##_db.txtotal, 32), REG_RO + PV_LEFT }, \
|
|
{ DRDATA (LINK, mi##N##_db.link, 32), REG_RO + PV_LEFT }, \
|
|
{ DRDATA (BPS, mi##N##_db.bps, 32), REG_NZ + PV_LEFT }, \
|
|
{ FLDATA (LLOOP, mi##N##_db.lloop, 0), REG_RO + PV_RZRO }, \
|
|
{ FLDATA (ILOOP, mi##N##_db.iloop, 0), REG_RO + PV_RZRO }, \
|
|
{ NULL } \
|
|
}
|
|
REG mi1_reg[] = MI_REG(1), mi2_reg[] = MI_REG(2);
|
|
REG mi3_reg[] = MI_REG(3), mi4_reg[] = MI_REG(4);
|
|
REG mi5_reg[] = MI_REG(5);
|
|
|
|
// Modem Device Modifiers ...
|
|
// These are the modifiers simh uses for the "SET MIn" and "SHOW MIn" commands.
|
|
#define MI_MOD(N) { \
|
|
{ MTAB_XTD|MTAB_VDV, 0, "LOOPBACK", "LOOPINTERFACE", &mi_set_loopback, &mi_show_loopback, NULL }, \
|
|
{ MTAB_XTD|MTAB_VDV, 1, NULL, "NOLOOPINTERFACE", &mi_set_loopback, NULL, NULL }, \
|
|
{ MTAB_XTD|MTAB_VDV, 2, NULL, "LOOPLINE", &mi_set_loopback, NULL, NULL }, \
|
|
{ MTAB_XTD|MTAB_VDV, 3, NULL, "NOLOOPLINE", &mi_set_loopback, NULL, NULL }, \
|
|
{ 0 } \
|
|
}
|
|
MTAB mi1_mod[] = MI_MOD(1), mi2_mod[] = MI_MOD(2);
|
|
MTAB mi3_mod[] = MI_MOD(3), mi4_mod[] = MI_MOD(4);
|
|
MTAB mi5_mod[] = MI_MOD(5);
|
|
|
|
// Debug modifiers for "SET MIn DEBUG = xxx" ...
|
|
DEBTAB mi_debug[] = {
|
|
{"WARN", IMP_DBG_WARN}, // print warnings that would otherwise be suppressed
|
|
{"UDP", IMP_DBG_UDP}, // print all UDP messages sent and received
|
|
{"IO", IMP_DBG_IOT}, // print all program I/O instructions
|
|
{"MSG", MI_DBG_MSG}, // decode and print all messages
|
|
{0}
|
|
};
|
|
|
|
// Modem Device data ...
|
|
// This is the primary simh structure that defines each device - it gives the
|
|
// plain text name, the addresses of the unit, register and modifier tables, and
|
|
// the addresses of all action routines (e.g. attach, reset, etc).
|
|
#define MI_DEV(MI,N,F) { \
|
|
#MI, &mi##N##_unit, mi##N##_reg, mi##N##_mod, \
|
|
1, 10, 31, 1, 8, 8, \
|
|
NULL, NULL, &mi_reset, NULL, &mi_attach, &mi_detach, \
|
|
&mi##N##_dib, DEV_DISABLE|DEV_DEBUG|(F), 0, mi_debug, NULL, NULL \
|
|
}
|
|
DEVICE mi1_dev = MI_DEV(MI1,1,DEV_DIS), mi2_dev = MI_DEV(MI2,2,DEV_DIS);
|
|
DEVICE mi3_dev = MI_DEV(MI3,3,DEV_DIS), mi4_dev = MI_DEV(MI4,4,DEV_DIS);
|
|
DEVICE mi5_dev = MI_DEV(MI5,5,DEV_DIS);
|
|
|
|
// Modem Tables ...
|
|
// These tables make it easy to locate the data associated with any line.
|
|
DEVICE *const mi_devices[MI_NUM] = {&mi1_dev, &mi2_dev, &mi3_dev, &mi4_dev, &mi5_dev };
|
|
UNIT *const mi_units [MI_NUM] = {&mi1_unit, &mi2_unit, &mi3_unit, &mi4_unit, &mi5_unit};
|
|
DIB *const mi_dibs [MI_NUM] = {&mi1_dib, &mi2_dib, &mi3_dib, &mi4_dib, &mi5_dib };
|
|
MIDB *const mi_midbs [MI_NUM] = {&mi1_db, &mi2_db, &mi3_db, &mi4_db, &mi5_db };
|
|
|
|
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
////////////////// L O W L E V E L F U N C T I O N S ///////////////////
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
|
|
// Find a pointer to the DEVICE, UNIT, DIB or MIDB given the line number ...
|
|
#define PDEVICE(l) mi_devices[(l)-1]
|
|
#define PUNIT(l) mi_units[(l)-1]
|
|
#define PDIB(l) mi_dibs[(l)-1]
|
|
#define PMIDB(l) mi_midbs[(l)-1]
|
|
|
|
// These macros set and clear the interrupt request and enable flags ...
|
|
#define SET_RX_IRQ(l) SET_EXT_INT((1u << (PDIB(l)->rxint - INT_V_EXTD)))
|
|
#define SET_TX_IRQ(l) SET_EXT_INT((1u << (PDIB(l)->txint - INT_V_EXTD)))
|
|
#define CLR_RX_IRQ(l) CLR_EXT_INT((1u << (PDIB(l)->rxint - INT_V_EXTD)))
|
|
#define CLR_TX_IRQ(l) CLR_EXT_INT((1u << (PDIB(l)->txint - INT_V_EXTD)))
|
|
#define CLR_RX_IEN(l) CLR_EXT_ENB((1u << (PDIB(l)->rxint - INT_V_EXTD)))
|
|
#define CLR_TX_IEN(l) CLR_EXT_ENB((1u << (PDIB(l)->txint - INT_V_EXTD)))
|
|
|
|
// TRUE if the line has the specified debugging output enabled ...
|
|
#define ISLDBG(l,f) ((PDEVICE(l)->dctrl & (f)) != 0)
|
|
|
|
// Reset receiver (clear flags AND initialize all data) ...
|
|
void mi_reset_rx (uint16 line)
|
|
{
|
|
PMIDB(line)->iloop = PMIDB(line)->lloop = FALSE;
|
|
udp_set_link_loopback (PDEVICE(line), PMIDB(line)->link, FALSE);
|
|
PMIDB(line)->rxerror = PMIDB(line)->rxpending = FALSE;
|
|
PMIDB(line)->rxtotal = 0;
|
|
CLR_RX_IRQ(line); CLR_RX_IEN(line);
|
|
}
|
|
|
|
// Reset transmitter (clear flags AND initialize all data) ...
|
|
void mi_reset_tx (uint16 line)
|
|
{
|
|
PMIDB(line)->iloop = PMIDB(line)->lloop = FALSE;
|
|
udp_set_link_loopback (PDEVICE(line), PMIDB(line)->link, FALSE);
|
|
PMIDB(line)->txtotal = PMIDB(line)->txdelay = 0;
|
|
CLR_TX_IRQ(line); CLR_TX_IEN(line);
|
|
}
|
|
|
|
// Get the DMC control words (starting address, end and length) for the channel.
|
|
void mi_get_dmc (uint16 dmc, uint16 *pnext, uint16 *plast, uint16 *pcount)
|
|
{
|
|
uint16 dmcad;
|
|
if ((dmc<DMC1) || (dmc>(DMC1+DMC_MAX-1))) {
|
|
*pnext = *plast = *pcount = 0; return;
|
|
}
|
|
dmcad = DMC_BASE + (dmc-DMC1)*2;
|
|
*pnext = M[dmcad] & X_AMASK; *plast = M[dmcad+1] & X_AMASK;
|
|
*pcount = (*plast - *pnext + 1) & DMASK;
|
|
}
|
|
|
|
// Update the DMC words to show "count" words transferred.
|
|
void mi_update_dmc (uint32 dmc, uint32 count)
|
|
{
|
|
uint16 dmcad, next;
|
|
if ((dmc<DMC1) || (dmc>(DMC1+DMC_MAX-1))) return;
|
|
dmcad = DMC_BASE + (dmc-DMC1)*2;
|
|
next = M[dmcad];
|
|
M[dmcad] = (next & DMA_IN) | ((next+count) & X_AMASK);
|
|
}
|
|
|
|
// Link error recovery ...
|
|
void mi_link_error (uint16 line)
|
|
{
|
|
// Any physical I/O error, either for the UDP link or a COM port, prints a
|
|
// message and detaches the modem. It's up to the user to decide what to do
|
|
// after that...
|
|
sim_printf("MI%d - UNRECOVERABLE I/O ERROR!\n", line);
|
|
mi_reset_rx(line); mi_reset_tx(line);
|
|
sim_cancel(PUNIT(line)); mi_detach(PUNIT(line));
|
|
PMIDB(line)->link = NOLINK;
|
|
}
|
|
|
|
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
/////////////////// D E B U G G I N G R O U T I N E S ////////////////////
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
|
|
// Log a modem input or output including DMC words ...
|
|
void mi_debug_mio (uint16 line, uint32 dmc, const char *ptext)
|
|
{
|
|
uint16 next, last, count;
|
|
if (!ISLDBG(line, IMP_DBG_IOT)) return;
|
|
mi_get_dmc(dmc, &next, &last, &count);
|
|
sim_debug(IMP_DBG_IOT, PDEVICE(line),
|
|
"start %s (PC=%06o, next=%06o, last=%06o, count=%d)\n",
|
|
ptext, PC-1, next, last, count);
|
|
}
|
|
|
|
// Log the contents of a message sent or received ...
|
|
void mi_debug_msg (uint16 line, uint16 next, uint16 count, const char *ptext)
|
|
{
|
|
uint16 i; char buf[CBUFSIZE]; int len = 0;
|
|
if (!ISLDBG(line, MI_DBG_MSG)) return;
|
|
sim_debug(MI_DBG_MSG, PDEVICE(line), "message %s (length=%d)\n", ptext, count);
|
|
for (i = 1, len = 0; i <= count; ++i) {
|
|
len += sprintf(buf+len, "%06o ", M[next+i-1]);
|
|
if (((i & 7) == 0) || (i == count)) {
|
|
sim_debug(MI_DBG_MSG, PDEVICE(line), "- %s\n", buf); len = 0;
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
///////////////// T R A N S M I T A N D R E C E I V E //////////////////
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
|
|
// Start the transmitter ...
|
|
void mi_start_tx (uint16 line)
|
|
{
|
|
// This handles all the work of the "start modem output" OCP, including
|
|
// extracting the packet from H316 memory, EXCEPT for actually setting the
|
|
// transmit done interrupt. That's handled by the RTC polling routine after
|
|
// a delay that we calculate..
|
|
uint16 next, last, count; uint32 nbits; t_stat ret;
|
|
|
|
// Get the DMC words for this channel and update the next pointer as if the
|
|
// transfer actually occurred.
|
|
mi_get_dmc(PDIB(line)->txdmc, &next, &last, &count);
|
|
mi_update_dmc(PDIB(line)->txdmc, count);
|
|
mi_debug_msg (line, next, count, "sent");
|
|
|
|
// Transmit the data, handling both the interface loopback AND the line loop
|
|
// back flags in the process. Note that in particular the interface loop back
|
|
// does NOT require that the modem be attached!
|
|
if (PMIDB(line)->iloop) {
|
|
mi_rx_local(line, next, count);
|
|
} else if (PMIDB(line)->link != NOLINK) {
|
|
ret = udp_send(PDEVICE(line), PMIDB(line)->link, &M[next], count);
|
|
if (ret != SCPE_OK) mi_link_error(line);
|
|
}
|
|
|
|
// Do some fancy math to figure out how long, in RTC ticks, it would actually
|
|
// take to transmit a packet of this length with a real modem and phone line.
|
|
// Note that the "+12" is an approximation for the modem overhead, including
|
|
// DLE, STX, ETX and checksum bytes, that would be added to the packet.
|
|
nbits = (((uint32) count)*2UL + 12UL) * 8UL;
|
|
PMIDB(line)->txdelay = (nbits * 1000000UL) / (PMIDB(line)->bps * rtc_interval);
|
|
//fprintf(stderr,"MI%d - transmit packet, length=%d, bits=%ld, interval=%ld, delay=%ld\n", line, count, nbits, rtc_interval, PMIDB(line)->txdelay);
|
|
|
|
// That's it - we're done until it's time for the TX done interrupt ...
|
|
CLR_TX_IRQ(line);
|
|
}
|
|
|
|
// Poll for transmitter done interrupts ...
|
|
void mi_poll_tx (uint16 line, uint32 quantum)
|
|
{
|
|
// This routine is called, via the RTC service, to count down the interval
|
|
// until the transmitter finishes. When it hits zero, an interrupt occurs.
|
|
if (PMIDB(line)->txdelay == 0) return;
|
|
if (PMIDB(line)->txdelay <= quantum) {
|
|
SET_TX_IRQ(line); PMIDB(line)->txdelay = 0; PMIDB(line)->txtotal++;
|
|
sim_debug(IMP_DBG_IOT, PDEVICE(line), "transmit done (message #%d, intreq=%06o)\n", PMIDB(line)->txtotal, dev_ext_int);
|
|
} else
|
|
PMIDB(line)->txdelay -= quantum;
|
|
}
|
|
|
|
// Start the receiver ...
|
|
void mi_start_rx (uint16 line)
|
|
{
|
|
// "Starting" the receiver simply sets the RX pending flag. Nothing else
|
|
// needs to be done (nothing else _can_ be done!) until we actually receive
|
|
// a real packet.
|
|
|
|
// We check for the case of another receive already pending, but I don't
|
|
// think the real hardware detected this or considered it an error condition.
|
|
if (PMIDB(line)->rxpending) {
|
|
sim_debug(IMP_DBG_WARN,PDEVICE(line),"start input while input already pending\n");
|
|
}
|
|
PMIDB(line)->rxpending = TRUE; PMIDB(line)->rxerror = FALSE;
|
|
CLR_RX_IRQ(line);
|
|
}
|
|
|
|
// Poll for receiver data ...
|
|
void mi_poll_rx (uint16 line)
|
|
{
|
|
// This routine is called by mi_service to poll for any packets received.
|
|
// This is done regardless of whether a receive is pending on the line. If
|
|
// a packet is waiting AND a receive is pending then we'll store it and finish
|
|
// the receive operation. If a packet is waiting but no receive is pending
|
|
// then the packet is discarded...
|
|
uint16 next, last, maxbuf; uint16 *pdata; int16 count;
|
|
|
|
// If the modem isn't attached, then the read never completes!
|
|
if (PMIDB(line)->link == NOLINK) return;
|
|
|
|
// Get the DMC words for this channel, or zeros if no read is pending ...
|
|
if (PMIDB(line)->rxpending) {
|
|
mi_get_dmc(PDIB(line)->rxdmc, &next, &last, &maxbuf);
|
|
pdata = &M[next];
|
|
} else {
|
|
next = last = maxbuf = 0; pdata = NULL;
|
|
}
|
|
// Try to read a packet. If we get nothing then just return.
|
|
count = udp_receive(PDEVICE(line), PMIDB(line)->link, pdata, maxbuf);
|
|
if (count == 0) return;
|
|
if (count < 0) {mi_link_error(line); return;}
|
|
|
|
// Now would be a good time to worry about whether a receive is pending!
|
|
if (!PMIDB(line)->rxpending) {
|
|
sim_debug(IMP_DBG_WARN, PDEVICE(line), "data received with no input pending\n");
|
|
return;
|
|
}
|
|
|
|
// We really got a packet! Update the DMC pointers to reflect the actual
|
|
// size of the packet received. If the packet length would have exceeded the
|
|
// receiver buffer, then that sets the error flag too.
|
|
if (count > maxbuf) {
|
|
sim_debug(IMP_DBG_WARN, PDEVICE(line), "receiver overrun (length=%d maxbuf=%d)\n", count, maxbuf);
|
|
PMIDB(line)->rxerror = TRUE; count = maxbuf;
|
|
}
|
|
mi_update_dmc(PDIB(line)->rxdmc, count);
|
|
mi_debug_msg (line, next, count, "received");
|
|
|
|
// Assert the interrupt request and we're done!
|
|
SET_RX_IRQ(line); PMIDB(line)->rxpending = FALSE; PMIDB(line)->rxtotal++;
|
|
sim_debug(IMP_DBG_IOT, PDEVICE(line), "receive done (message #%d, intreq=%06o)\n", PMIDB(line)->rxtotal, dev_ext_int);
|
|
}
|
|
|
|
// Receive cross patched data ...
|
|
void mi_rx_local (uint16 line, uint16 txnext, uint16 txcount)
|
|
{
|
|
// This routine is invoked by the mi_start_tx() function when this modem has
|
|
// the "interface cross patch" bit set. This flag causes the modem to talk to
|
|
// to itself, and data sent by the transmitter goes directly to the receiver.
|
|
// The modem is bypassed completely and in fact need not even be connected.
|
|
// This is essentially a special case of the mi_poll_rx() routine and it's a
|
|
// shame they don't share more code, but that's the way it is.
|
|
// Get the DMC words for this channel, or zeros if no read is pending ...
|
|
uint16 rxnext, rxlast, maxbuf;
|
|
|
|
// If no read is pending, then just throw away the data ...
|
|
if (!PMIDB(line)->rxpending) return;
|
|
|
|
// Get the DMC words for the receiver and copy data from one buffer to the other.
|
|
mi_get_dmc(PDIB(line)->rxdmc, &rxnext, &rxlast, &maxbuf);
|
|
if (txcount > maxbuf) {txcount = maxbuf; PMIDB(line)->rxerror = TRUE;}
|
|
memmove(&M[rxnext], &M[txnext], txcount * sizeof(uint16));
|
|
|
|
// Update the receiver DMC pointers, assert IRQ and we're done!
|
|
mi_update_dmc(PDIB(line)->rxdmc, txcount);
|
|
mi_debug_msg (line, rxnext, txcount, "received");
|
|
SET_RX_IRQ(line); PMIDB(line)->rxpending = FALSE; PMIDB(line)->rxtotal++;
|
|
sim_debug(IMP_DBG_IOT, PDEVICE(line), "receive done (message #%d, intreq=%06o)\n", PMIDB(line)->rxtotal, dev_ext_int);
|
|
}
|
|
|
|
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
//////////// I / O I N S T R U C T I O N E M U L A T I O N /////////////
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
|
|
// Line specific I/O routines ...
|
|
// Unfortunately simh doesn't pass the I/O emulation routine any data about the
|
|
// device except for its device address. In particular, it doesn't pass a pointer
|
|
// to the device or unit data blocks, so we're on our own to find those. Rather
|
|
// than a search on the device address, we just provide a separate I/O routine
|
|
// for each modem line. All they do is call the common I/O routine with an extra
|
|
// parameter - problem solved!
|
|
int32 mi1_io(int32 inst, int32 fnc, int32 dat, int32 dev) {return mi_io(1, inst, fnc, dat, dev);}
|
|
int32 mi2_io(int32 inst, int32 fnc, int32 dat, int32 dev) {return mi_io(2, inst, fnc, dat, dev);}
|
|
int32 mi3_io(int32 inst, int32 fnc, int32 dat, int32 dev) {return mi_io(3, inst, fnc, dat, dev);}
|
|
int32 mi4_io(int32 inst, int32 fnc, int32 dat, int32 dev) {return mi_io(4, inst, fnc, dat, dev);}
|
|
int32 mi5_io(int32 inst, int32 fnc, int32 dat, int32 dev) {return mi_io(5, inst, fnc, dat, dev);}
|
|
|
|
// Common I/O simulation routine ...
|
|
int32 mi_io (uint16 line, int32 inst, int32 fnc, int32 dat, int32 dev)
|
|
{
|
|
// This routine is invoked by the CPU module whenever the code executes any
|
|
// I/O instruction (OCP, SKS, INA or OTA) with one of our modem's device
|
|
// address.
|
|
|
|
// OCP (output control pulse) initiates various modem operations ...
|
|
if (inst == ioOCP) {
|
|
switch (fnc) {
|
|
case 000:
|
|
// MnOUT - start modem output ...
|
|
mi_debug_mio(line, PDIB(line)->txdmc, "output");
|
|
mi_start_tx(line); return dat;
|
|
case 001:
|
|
// MnUNXP - un-cross patch modem ...
|
|
sim_debug(IMP_DBG_IOT,PDEVICE(line),"un-cross patch modem (PC=%06o)\n", PC-1);
|
|
PMIDB(line)->iloop = PMIDB(line)->lloop = FALSE;
|
|
udp_set_link_loopback (PDEVICE(line), PMIDB(line)->link, FALSE);
|
|
return dat;
|
|
case 002:
|
|
// MnLXP - enable line cross patch ...
|
|
sim_debug(IMP_DBG_IOT,PDEVICE(line),"enable line cross patch (PC=%06o)\n", PC-1);
|
|
PMIDB(line)->lloop = TRUE;
|
|
udp_set_link_loopback (PDEVICE(line), PMIDB(line)->link, TRUE);
|
|
PMIDB(line)->iloop = FALSE; return dat;
|
|
case 003:
|
|
// MnIXP - enable interface cross patch ...
|
|
sim_debug(IMP_DBG_IOT,PDEVICE(line),"enable interface cross patch (PC=%06o)\n", PC-1);
|
|
PMIDB(line)->iloop = TRUE; PMIDB(line)->lloop = FALSE;
|
|
udp_set_link_loopback (PDEVICE(line), PMIDB(line)->link, FALSE);
|
|
return dat;
|
|
case 004:
|
|
// MnIN - start modem input ...
|
|
mi_debug_mio(line, PDIB(line)->rxdmc, "input");
|
|
mi_start_rx(line); return dat;
|
|
}
|
|
|
|
// SKS (skip) tests various modem conditions ...
|
|
} else if (inst == ioSKS) {
|
|
switch (fnc) {
|
|
case 004:
|
|
// MnERR - skip on modem error ...
|
|
sim_debug(IMP_DBG_IOT,PDEVICE(line),"skip on error (PC=%06o, %s)\n",
|
|
PC-1, PMIDB(line)->rxerror ? "SKIP" : "NOSKIP");
|
|
return PMIDB(line)->rxerror ? IOSKIP(dat) : dat;
|
|
// NOTE - the following skip, MnRXDONE, isn't actually part of the
|
|
// original IMP design. As far as I can tell the IMP had no way to
|
|
// explicitly poll this flags; the only way to tell when a modem finished
|
|
// was to catch the associated interrupt. I've added one for testing
|
|
// purposes, using an unimplemented SKS instruction.
|
|
case 002:
|
|
// MnRXDONE - skip on receive done ...
|
|
return PMIDB(line)->rxpending ? dat : IOSKIP(dat);
|
|
}
|
|
}
|
|
|
|
// Anything else is an error...
|
|
sim_debug(IMP_DBG_WARN,PDEVICE(line),"UNIMPLEMENTED I/O (PC=%06o, instruction=%o, function=%02o)\n", PC-1, inst, fnc);
|
|
return IOBADFNC(dat);
|
|
}
|
|
|
|
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
/////////////////// H O S T E V E N T S E R V I C E ////////////////////
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
|
|
|
|
// Receiver service ...
|
|
t_stat mi_rx_service (UNIT *uptr)
|
|
{
|
|
// This is the standard simh "service" routine that's called when an event
|
|
// queue entry expires. It just polls the receiver and reschedules itself.
|
|
// That's it!
|
|
uint16 line = uptr->mline;
|
|
mi_poll_rx(line);
|
|
sim_activate(uptr, uptr->wait);
|
|
return SCPE_OK;
|
|
}
|
|
|
|
// Transmitter service ...
|
|
t_stat mi_tx_service (uint32 quantum)
|
|
{
|
|
// This is the special transmitter service routine that's called by the RTC
|
|
// service every time the RTC is updated. This routine polls ALL the modem
|
|
// transmitters (or at least any which are active) and figures out whether it
|
|
// is time for an interrupt.
|
|
uint32 i;
|
|
for (i = 1; i <= MI_NUM; ++i) mi_poll_tx(i, quantum);
|
|
return SCPE_OK;
|
|
}
|
|
|
|
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
/////////////// D E V I C E A C T I O N C O M M A N D S ////////////////
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
|
|
// Reset device ...
|
|
t_stat mi_reset (DEVICE *dptr)
|
|
{
|
|
// simh calls this routine for the RESET command ...
|
|
UNIT *uptr = dptr->units;
|
|
uint16 line = uptr->mline;
|
|
|
|
// Reset the devices AND clear the interrupt enable bits ...
|
|
mi_reset_rx(line); mi_reset_tx(line);
|
|
|
|
// If the unit is attached, then make sure we restart polling because some
|
|
// simh commands (e.g. boot) dump the pending event queue!
|
|
sim_cancel(uptr);
|
|
if ((uptr->flags & UNIT_ATT) != 0) sim_activate(uptr, uptr->wait);
|
|
return SCPE_OK;
|
|
}
|
|
|
|
// Attach device ...
|
|
t_stat mi_attach (UNIT *uptr, CONST char *cptr)
|
|
{
|
|
// simh calls this routine for (what else?) the ATTACH command. There are
|
|
// three distinct formats for ATTACH -
|
|
//
|
|
// ATTACH -p MIn COMnn - attach MIn to a physical COM port
|
|
// ATTACH MIn llll:w.x.y.z:rrrr - connect via UDP to a remote simh host
|
|
//
|
|
t_stat ret; char *pfn; uint16 line = uptr->mline;
|
|
t_bool fport = sim_switches & SWMASK('P');
|
|
|
|
// If we're already attached, then detach ...
|
|
if ((uptr->flags & UNIT_ATT) != 0) detach_unit(uptr);
|
|
|
|
// The physical (COM port) attach isn't implemented yet ...
|
|
if (fport)
|
|
return sim_messagef(SCPE_ARG,"MI%d - physical COM support is not yet implemented\n", line);
|
|
|
|
// Make a copy of the "file name" argument. udp_create() actually modifies
|
|
// the string buffer we give it, so we make a copy now so we'll have something
|
|
// to display in the "SHOW MIn ..." command.
|
|
pfn = (char *) calloc (CBUFSIZE, sizeof (char));
|
|
if (pfn == NULL) return SCPE_MEM;
|
|
strncpy (pfn, cptr, CBUFSIZE);
|
|
|
|
// Create the UDP connection.
|
|
ret = udp_create(PDEVICE(line), cptr, &(PMIDB(line)->link));
|
|
if (ret != SCPE_OK) {free(pfn); return ret;};
|
|
|
|
// Reset the flags and start polling ...
|
|
uptr->flags |= UNIT_ATT; uptr->filename = pfn;
|
|
return mi_reset(find_dev_from_unit(uptr));
|
|
}
|
|
|
|
// Detach device ...
|
|
t_stat mi_detach (UNIT *uptr)
|
|
{
|
|
// simh calls this routine for (you guessed it!) the DETACH command. This
|
|
// disconnects the modem from any UDP connection or COM port and effectively
|
|
// makes the modem "off line". A disconnected modem acts like a real modem
|
|
// with its phone line unplugged.
|
|
t_stat ret; uint16 line = uptr->mline;
|
|
if ((uptr->flags & UNIT_ATT) == 0) return SCPE_OK;
|
|
ret = udp_release(PDEVICE(line), PMIDB(line)->link);
|
|
if (ret != SCPE_OK) return ret;
|
|
PMIDB(line)->link = NOLINK; uptr->flags &= ~UNIT_ATT;
|
|
free (uptr->filename); uptr->filename = NULL;
|
|
return mi_reset(PDEVICE(line));
|
|
}
|
|
|
|
t_stat mi_set_loopback (UNIT *uptr, int32 val, CONST char *cptr, void *desc)
|
|
{
|
|
t_stat ret = SCPE_OK; uint16 line = uptr->mline;
|
|
|
|
switch (val) {
|
|
case 0: // LOOPINTERFACE
|
|
case 1: // NOLOOPINTERFACE
|
|
PMIDB(line)->iloop = (val == 0) ? 1 : 0;
|
|
break;
|
|
case 2: // LOOPLINE
|
|
case 3: // NOLOOPLINE
|
|
if (PMIDB(line)->link == NOLINK)
|
|
return SCPE_UNATT;
|
|
val = (val == 2) ? 1 : 0;
|
|
ret = udp_set_link_loopback (PDEVICE(line), PMIDB(line)->link, val);
|
|
if (ret == SCPE_OK)
|
|
PMIDB(line)->lloop = val;
|
|
break;
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
t_stat mi_show_loopback (FILE *st, UNIT *uptr, int32 val, CONST void *desc)
|
|
{
|
|
uint16 line = uptr->mline;
|
|
|
|
if (PMIDB(line)->iloop)
|
|
fprintf (st, "Interface (local) Loopback");
|
|
if (PMIDB(line)->lloop)
|
|
fprintf (st, "Line (remote) Loopback");
|
|
return SCPE_OK;
|
|
}
|
|
|
|
#endif // #ifdef VM_IMPTIP from the very top
|