simh-testsetgenerator/PDP8/pdp8_mt.c
Bob Supnik 43385c9616 Notes For V2.10-4
1. New Features in 2.10-4

1.1 SCP and Libraries

- Added .ini startup file capability (suggested by Hans Pufal).
- Added multiple switch evaluation points (suggested by Hans Pufal).
- Added multiple command per action.
- Added new library, sim_tape.c, for magtape emulation.

1.2 PDP-11

- Added user-defined disk capacity to RQ.
- Addec choice of controllers to TQ.
- Added user-defined tape capacity to TQ.

1.3 Interdata

- Added SHOW SELCH n command to display selector channel state.

1.4 Line Frequency Clocks (H316, Interdata, Nova, PDP-8, PDP-11,
    PDP-18B, SDS)

- Added SET <device> {50HZ/60HZ}, to set the line frequency.

1.5 DEC Console Input (PDP-8, PDP-11, PDP-18B, VAX)

- Added SET TTI CTRL-C, to generate ^C from SIMH prompt (^C
  crashes simulators compiled with Windows Visual C++).

1.6 Magtapes

- Revised to use magtape library for consistency.

2. Bugs Fixed in 2.10-4

- SCP: fixed bug in multiword deposits to files
- Interdata disks: fixed bug in cylinder overflow on writes
- Interdata tape: fixed bug, read error did not stop selector
  channel
- Interdata precision clock: improved autocalibrate algorithm
  for UNIX V7.
- Nova fixed head disk: fixed autosize algorithm.
- PDP-11 RQ and TQ: fixed bugs in queue process and in vector
  calculation for VAXen.
- PDP-11 TQ: fixed overly strict implementation of illegal
  modifiers check.
- PDP-11 RY: fixed autosize algorithm.
- PDP-18B CPU: fixed three EAE bugs (found by Hans Pufal).
- PDP-18B MT: fixed bugs in interrupt handling, BOT error handling.
- PDP-18B RF: removed extra bit from disk address, fixed autosize
  algorithm.
- PDP-18B SYS: fixed bug in FMTASC usage (found by Hans Pufal).
- PDP-8 MT: fixed bug in BOT error handling.
- PDP-8 DF, RF, RX: fixed autosize algorithm.

3. New Features in 2.10 vs prior releases

3.1 SCP and Libraries

- The VT emulation package has been replaced by the capability
  to remote the console to a Telnet session.  Telnet clients
  typically have more complete and robust VT100 emulation.
- Simulated devices may now have statically allocated buffers,
  in addition to dynamically allocated buffers or disk-based
  data stores.
- The DO command now takes substitutable arguments (max 9).
  In command files, %n represents substitutable argument n.
- The initial command line is now interpreted as the command
  name and substitutable arguments for a DO command.  This is
  backward compatible to prior versions.
- The initial command line parses switches.  -Q is interpreted
  as quiet mode; informational messages are suppressed.
- The HELP command now takes an optional argument.  HELP <cmd>
  types help on the specified command.
- Hooks have been added for implementing GUI-based consoles,
  as well as simulator-specific command extensions.  A few
  internal data structures and definitions have changed.
- Two new routines (tmxr_open_master, tmxr_close_master) have
  been added to sim_tmxr.c.  The calling sequence for
  sim_accept_conn has been changed in sim_sock.c.
- The calling sequence for the VM boot routine has been modified
  to add an additional parameter.
- SAVE now saves, and GET now restores, controller and unit flags.
- Library sim_ether.c has been added for Ethernet support.
- The EVAL command will evaluate a symbolic type-in and display
  it in numeric form.
- The ! command (with no arguments) will launch the host operating
  system command shell.  The ! command (with an argument) executes
  the argument as a host operating system command.  (Code from
  Mark Pizzolato)
- Telnet sessions now recognize BREAK.  How a BREAK is transmitted
  dependent on the particular Telnet client.  (Code from Mark
  Pizzolato)
- The sockets library includes code for active connections as
  well as listening connections.
- The RESTORE command will restore saved memory size, if the
  simulator supports dynamic memory resizing.
- Added dynamic extension of the breakpoint table.
- Added breakpoint actions.
- Added VMS support for ! (from Mark Pizzolato).

3.2 VAX

- Non-volatile RAM (NVR) can behave either like a memory or like
  a disk-based peripheral.  If unattached, it behaves like memory
  and is saved and restored by SAVE and RESTORE, respectively.
  If attached, its contents are loaded from disk by ATTACH and
  written back to disk at DETACH and EXIT.
- SHOW <device> VECTOR displays the device's interrupt vector.
  A few devices allow the vector to be changed with SET
  <device> VECTOR=nnn.
- SHOW CPU IOSPACE displays the I/O space address map.
- The TK50 (TMSCP tape) has been added.
- The DEQNA/DELQA (Qbus Ethernet controllers) have been added.
- Autoconfiguration support has been added.
- The paper tape reader has been removed from vax_stddev.c and
  now references a common implementation file, dec_pt.h.
- Examine and deposit switches now work on all devices, not just
  the CPU.
- Device address conflicts are not detected until simulation starts.
- If the VAX console is attached to a Telnet session, BREAK is
  interpreted as console halt.
- The SET/SHOW HISTORY commands enable and display a history of
  the most recently executed instructions.  (Code from Mark
  Pizzolato)

3.3 PDP-11

- SHOW <device> VECTOR displays the device's interrupt vector.
  Most devices allow the vector to be changed with SET
  <device> VECTOR=nnn.
- SHOW CPU IOSPACE displays the I/O space address map.
- The TK50 (TMSCP tape), RK611/RK06/RK07 (cartridge disk),
  RX211 (double density floppy), and KW11P programmable clock
  have been added.
- The DEQNA/DELQA (Qbus Ethernet controllers) have been added.
- Autoconfiguration support has been added.
- The paper tape reader has been removed from pdp11_stddev.c and
  now references a common implementation file, dec_pt.h.
- Device bootstraps now use the actual CSR specified by the
  SET ADDRESS command, rather than just the default CSR.  Note
  that PDP-11 operating systems may NOT support booting with
  non-standard addresses.
- Specifying more than 256KB of memory, or changing the bus
  configuration, causes all peripherals that are not compatible
  with the current bus configuration to be disabled.
- Device address conflicts are not detected until simulation starts.
- The PDP-11 implements a stub DEUNA/DELUA (XU).  The real XU
  module will be included in a later release.

3.4 PDP-10

- SHOW <device> VECTOR displays the device's interrupt vector.
  A few devices allow the vector to be changed with SET
  <device> VECTOR=nnn.
- SHOW CPU IOSPACE displays the I/O space address map.
- The RX211 (double density floppy) has been added; it is off
  by default.
- The paper tape now references a common implementation file,
  dec_pt.h.
- Device address conflicts are not detected until simulation starts.
- The PDP-10 implements a stub DEUNA/DELUA (XU).  The real XU
  module will be included in a later release.

3.5 PDP-1

- DECtape (then known as MicroTape) support has been added.
- The line printer and DECtape can be disabled and enabled.
- The PDP-1 supports the Type 24 serial drum (based on recently
  discovered documents).

3.6 18b PDP's

- The PDP-4 supports the Type 24 serial drum (based on recently
  discovered documents).
- Added RB09 fixed head disk for the PDP-9.
- Added LP09 line printer for the PDP-9 and PDP-15.
- Added variable size support and autosizing to the RF15/RF09.

3.7 PDP-8

- The RX28 (double density floppy) has been added as an option to
  the existing RX8E controller.
- SHOW <device> DEVNO displays the device's device number.  Most
  devices allow the device number to be changed with SET <device>
  DEVNO=nnn.
- Device number conflicts are not detected until simulation starts.
- Added variable size support and autosizing to the DF32 and RF08.

3.8 Nova

- Added variable size support and autosizing to the Novadisk.

3.9 AltairZ80

- A hard drive has been added for increased storage.
- Several bugs have been fixed.

3.10 HP 2100

- The 12845A has been added and made the default line printer (LPT).
  The 12653A has been renamed LPS and is off by default.  It also
  supports the diagnostic functions needed to run the DCPC and DMS
  diagnostics.
- The 12557A/13210A disk defaults to the 13210A (7900/7901).
- The 12559A magtape is off by default.
- New CPU options (EAU/NOEAU) enable/disable the extended arithmetic
  instructions for the 2116.  These instructions are standard on
  the 2100 and 21MX.
- New CPU options (MPR/NOMPR) enable/disable memory protect for the
  2100 and 21MX.
- New CPU options (DMS/NODMS) enable/disable the dynamic mapping
  instructions for the 21MX.
- The 12539 timebase generator autocalibrates.
- The IOP microinstruction set is supported for the 21MX as well
  as the 2100.
- The HP2100 supports the Access Interprocessor Link (IPL).

3.11 Simulated Magtapes

- Simulated magtapes recognize end of file and the marker
  0xFFFFFFFF as end of medium.  Only the TMSCP tape simulator
  can generate an end of medium marker.
- The error handling in simulated magtapes was overhauled to be
  consistent through all simulators.

3.12 Simulated DECtapes

- Added support for RT11 image file format (256 x 16b) to DECtapes.

3.13 Terminals Multiplexors

- BREAK detection was added to the HP, DEC, and Interdata terminal
  multiplexors.

4. Bugs Fixed in 2.10 vs prior releases

- TS11/TSV05 was not simulating the XS0_MOT bit, causing failures
  under VMS.  In addition, two of the CTL options were coded
  interchanged.
- IBM 1401 tape was not setting a word mark under group mark for
  load mode reads.  This caused the diagnostics to crash.
- SCP bugs in ssh_break and set_logon were fixed (found by Dave
  Hittner).
- Numerous bugs in the HP 2100 extended arithmetic, floating point,
  21MX, DMS, and IOP instructions were fixed.  Bugs were also fixed
  in the memory protect and DMS functions.  The moving head disks
  (DP, DQ) were revised to simulate the hardware more accurately.
  Missing functions in DQ (address skip, read address) were added.
- PDP-10 tape wouldn't boot, and then wouldn't read (reported by
  Michael Thompson and Harris Newman, respectively)
- PDP-1 typewriter is half duplex, with only one shift state for
  both input and output (found by Derek Peschel)
- PDP-11 console must default to 7b for early UNIX compatibility.
- PDP-11/VAX TMSCP emulator was using the wrong packet length for
  read/write end packets.
- Telnet IAC+IAC processing was fixed, both for input and output
  (found by Mark Pizzolato).
- PDP-11/VAX Ethernet setting flag bits wrong for chained
  descriptors (found by Mark Pizzolato).
- 18b PDP RF15/RF09: fixed IOT decoding and address wraparound
  logic (found by Hans Pufal).
- 18b PDP RP15: fixed IOT decoding and command initiation.
- HP2100 IPL: changed to full duplex (found by Mike Gemeny).
- HP2100 CPU: fixed last cycle bug in DMA outpout (found by Mike
  Gemeny).
- Interdata 16b CPU: fixed bug in SETM, SETMR (found by Mark
  Pizzolato).

5. General Notes

WARNING: The build procedures have changed.  There is only one UNIX
makefile.  To compile without Ethernet support, simply type

	gmake {target|all}

To compile with Ethernet support, type

	gmake USE_NETWORK=1 {target|all}

The Mingw batch files require Mingw release 2 and invoke the Unix
makefile.  There are still separate batch files for compilation
with or without Ethernet support.

WARNING: V2.10 has reorganized and renamed some of the definition
files for the PDP-10, PDP-11, and VAX.  Be sure to delete all
previous source files before you unpack the Zip archive, or
unpack it into a new directory structure.

WARNING: V2.10 has a new, more comprehensive save file format.
Restoring save files from previous releases will cause 'invalid
register' errors and loss of CPU option flags, device enable/
disable flags, unit online/offline flags, and unit writelock
flags.

WARNING: If you are using Visual Studio .NET through the IDE,
be sure to turn off the /Wp64 flag in the project settings, or
dozens of spurious errors will be generated.

WARNING: Compiling Ethernet support under Windows requires
extra steps; see the Ethernet readme file.  Ethernet support is
currently available only for Windows, Linux, NetBSD, and OpenBSD.
2011-04-15 08:34:03 -07:00

577 lines
19 KiB
C
Raw Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/* pdp8_mt.c: PDP-8 magnetic tape simulator
Copyright (c) 1993-2003, Robert M Supnik
Permission is hereby granted, free of charge, to any person obtaining a
copy of this software and associated documentation files (the "Software"),
to deal in the Software without restriction, including without limitation
the rights to use, copy, modify, merge, publish, distribute, sublicense,
and/or sell copies of the Software, and to permit persons to whom the
Software is furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
ROBERT M SUPNIK BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
Except as contained in this notice, the name of Robert M Supnik shall not
be used in advertising or otherwise to promote the sale, use or other dealings
in this Software without prior written authorization from Robert M Supnik.
mt TM8E/TU10 magtape
01-Mar-03 RMS Fixed interrupt handling
Revised for magtape library
30-Oct-02 RMS Revised BOT handling, added error record handling
04-Oct-02 RMS Added DIBs, device number support
30-Aug-02 RMS Revamped error handling
28-Aug-02 RMS Added end of medium support
30-May-02 RMS Widened POS to 32b
22-Apr-02 RMS Added maximum record length test
06-Jan-02 RMS Changed enable/disable support
30-Nov-01 RMS Added read only unit, extended SET/SHOW support
24-Nov-01 RMS Changed UST, POS, FLG to arrays
25-Apr-01 RMS Added device enable/disable support
04-Oct-98 RMS V2.4 magtape format
22-Jan-97 RMS V2.3 magtape format
01-Jan-96 RMS Rewritten from TM8-E Maintenance Manual
Magnetic tapes are represented as a series of variable records
of the form:
32b byte count
byte 0
byte 1
:
byte n-2
byte n-1
32b byte count
If the byte count is odd, the record is padded with an extra byte
of junk. File marks are represented by a byte count of 0.
*/
#include "pdp8_defs.h"
#include "sim_tape.h"
#define MT_NUMDR 8 /* #drives */
#define USTAT u3 /* unit status */
#define MT_MAXFR (1 << 16) /* max record lnt */
#define WC_SIZE (1 << 12) /* max word count */
#define WC_MASK (WC_SIZE - 1)
/* Command/unit - mt_cu */
#define CU_V_UNIT 9 /* unit */
#define CU_M_UNIT 07
#define CU_PARITY 00400 /* parity select */
#define CU_IEE 00200 /* error int enable */
#define CU_IED 00100 /* done int enable */
#define CU_V_EMA 3 /* ext mem address */
#define CU_M_EMA 07
#define CU_EMA (CU_M_EMA << CU_V_EMA)
#define CU_DTY 00002 /* drive type */
#define CU_UNPAK 00001 /* 6b vs 8b mode */
#define GET_UNIT(x) (((x) >> CU_V_UNIT) & CU_M_UNIT)
#define GET_EMA(x) (((x) & CU_EMA) << (12 - CU_V_EMA))
/* Function - mt_fn */
#define FN_V_FNC 9 /* function */
#define FN_M_FNC 07
#define FN_UNLOAD 00
#define FN_REWIND 01
#define FN_READ 02
#define FN_CMPARE 03
#define FN_WRITE 04
#define FN_WREOF 05
#define FN_SPACEF 06
#define FN_SPACER 07
#define FN_ERASE 00400 /* erase */
#define FN_CRC 00200 /* read CRC */
#define FN_GO 00100 /* go */
#define FN_INC 00040 /* incr mode */
#define FN_RMASK 07700 /* readable bits */
#define GET_FNC(x) (((x) >> FN_V_FNC) & FN_M_FNC)
/* Status - stored in mt_sta or (*) uptr->USTAT */
#define STA_ERR (04000 << 12) /* error */
#define STA_REW (02000 << 12) /* *rewinding */
#define STA_BOT (01000 << 12) /* *start of tape */
#define STA_REM (00400 << 12) /* *offline */
#define STA_PAR (00200 << 12) /* parity error */
#define STA_EOF (00100 << 12) /* *end of file */
#define STA_RLE (00040 << 12) /* rec lnt error */
#define STA_DLT (00020 << 12) /* data late */
#define STA_EOT (00010 << 12) /* *end of tape */
#define STA_WLK (00004 << 12) /* *write locked */
#define STA_CPE (00002 << 12) /* compare error */
#define STA_ILL (00001 << 12) /* illegal */
#define STA_9TK 00040 /* 9 track */
/* #define STA_BAD 00020 /* bad tape?? */
#define STA_INC 00010 /* increment error */
#define STA_LAT 00004 /* lateral par error */
#define STA_CRC 00002 /* CRC error */
#define STA_LON 00001 /* long par error */
#define STA_CLR (FN_RMASK | 00020) /* always clear */
#define STA_DYN (STA_REW | STA_BOT | STA_REM | STA_EOF | \
STA_EOT | STA_WLK) /* kept in USTAT */
/* set error */
#define TUR(u) (!sim_is_active (u)) /* tape unit ready */
extern uint16 M[];
extern int32 int_req, stop_inst;
extern UNIT cpu_unit;
int32 mt_cu = 0; /* command/unit */
int32 mt_fn = 0; /* function */
int32 mt_ca = 0; /* current address */
int32 mt_wc = 0; /* word count */
int32 mt_sta = 0; /* status register */
int32 mt_db = 0; /* data buffer */
int32 mt_done = 0; /* mag tape flag */
int32 mt_time = 10; /* record latency */
int32 mt_stopioe = 1; /* stop on error */
uint8 *mtxb = NULL; /* transfer buffer */
DEVICE mt_dev;
int32 mt70 (int32 IR, int32 AC);
int32 mt71 (int32 IR, int32 AC);
int32 mt72 (int32 IR, int32 AC);
t_stat mt_svc (UNIT *uptr);
t_stat mt_reset (DEVICE *dptr);
t_stat mt_attach (UNIT *uptr, char *cptr);
t_stat mt_detach (UNIT *uptr);
int32 mt_updcsta (UNIT *uptr);
int32 mt_ixma (int32 xma);
t_stat mt_map_err (UNIT *uptr, t_stat st);
t_stat mt_vlock (UNIT *uptr, int32 val, char *cptr, void *desc);
UNIT *mt_busy (void);
void mt_set_done (void);
/* MT data structures
mt_dev MT device descriptor
mt_unit MT unit list
mt_reg MT register list
mt_mod MT modifier list
*/
DIB mt_dib = { DEV_MT, 3, { &mt70, &mt71, &mt72 } };
UNIT mt_unit[] = {
{ UDATA (&mt_svc, UNIT_ATTABLE+UNIT_DISABLE+UNIT_ROABLE, 0) },
{ UDATA (&mt_svc, UNIT_ATTABLE+UNIT_DISABLE+UNIT_ROABLE, 0) },
{ UDATA (&mt_svc, UNIT_ATTABLE+UNIT_DISABLE+UNIT_ROABLE, 0) },
{ UDATA (&mt_svc, UNIT_ATTABLE+UNIT_DISABLE+UNIT_ROABLE, 0) },
{ UDATA (&mt_svc, UNIT_ATTABLE+UNIT_DISABLE+UNIT_ROABLE, 0) },
{ UDATA (&mt_svc, UNIT_ATTABLE+UNIT_DISABLE+UNIT_ROABLE, 0) },
{ UDATA (&mt_svc, UNIT_ATTABLE+UNIT_DISABLE+UNIT_ROABLE, 0) },
{ UDATA (&mt_svc, UNIT_ATTABLE+UNIT_DISABLE+UNIT_ROABLE, 0) } };
REG mt_reg[] = {
{ ORDATA (CMD, mt_cu, 12) },
{ ORDATA (FNC, mt_fn, 12) },
{ ORDATA (CA, mt_ca, 12) },
{ ORDATA (WC, mt_wc, 12) },
{ ORDATA (DB, mt_db, 12) },
{ GRDATA (STA, mt_sta, 8, 12, 12) },
{ ORDATA (STA2, mt_sta, 6) },
{ FLDATA (DONE, mt_done, 0) },
{ FLDATA (INT, int_req, INT_V_MT) },
{ FLDATA (STOP_IOE, mt_stopioe, 0) },
{ DRDATA (TIME, mt_time, 24), PV_LEFT },
{ URDATA (UST, mt_unit[0].USTAT, 8, 16, 0, MT_NUMDR, 0) },
{ URDATA (POS, mt_unit[0].pos, 10, 32, 0,
MT_NUMDR, PV_LEFT | REG_RO) },
{ FLDATA (DEVNUM, mt_dib.dev, 6), REG_HRO },
{ NULL } };
MTAB mt_mod[] = {
{ MTUF_WLK, 0, "write enabled", "WRITEENABLED", &mt_vlock },
{ MTUF_WLK, MTUF_WLK, "write locked", "LOCKED", &mt_vlock },
{ MTAB_XTD|MTAB_VDV, 0, "DEVNO", "DEVNO",
&set_dev, &show_dev, NULL },
{ 0 } };
DEVICE mt_dev = {
"MT", mt_unit, mt_reg, mt_mod,
MT_NUMDR, 10, 31, 1, 8, 8,
NULL, NULL, &mt_reset,
NULL, &mt_attach, &mt_detach,
&mt_dib, DEV_DISABLE };
/* IOT routines */
int32 mt70 (int32 IR, int32 AC)
{
int32 f;
UNIT *uptr;
uptr = mt_dev.units + GET_UNIT (mt_cu); /* get unit */
switch (IR & 07) { /* decode IR<9:11> */
case 1: /* LWCR */
mt_wc = AC; /* load word count */
return 0;
case 2: /* CWCR */
mt_wc = 0; /* clear word count */
return AC;
case 3: /* LCAR */
mt_ca = AC; /* load mem address */
return 0;
case 4: /* CCAR */
mt_ca = 0; /* clear mem address */
return AC;
case 5: /* LCMR */
if (mt_busy ()) mt_sta = mt_sta | STA_ILL | STA_ERR; /* busy? illegal op */
mt_cu = AC; /* load command reg */
mt_updcsta (mt_dev.units + GET_UNIT (mt_cu));
return 0;
case 6: /* LFGR */
if (mt_busy ()) mt_sta = mt_sta | STA_ILL | STA_ERR; /* busy? illegal op */
mt_fn = AC; /* load function */
if ((mt_fn & FN_GO) == 0) { /* go set? */
mt_updcsta (uptr); /* update status */
return 0; }
f = GET_FNC (mt_fn); /* get function */
if (((uptr->flags & UNIT_ATT) == 0) || !TUR (uptr) ||
(((f == FN_WRITE) || (f == FN_WREOF)) && sim_tape_wrp (uptr))
|| (((f == FN_SPACER) || (f == FN_REWIND)) && sim_tape_bot (uptr))) {
mt_sta = mt_sta | STA_ILL | STA_ERR; /* illegal op error */
mt_set_done (); /* set done */
mt_updcsta (uptr); /* update status */
return 0; }
uptr->USTAT = uptr->USTAT & STA_WLK; /* clear status */
if (f == FN_UNLOAD) { /* unload? */
detach_unit (uptr); /* set offline */
uptr->USTAT = STA_REW | STA_REM; /* rewinding, off */
mt_set_done (); } /* set done */
else if (f == FN_REWIND) { /* rewind */
uptr->USTAT = uptr->USTAT | STA_REW; /* rewinding */
mt_set_done (); } /* set done */
else mt_done = 0; /* clear done */
mt_updcsta (uptr); /* update status */
sim_activate (uptr, mt_time); /* start io */
return 0;
case 7: /* LDBR */
if (mt_busy ()) mt_sta = mt_sta | STA_ILL | STA_ERR; /* busy? illegal op */
mt_db = AC; /* load buffer */
mt_set_done (); /* set done */
mt_updcsta (uptr); /* update status */
return 0; } /* end switch */
return (stop_inst << IOT_V_REASON) + AC; /* ill inst */
}
/* IOTs, continued */
int32 mt71 (int32 IR, int32 AC)
{
UNIT *uptr;
uptr = mt_dev.units + GET_UNIT (mt_cu);
switch (IR & 07) { /* decode IR<9:11> */
case 1: /* RWCR */
return mt_wc; /* read word count */
case 2: /* CLT */
mt_reset (&mt_dev); /* reset everything */
return AC;
case 3: /* RCAR */
return mt_ca; /* read mem address */
case 4: /* RMSR */
return ((mt_updcsta (uptr) >> 12) & 07777); /* read status */
case 5: /* RCMR */
return mt_cu; /* read command */
case 6: /* RFSR */
return (((mt_fn & FN_RMASK) | (mt_updcsta (uptr) & ~FN_RMASK))
& 07777); /* read function */
case 7: /* RDBR */
return mt_db; } /* read data buffer */
return (stop_inst << IOT_V_REASON) + AC; /* ill inst */
}
int32 mt72 (int32 IR, int32 AC)
{
UNIT *uptr;
uptr = mt_dev.units + GET_UNIT (mt_cu); /* get unit */
switch (IR & 07) { /* decode IR<9:11> */
case 1: /* SKEF */
return (mt_sta & STA_ERR)? IOT_SKP + AC: AC;
case 2: /* SKCB */
return (!mt_busy ())? IOT_SKP + AC: AC;
case 3: /* SKJD */
return mt_done? IOT_SKP + AC: AC;
case 4: /* SKTR */
return (TUR (uptr))? IOT_SKP + AC: AC;
case 5: /* CLF */
if (TUR (uptr)) mt_reset (&mt_dev); /* if TUR, zap */
else { /* just ctrl zap */
mt_sta = 0; /* clear status */
mt_done = 0; /* clear done */
mt_updcsta (uptr); } /* update status */
return AC; } /* end switch */
return (stop_inst << IOT_V_REASON) + AC; /* ill inst */
}
/* Unit service
If rewind done, reposition to start of tape, set status
else, do operation, set done, interrupt
*/
t_stat mt_svc (UNIT *uptr)
{
int32 f, i, p, u, wc, xma;
t_mtrlnt tbc, cbc;
uint16 c, c1, c2;
t_stat st, r = SCPE_OK;
u = uptr - mt_dev.units; /* get unit number */
f = GET_FNC (mt_fn); /* get command */
xma = GET_EMA (mt_cu) + mt_ca; /* get mem addr */
wc = WC_SIZE - mt_wc; /* get wc */
if (uptr->USTAT & STA_REW) { /* rewind? */
sim_tape_rewind (uptr); /* update position */
if (uptr->flags & UNIT_ATT) /* still on line? */
uptr->USTAT = (uptr->USTAT & STA_WLK) | STA_BOT;
else uptr->USTAT = STA_REM;
if (u == GET_UNIT (mt_cu)) { /* selected? */
mt_set_done (); /* set done */
mt_updcsta (uptr); } /* update status */
return SCPE_OK; }
if ((uptr->flags & UNIT_ATT) == 0) { /* if not attached */
uptr->USTAT = STA_REM; /* unit off line */
mt_sta = mt_sta | STA_ILL | STA_ERR; /* illegal operation */
mt_set_done (); /* set done */
mt_updcsta (uptr); /* update status */
return IORETURN (mt_stopioe, SCPE_UNATT); }
switch (f) { /* case on function */
/* Unit service, continued */
case FN_READ: /* read */
case FN_CMPARE: /* read/compare */
st = sim_tape_rdrecf (uptr, mtxb, &tbc, MT_MAXFR); /* read rec */
if (st == MTSE_RECE) mt_sta = mt_sta | STA_PAR | STA_ERR; /* rec in err? */
else if (st != MTSE_OK) { /* other error? */
r = mt_map_err (uptr, st); /* map error */
mt_sta = mt_sta | STA_RLE | STA_ERR; /* err, eof/eom, tmk */
break; }
cbc = (mt_cu & CU_UNPAK)? wc: wc * 2; /* expected bc */
if (tbc != cbc) mt_sta = mt_sta | STA_RLE | STA_ERR; /* wrong size? */
if (tbc < cbc) { /* record small? */
cbc = tbc; /* use smaller */
wc = (mt_cu & CU_UNPAK)? cbc: (cbc + 1) / 2; }
for (i = p = 0; i < wc; i++) { /* copy buffer */
xma = mt_ixma (xma); /* increment xma */
mt_wc = (mt_wc + 1) & 07777; /* incr word cnt */
if (mt_cu & CU_UNPAK) c = mtxb[p++];
else {
c1 = mtxb[p++] & 077;
c2 = mtxb[p++] & 077;
c = (c1 << 6) | c2; }
if ((f == FN_READ) && MEM_ADDR_OK (xma)) M[xma] = c;
else if ((f == FN_CMPARE) && (M[xma] != c)) {
mt_sta = mt_sta | STA_CPE | STA_ERR;
break; } }
break;
case FN_WRITE: /* write */
tbc = (mt_cu & CU_UNPAK)? wc: wc * 2;
for (i = p = 0; i < wc; i++) { /* copy buf to tape */
xma = mt_ixma (xma); /* incr mem addr */
if (mt_cu & CU_UNPAK) mtxb[p++] = M[xma] & 0377;
else {
mtxb[p++] = (M[xma] >> 6) & 077;
mtxb[p++] = M[xma] & 077; } }
if (st = sim_tape_wrrecf (uptr, mtxb, tbc)) { /* write rec, err? */
r = mt_map_err (uptr, st); /* map error */
xma = GET_EMA (mt_cu) + mt_ca; } /* restore xma */
else mt_wc = 0; /* ok, clear wc */
break;
/* Unit service, continued */
case FN_WREOF:
if (st = sim_tape_wrtmk (uptr)) /* write tmk, err? */
r = mt_map_err (uptr, st); /* map error */
break;
case FN_SPACEF: /* space forward */
do {
mt_wc = (mt_wc + 1) & 07777; /* incr wc */
if (st = sim_tape_sprecf (uptr, &tbc)) { /* space rec fwd, err? */
r = mt_map_err (uptr, st); /* map error */
break; } /* stop */
}
while (mt_wc != 0);
break;
case FN_SPACER: /* space reverse */
do {
mt_wc = (mt_wc + 1) & 07777; /* incr wc */
if (st = sim_tape_sprecr (uptr, &tbc)) { /* space rec rev, err? */
r = mt_map_err (uptr, st); /* map error */
break; } /* stop */
}
while (mt_wc != 0);
break; } /* end case */
mt_cu = (mt_cu & ~CU_EMA) | ((xma >> (12 - CU_V_EMA)) & CU_EMA);
mt_ca = xma & 07777; /* update mem addr */
mt_set_done (); /* set done */
mt_updcsta (uptr); /* update status */
return r;
}
/* Update controller status */
int32 mt_updcsta (UNIT *uptr)
{
mt_sta = (mt_sta & ~(STA_DYN | STA_CLR)) | (uptr->USTAT & STA_DYN);
if (((mt_sta & STA_ERR) && (mt_cu & CU_IEE)) ||
(mt_done && (mt_cu & CU_IED))) int_req = int_req | INT_MT;
else int_req = int_req & ~INT_MT;
return mt_sta;
}
/* Test if controller busy */
UNIT *mt_busy (void)
{
int32 u;
UNIT *uptr;
for (u = 0; u < MT_NUMDR; u++) { /* loop thru units */
uptr = mt_dev.units + u;
if (sim_is_active (uptr) && ((uptr->USTAT & STA_REW) == 0))
return uptr; }
return NULL;
}
/* Increment extended memory address */
int32 mt_ixma (int32 xma) /* incr extended ma */
{
int32 v;
v = ((xma + 1) & 07777) | (xma & 070000); /* wrapped incr */
if (mt_fn & FN_INC) { /* increment mode? */
if (xma == 077777) mt_sta = mt_sta | STA_INC | STA_ERR; /* at limit? error */
else v = xma + 1; } /* else 15b incr */
return v;
}
/* Set done */
void mt_set_done (void)
{
mt_done = 1; /* set done */
mt_fn = mt_fn & ~(FN_CRC | FN_GO | FN_INC); /* clear func<4:6> */
return;
}
/* Map tape error status */
t_stat mt_map_err (UNIT *uptr, t_stat st)
{
switch (st) {
case MTSE_FMT: /* illegal fmt */
case MTSE_UNATT: /* unattached */
mt_sta = mt_sta | STA_ILL | STA_ERR;
case MTSE_OK: /* no error */
return SCPE_IERR; /* never get here! */
case MTSE_TMK: /* end of file */
uptr->USTAT = uptr->USTAT | STA_EOF; /* set EOF */
mt_sta = mt_sta | STA_ERR;
break;
case MTSE_IOERR: /* IO error */
mt_sta = mt_sta | STA_PAR | STA_ERR; /* set par err */
if (mt_stopioe) return SCPE_IOERR;
break;
case MTSE_INVRL: /* invalid rec lnt */
mt_sta = mt_sta | STA_PAR | STA_ERR; /* set par err */
return SCPE_MTRLNT;
case MTSE_RECE: /* record in error */
case MTSE_EOM: /* end of medium */
mt_sta = mt_sta | STA_PAR | STA_ERR; /* set par err */
break;
case MTSE_BOT: /* reverse into BOT */
uptr->USTAT = uptr->USTAT | STA_BOT; /* set status */
mt_sta = mt_sta | STA_ERR;
break;
case MTSE_WRP: /* write protect */
mt_sta = mt_sta | STA_ILL | STA_ERR; /* illegal operation */
break; }
return SCPE_OK;
}
/* Reset routine */
t_stat mt_reset (DEVICE *dptr)
{
int32 u;
UNIT *uptr;
mt_cu = mt_fn = mt_wc = mt_ca = mt_db = mt_sta = mt_done = 0;
int_req = int_req & ~INT_MT; /* clear interrupt */
for (u = 0; u < MT_NUMDR; u++) { /* loop thru units */
uptr = mt_dev.units + u;
sim_cancel (uptr); /* cancel activity */
sim_tape_reset (uptr); /* reset tape */
if (uptr->flags & UNIT_ATT) uptr->USTAT =
(sim_tape_bot (uptr)? STA_BOT: 0) |
(sim_tape_wrp (uptr)? STA_WLK: 0);
else uptr->USTAT = STA_REM; }
if (mtxb == NULL) mtxb = calloc (MT_MAXFR, sizeof (uint8));
if (mtxb == NULL) return SCPE_MEM;
return SCPE_OK;
}
/* Attach routine */
t_stat mt_attach (UNIT *uptr, char *cptr)
{
t_stat r;
int32 u = uptr - mt_dev.units; /* get unit number */
r = sim_tape_attach (uptr, cptr);
if (r != SCPE_OK) return r;
uptr->USTAT = STA_BOT | (sim_tape_wrp (uptr)? STA_WLK: 0);
if (u == GET_UNIT (mt_cu)) mt_updcsta (uptr);
return r;
}
/* Detach routine */
t_stat mt_detach (UNIT* uptr)
{
int32 u = uptr - mt_dev.units; /* get unit number */
if (!sim_is_active (uptr)) uptr->USTAT = STA_REM;
if (u == GET_UNIT (mt_cu)) mt_updcsta (uptr);
return sim_tape_detach (uptr);
}
/* Write lock/enable routine */
t_stat mt_vlock (UNIT *uptr, int32 val, char *cptr, void *desc)
{
int32 u = uptr - mt_dev.units; /* get unit number */
if ((uptr->flags & UNIT_ATT) && (val || sim_tape_wrp (uptr)))
uptr->USTAT = uptr->USTAT | STA_WLK;
else uptr->USTAT = uptr->USTAT & ~STA_WLK;
if (u == GET_UNIT (mt_cu)) mt_updcsta (uptr);
return SCPE_OK;
}