simh-testsetgenerator/ALTAIR/altair_cpu.c
Bob Supnik 2c2dd5ea33 Notes For V2.10-0
WARNING: V2.10 has reorganized and renamed some of the definition
files for the PDP-10, PDP-11, and VAX.  Be sure to delete all
previous source files before you unpack the Zip archive, or
unpack it into a new directory structure.

WARNING: V2.10 has a new, more comprehensive save file format.
Restoring save files from previous releases will cause 'invalid
register' errors and loss of CPU option flags, device enable/
disable flags, unit online/offline flags, and unit writelock
flags.

WARNING: If you are using Visual Studio .NET through the IDE,
be sure to turn off the /Wp64 flag in the project settings, or
dozens of spurious errors will be generated.

WARNING: Compiling Ethernet support under Windows requires
extra steps; see the Ethernet readme file.  Ethernet support is
currently available only for Windows, Linux, NetBSD, and OpenBSD.

1. New Features

1.1 SCP and Libraries

- The VT emulation package has been replaced by the capability
  to remote the console to a Telnet session.  Telnet clients
  typically have more complete and robust VT100 emulation.
- Simulated devices may now have statically allocated buffers,
  in addition to dynamically allocated buffers or disk-based
  data stores.
- The DO command now takes substitutable arguments (max 9).
  In command files, %n represents substitutable argument n.
- The initial command line is now interpreted as the command
  name and substitutable arguments for a DO command.  This is
  backward compatible to prior versions.
- The initial command line parses switches.  -Q is interpreted
  as quiet mode; informational messages are suppressed.
- The HELP command now takes an optional argument.  HELP <cmd>
  types help on the specified command.
- Hooks have been added for implementing GUI-based consoles,
  as well as simulator-specific command extensions.  A few
  internal data structures and definitions have changed.
- Two new routines (tmxr_open_master, tmxr_close_master) have
  been added to sim_tmxr.c.  The calling sequence for
  sim_accept_conn has been changed in sim_sock.c.
- The calling sequence for the VM boot routine has been modified
  to add an additional parameter.
- SAVE now saves, and GET now restores, controller and unit flags.
- Library sim_ether.c has been added for Ethernet support.

1.2 VAX

- Non-volatile RAM (NVR) can behave either like a memory or like
  a disk-based peripheral.  If unattached, it behaves like memory
  and is saved and restored by SAVE and RESTORE, respectively.
  If attached, its contents are loaded from disk by ATTACH and
  written back to disk at DETACH and EXIT.
- SHOW <device> VECTOR displays the device's interrupt vector.
  A few devices allow the vector to be changed with SET
  <device> VECTOR=nnn.
- SHOW CPU IOSPACE displays the I/O space address map.
- The TK50 (TMSCP tape) has been added.
- The DEQNA/DELQA (Qbus Ethernet controllers) have been added.
- Autoconfiguration support has been added.
- The paper tape reader has been removed from vax_stddev.c and
  now references a common implementation file, dec_pt.h.
- Examine and deposit switches now work on all devices, not just
  the CPU.
- Device address conflicts are not detected until simulation starts.

1.3 PDP-11

- SHOW <device> VECTOR displays the device's interrupt vector.
  Most devices allow the vector to be changed with SET
  <device> VECTOR=nnn.
- SHOW CPU IOSPACE displays the I/O space address map.
- The TK50 (TMSCP tape), RK611/RK06/RK07 (cartridge disk),
  RX211 (double density floppy), and KW11P programmable clock
  have been added.
- The DEQNA/DELQA (Qbus Ethernet controllers) have been added.
- Autoconfiguration support has been added.
- The paper tape reader has been removed from pdp11_stddev.c and
  now references a common implementation file, dec_pt.h.
- Device bootstraps now use the actual CSR specified by the
  SET ADDRESS command, rather than just the default CSR.  Note
  that PDP-11 operating systems may NOT support booting with
  non-standard addresses.
- Specifying more than 256KB of memory, or changing the bus
  configuration, causes all peripherals that are not compatible
  with the current bus configuration to be disabled.
- Device address conflicts are not detected until simulation starts.

1.4 PDP-10

- SHOW <device> VECTOR displays the device's interrupt vector.
  A few devices allow the vector to be changed with SET
  <device> VECTOR=nnn.
- SHOW CPU IOSPACE displays the I/O space address map.
- The RX211 (double density floppy) has been added; it is off
  by default.
- The paper tape now references a common implementation file,
  dec_pt.h.
- Device address conflicts are not detected until simulation starts.

1.5 PDP-1

- DECtape (then known as MicroTape) support has been added.
- The line printer and DECtape can be disabled and enabled.

1.6 PDP-8

- The RX28 (double density floppy) has been added as an option to
  the existing RX8E controller.
- SHOW <device> DEVNO displays the device's device number.  Most
  devices allow the device number to be changed with SET <device>
  DEVNO=nnn.
- Device number conflicts are not detected until simulation starts.

1.7 IBM 1620

- The IBM 1620 simulator has been released.

1.8 AltairZ80

- A hard drive has been added for increased storage.
- Several bugs have been fixed.

1.9 HP 2100

- The 12845A has been added and made the default line printer (LPT).
  The 12653A has been renamed LPS and is off by default.  It also
  supports the diagnostic functions needed to run the DCPC and DMS
  diagnostics.
- The 12557A/13210A disk defaults to the 13210A (7900/7901).
- The 12559A magtape is off by default.
- New CPU options (EAU/NOEAU) enable/disable the extended arithmetic
  instructions for the 2116.  These instructions are standard on
  the 2100 and 21MX.
- New CPU options (MPR/NOMPR) enable/disable memory protect for the
  2100 and 21MX.
- New CPU options (DMS/NODMS) enable/disable the dynamic mapping
  instructions for the 21MX.
- The 12539 timebase generator autocalibrates.

1.10 Simulated Magtapes

- Simulated magtapes recognize end of file and the marker
  0xFFFFFFFF as end of medium.  Only the TMSCP tape simulator
  can generate an end of medium marker.
- The error handling in simulated magtapes was overhauled to be
  consistent through all simulators.

1.11 Simulated DECtapes

- Added support for RT11 image file format (256 x 16b) to DECtapes.

2. Release Notes

2.1 Bugs Fixed

- TS11/TSV05 was not simulating the XS0_MOT bit, causing failures
  under VMS.  In addition, two of the CTL options were coded
  interchanged.
- IBM 1401 tape was not setting a word mark under group mark for
  load mode reads.  This caused the diagnostics to crash.
- SCP bugs in ssh_break and set_logon were fixed (found by Dave
  Hittner).
- Numerous bugs in the HP 2100 extended arithmetic, floating point,
  21MX, DMS, and IOP instructions were fixed.  Bugs were also fixed
  in the memory protect and DMS functions.  The moving head disks
  (DP, DQ) were revised to simulate the hardware more accurately.
  Missing functions in DQ (address skip, read address) were added.

2.2 HP 2100 Debugging

- The HP 2100 CPU nows runs all of the CPU diagnostics.
- The peripherals run most of the peripheral diagnostics.  There
  is still a problem in overlapped seek operation on the disks.
  See the file hp2100_diag.txt for details.

3. In Progress

These simulators are not finished and are available in a separate
Zip archive distribution.

- Interdata 16b/32b: coded, partially tested.  See the file
  id_diag.txt for details.
- SDS 940: coded, partially tested.
2011-04-15 08:33:49 -07:00

1189 lines
32 KiB
C
Raw Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/* altair_cpu.c: MITS Altair Intel 8080 CPU simulator
Copyright (c) 1997, Charles E. Owen
Permission is hereby granted, free of charge, to any person obtaining a
copy of this software and associated documentation files (the "Software"),
to deal in the Software without restriction, including without limitation
the rights to use, copy, modify, merge, publish, distribute, sublicense,
and/or sell copies of the Software, and to permit persons to whom the
Software is furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
ROBERT M SUPNIK BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
Except as contained in this notice, the name of Charles E. Owen shall not
be used in advertising or otherwise to promote the sale, use or other dealings
in this Software without prior written authorization from Charles E. Owen.
cpu 8080 CPU
08-Oct-02 RMS Tied off spurious compiler warnings
The register state for the 8080 CPU is:
A<0:7> Accumulator
BC<0:15> BC Register Pair
DE<0:15> DE Register Pair
HL<0:15> HL Register Pair
C carry flag
Z zero flag
S Sign bit
AC Aux carry
P Parity bit
PC<0:15> program counter
SP<0:15> Stack Pointer
The 8080 is an 8-bit CPU, which uses 16-bit registers to address
up to 64KB of memory.
The 78 basic instructions come in 1, 2, and 3-byte flavors.
*/
/* This routine is the instruction decode routine for the 8080.
It is called from the simulator control program to execute
instructions in simulated memory, starting at the simulated PC.
It runs until 'reason' is set non-zero.
General notes:
1. Reasons to stop. The simulator can be stopped by:
HALT instruction
I/O error in I/O simulator
Invalid OP code (If ITRAP is set on CPU)
2. Interrupts.
There are 8 possible levels of interrupt, and in effect they
do a hardware CALL instruction to one of 8 possible low
memory addresses.
3. Non-existent memory. On the 8080, reads to non-existent memory
return 0377, and writes are ignored. In the simulator, the
largest possible memory is instantiated and initialized to zero.
Thus, only writes need be checked against actual memory size.
4. Adding I/O devices. These modules must be modified:
altair_cpu.c add I/O service routines to dev_table
altair_sys.c add pointer to data structures in sim_devices
*/
#include <stdio.h>
#include "altair_defs.h"
#define UNIT_V_OPSTOP (UNIT_V_UF) /* Stop on Invalid OP? */
#define UNIT_OPSTOP (1 << UNIT_V_OPSTOP)
#define UNIT_V_CHIP (UNIT_V_UF+1) /* 8080 or Z80 */
#define UNIT_CHIP (1 << UNIT_V_CHIP)
#define UNIT_V_MSIZE (UNIT_V_UF+2) /* Memory Size */
#define UNIT_MSIZE (1 << UNIT_V_MSIZE)
unsigned char M[MAXMEMSIZE]; /* memory */
int32 A = 0; /* accumulator */
int32 BC = 0; /* BC register pair */
int32 DE = 0; /* DE register pair */
int32 HL = 0; /* HL register pair */
int32 SP = 0; /* Stack pointer */
int32 C = 0; /* carry flag */
int32 Z = 0; /* Zero flag */
int32 AC = 0; /* Aux carry */
int32 S = 0; /* sign flag */
int32 P = 0; /* parity flag */
int32 saved_PC = 0; /* program counter */
int32 SR = 0; /* switch register */
int32 INTE = 0; /* Interrupt Enable */
int32 int_req = 0; /* Interrupt request */
int32 chip = 0; /* 0 = 8080 chip, 1 = z80 chip */
int32 PCX; /* External view of PC */
extern int32 sim_int_char;
extern int32 sim_brk_types, sim_brk_dflt, sim_brk_summ; /* breakpoint info */
/* function prototypes */
t_stat cpu_ex (t_value *vptr, t_addr addr, UNIT *uptr, int32 sw);
t_stat cpu_dep (t_value val, t_addr addr, UNIT *uptr, int32 sw);
t_stat cpu_reset (DEVICE *dptr);
t_stat cpu_set_size (UNIT *uptr, int32 val, char *cptr, void *desc);
void setarith(int32 reg);
void setlogical(int32 reg);
void setinc(int32 reg);
int32 getreg(int32 reg);
void putreg(int32 reg, int32 val);
int32 getpair(int32 reg);
int32 getpush(int32 reg);
void putpush(int32 reg, int32 data);
void putpair(int32 reg, int32 val);
void parity(int32 reg);
int32 cond(int32 con);
extern int32 sio0s(int32 io, int32 data);
extern int32 sio0d(int32 io, int32 data);
extern int32 sio1s(int32 io, int32 data);
extern int32 sio1d(int32 io, int32 data);
extern int32 dsk10(int32 io, int32 data);
extern int32 dsk11(int32 io, int32 data);
extern int32 dsk12(int32 io, int32 data);
int32 nulldev(int32 io, int32 data);
/* This is the I/O configuration table. There are 255 possible
device addresses, if a device is plugged to a port it's routine
address is here, 'nulldev' means no device is available
*/
struct idev {
int32 (*routine)();
};
struct idev dev_table[256] = {
{&nulldev}, {&nulldev}, {&nulldev}, {&nulldev}, /* 000 */
{&nulldev}, {&nulldev}, {&nulldev}, {&nulldev}, /* 004 */
{&dsk10}, {&dsk11}, {&dsk12}, {&nulldev}, /* 010 */
{&nulldev}, {&nulldev}, {&nulldev}, {&nulldev}, /* 014 */
{&sio0s}, {&sio0d}, {&sio1s}, {&sio1d}, /* 020 */
{&nulldev}, {&nulldev}, {&nulldev}, {&nulldev}, /* 024 */
{&nulldev}, {&nulldev}, {&nulldev}, {&nulldev}, /* 030 */
{&nulldev}, {&nulldev}, {&nulldev}, {&nulldev}, /* 034 */
{&nulldev}, {&nulldev}, {&nulldev}, {&nulldev}, /* 040 */
{&nulldev}, {&nulldev}, {&nulldev}, {&nulldev}, /* 044 */
{&nulldev}, {&nulldev}, {&nulldev}, {&nulldev}, /* 050 */
{&nulldev}, {&nulldev}, {&nulldev}, {&nulldev}, /* 054 */
{&nulldev}, {&nulldev}, {&nulldev}, {&nulldev}, /* 060 */
{&nulldev}, {&nulldev}, {&nulldev}, {&nulldev}, /* 064 */
{&nulldev}, {&nulldev}, {&nulldev}, {&nulldev}, /* 070 */
{&nulldev}, {&nulldev}, {&nulldev}, {&nulldev}, /* 074 */
{&nulldev}, {&nulldev}, {&nulldev}, {&nulldev}, /* 100 */
{&nulldev}, {&nulldev}, {&nulldev}, {&nulldev}, /* 104 */
{&nulldev}, {&nulldev}, {&nulldev}, {&nulldev}, /* 110 */
{&nulldev}, {&nulldev}, {&nulldev}, {&nulldev}, /* 114 */
{&nulldev}, {&nulldev}, {&nulldev}, {&nulldev}, /* 120 */
{&nulldev}, {&nulldev}, {&nulldev}, {&nulldev}, /* 124 */
{&nulldev}, {&nulldev}, {&nulldev}, {&nulldev}, /* 130 */
{&nulldev}, {&nulldev}, {&nulldev}, {&nulldev}, /* 134 */
{&nulldev}, {&nulldev}, {&nulldev}, {&nulldev}, /* 140 */
{&nulldev}, {&nulldev}, {&nulldev}, {&nulldev}, /* 144 */
{&nulldev}, {&nulldev}, {&nulldev}, {&nulldev}, /* 150 */
{&nulldev}, {&nulldev}, {&nulldev}, {&nulldev}, /* 154 */
{&nulldev}, {&nulldev}, {&nulldev}, {&nulldev}, /* 160 */
{&nulldev}, {&nulldev}, {&nulldev}, {&nulldev}, /* 164 */
{&nulldev}, {&nulldev}, {&nulldev}, {&nulldev}, /* 170 */
{&nulldev}, {&nulldev}, {&nulldev}, {&nulldev}, /* 174 */
{&nulldev}, {&nulldev}, {&nulldev}, {&nulldev}, /* 200 */
{&nulldev}, {&nulldev}, {&nulldev}, {&nulldev}, /* 204 */
{&nulldev}, {&nulldev}, {&nulldev}, {&nulldev}, /* 210 */
{&nulldev}, {&nulldev}, {&nulldev}, {&nulldev}, /* 214 */
{&nulldev}, {&nulldev}, {&nulldev}, {&nulldev}, /* 220 */
{&nulldev}, {&nulldev}, {&nulldev}, {&nulldev}, /* 224 */
{&nulldev}, {&nulldev}, {&nulldev}, {&nulldev}, /* 230 */
{&nulldev}, {&nulldev}, {&nulldev}, {&nulldev}, /* 234 */
{&nulldev}, {&nulldev}, {&nulldev}, {&nulldev}, /* 240 */
{&nulldev}, {&nulldev}, {&nulldev}, {&nulldev}, /* 244 */
{&nulldev}, {&nulldev}, {&nulldev}, {&nulldev}, /* 250 */
{&nulldev}, {&nulldev}, {&nulldev}, {&nulldev}, /* 254 */
{&nulldev}, {&nulldev}, {&nulldev}, {&nulldev}, /* 260 */
{&nulldev}, {&nulldev}, {&nulldev}, {&nulldev}, /* 264 */
{&nulldev}, {&nulldev}, {&nulldev}, {&nulldev}, /* 270 */
{&nulldev}, {&nulldev}, {&nulldev}, {&nulldev}, /* 274 */
{&nulldev}, {&nulldev}, {&nulldev}, {&nulldev}, /* 300 */
{&nulldev}, {&nulldev}, {&nulldev}, {&nulldev}, /* 304 */
{&nulldev}, {&nulldev}, {&nulldev}, {&nulldev}, /* 310 */
{&nulldev}, {&nulldev}, {&nulldev}, {&nulldev}, /* 314 */
{&nulldev}, {&nulldev}, {&nulldev}, {&nulldev}, /* 320 */
{&nulldev}, {&nulldev}, {&nulldev}, {&nulldev}, /* 324 */
{&nulldev}, {&nulldev}, {&nulldev}, {&nulldev}, /* 330 */
{&nulldev}, {&nulldev}, {&nulldev}, {&nulldev}, /* 334 */
{&nulldev}, {&nulldev}, {&nulldev}, {&nulldev}, /* 340 */
{&nulldev}, {&nulldev}, {&nulldev}, {&nulldev}, /* 344 */
{&nulldev}, {&nulldev}, {&nulldev}, {&nulldev}, /* 350 */
{&nulldev}, {&nulldev}, {&nulldev}, {&nulldev}, /* 354 */
{&nulldev}, {&nulldev}, {&nulldev}, {&nulldev}, /* 360 */
{&nulldev}, {&nulldev}, {&nulldev}, {&nulldev}, /* 364 */
{&nulldev}, {&nulldev}, {&nulldev}, {&nulldev}, /* 370 */
{&nulldev}, {&nulldev}, {&nulldev}, {&nulldev} }; /* 374 */
/* Altair MITS standard BOOT EPROM, fits in upper 256K of memory */
int32 bootrom[256] = {
0041, 0000, 0114, 0021, 0030, 0377, 0016, 0346,
0032, 0167, 0023, 0043, 0015, 0302, 0010, 0377,
0303, 0000, 0114, 0000, 0000, 0000, 0000, 0000,
0363, 0061, 0142, 0115, 0257, 0323, 0010, 0076, /* 46000 */
0004, 0323, 0011, 0303, 0031, 0114, 0333, 0010, /* 46010 */
0346, 0002, 0302, 0016, 0114, 0076, 0002, 0323, /* 46020 */
0011, 0333, 0010, 0346, 0100, 0302, 0016, 0114,
0021, 0000, 0000, 0006, 0000, 0333, 0010, 0346,
0004, 0302, 0045, 0114, 0076, 0020, 0365, 0325,
0305, 0325, 0021, 0206, 0200, 0041, 0324, 0114,
0333, 0011, 0037, 0332, 0070, 0114, 0346, 0037,
0270, 0302, 0070, 0114, 0333, 0010, 0267, 0372,
0104, 0114, 0333, 0012, 0167, 0043, 0035, 0312,
0132, 0114, 0035, 0333, 0012, 0167, 0043, 0302,
0104, 0114, 0341, 0021, 0327, 0114, 0001, 0200,
0000, 0032, 0167, 0276, 0302, 0301, 0114, 0200,
0107, 0023, 0043, 0015, 0302, 0141, 0114, 0032,
0376, 0377, 0302, 0170, 0114, 0023, 0032, 0270,
0301, 0353, 0302, 0265, 0114, 0361, 0361, 0052,
0325, 0114, 0325, 0021, 0000, 0377, 0315, 0316,
0114, 0321, 0332, 0276, 0114, 0315, 0316, 0114,
0322, 0256, 0114, 0004, 0004, 0170, 0376, 0040,
0332, 0054, 0114, 0006, 0001, 0312, 0054, 0114,
0333, 0010, 0346, 0002, 0302, 0240, 0114, 0076,
0001, 0323, 0011, 0303, 0043, 0114, 0076, 0200,
0323, 0010, 0303, 0000, 0000, 0321, 0361, 0075,
0302, 0056, 0114, 0076, 0103, 0001, 0076, 0117,
0001, 0076, 0115, 0107, 0076, 0200, 0323, 0010,
0170, 0323, 0001, 0303, 0311, 0114, 0172, 0274,
0300, 0173, 0275, 0311, 0204, 0000, 0114, 0044,
0026, 0126, 0026, 0000, 0000, 0000, 0000, 0000
};
/* CPU data structures
cpu_dev CPU device descriptor
cpu_unit CPU unit descriptor
cpu_reg CPU register list
cpu_mod CPU modifiers list
*/
UNIT cpu_unit = { UDATA (NULL, UNIT_FIX + UNIT_BINK,
MAXMEMSIZE) };
REG cpu_reg[] = {
{ ORDATA (PC, saved_PC, 16) },
{ ORDATA (A, A, 8) },
{ ORDATA (BC, BC, 16) },
{ ORDATA (DE, DE, 16) },
{ ORDATA (HL, HL, 16) },
{ ORDATA (SP, SP, 16) },
{ FLDATA (C, C, 16) },
{ FLDATA (Z, Z, 16) },
{ FLDATA (AC, AC, 16) },
{ FLDATA (S, S, 16) },
{ FLDATA (P, P, 16) },
{ FLDATA (INTE, INTE, 16) },
{ ORDATA (SR, SR, 16) },
{ ORDATA (WRU, sim_int_char, 8) },
{ NULL } };
MTAB cpu_mod[] = {
{ UNIT_CHIP, UNIT_CHIP, "Z80", "Z80", NULL },
{ UNIT_CHIP, 0, "8080", "8080", NULL },
{ UNIT_OPSTOP, UNIT_OPSTOP, "ITRAP", "ITRAP", NULL },
{ UNIT_OPSTOP, 0, "NOITRAP", "NOITRAP", NULL },
{ UNIT_MSIZE, 4096, NULL, "4K", &cpu_set_size },
{ UNIT_MSIZE, 8192, NULL, "8K", &cpu_set_size },
{ UNIT_MSIZE, 12288, NULL, "12K", &cpu_set_size },
{ UNIT_MSIZE, 16384, NULL, "16K", &cpu_set_size },
{ UNIT_MSIZE, 20480, NULL, "20K", &cpu_set_size },
{ UNIT_MSIZE, 24576, NULL, "24K", &cpu_set_size },
{ UNIT_MSIZE, 28672, NULL, "28K", &cpu_set_size },
{ UNIT_MSIZE, 32768, NULL, "32K", &cpu_set_size },
{ UNIT_MSIZE, 49152, NULL, "48K", &cpu_set_size },
{ UNIT_MSIZE, 65535, NULL, "64K", &cpu_set_size },
{ 0 } };
DEVICE cpu_dev = {
"CPU", &cpu_unit, cpu_reg, cpu_mod,
1, 8, 16, 1, 8, 8,
&cpu_ex, &cpu_dep, &cpu_reset,
NULL, NULL, NULL };
int32 sim_instr (void)
{
extern int32 sim_interval;
int32 PC, IR, OP, DAR, reason, hi, lo, carry, i;
PC = saved_PC & ADDRMASK; /* load local PC */
C = C & 0200000;
reason = 0;
/* Main instruction fetch/decode loop */
while (reason == 0) { /* loop until halted */
if (sim_interval <= 0) { /* check clock queue */
if (reason = sim_process_event ()) break;
}
if (int_req > 0) { /* interrupt? */
/* 8080 interrupts not implemented yet. None were used,
on a standard Altair 8800. All I/O is programmed. */
} /* end interrupt */
if (sim_brk_summ &&
sim_brk_test (PC, SWMASK ('E'))) { /* breakpoint? */
reason = STOP_IBKPT; /* stop simulation */
break;
}
if (PC == 0177400) { /* BOOT PROM address */
for (i = 0; i < 250; i++) {
M[i + 0177400] = bootrom[i] & 0xFF;
}
}
PCX = PC;
IR = OP = M[PC]; /* fetch instruction */
PC = (PC + 1) & ADDRMASK; /* increment PC */
sim_interval--;
if (OP == 0166) { /* HLT Instruction*/
reason = STOP_HALT;
PC--;
continue;
}
/* Handle below all operations which refer to registers or
register pairs. After that, a large switch statement
takes care of all other opcodes */
if ((OP & 0xC0) == 0x40) { /* MOV */
DAR = getreg(OP & 0x07);
putreg((OP >> 3) & 0x07, DAR);
continue;
}
if ((OP & 0xC7) == 0x06) { /* MVI */
putreg((OP >> 3) & 0x07, M[PC]);
PC++;
continue;
}
if ((OP & 0xCF) == 0x01) { /* LXI */
DAR = M[PC] & 0x00ff;
PC++;
DAR = DAR | (M[PC] <<8) & 0xFF00;;
putpair((OP >> 4) & 0x03, DAR);
PC++;
continue;
}
if ((OP & 0xEF) == 0x0A) { /* LDAX */
DAR = getpair((OP >> 4) & 0x03);
putreg(7, M[DAR]);
continue;
}
if ((OP & 0xEF) == 0x02) { /* STAX */
DAR = getpair((OP >> 4) & 0x03);
M[DAR] = getreg(7);
continue;
}
if ((OP & 0xF8) == 0xB8) { /* CMP */
DAR = A & 0xFF;
DAR -= getreg(OP & 0x07);
setarith(DAR);
continue;
}
if ((OP & 0xC7) == 0xC2) { /* JMP <condition> */
if (cond((OP >> 3) & 0x07) == 1) {
lo = M[PC];
PC++;
hi = M[PC];
PC++;
PC = (hi << 8) + lo;
} else {
PC += 2;
}
continue;
}
if ((OP & 0xC7) == 0xC4) { /* CALL <condition> */
if (cond((OP >> 3) & 0x07) == 1) {
lo = M[PC];
PC++;
hi = M[PC];
PC++;
SP--;
M[SP] = (PC >> 8) & 0xff;
SP--;
M[SP] = PC & 0xff;
PC = (hi << 8) + lo;
} else {
PC += 2;
}
continue;
}
if ((OP & 0xC7) == 0xC0) { /* RET <condition> */
if (cond((OP >> 3) & 0x07) == 1) {
PC = M[SP];
SP++;
PC |= (M[SP] << 8) & 0xff00;
SP++;
}
continue;
}
if ((OP & 0xC7) == 0xC7) { /* RST */
SP--;
M[SP] = (PC >> 8) & 0xff;
SP--;
M[SP] = PC & 0xff;
PC = OP & 0x38;
continue;
}
if ((OP & 0xCF) == 0xC5) { /* PUSH */
DAR = getpush((OP >> 4) & 0x03);
SP--;
M[SP] = (DAR >> 8) & 0xff;
SP--;
M[SP] = DAR & 0xff;
continue;
}
if ((OP & 0xCF) == 0xC1) { /*POP */
DAR = M[SP];
SP++;
DAR |= M[SP] << 8;
SP++;
putpush((OP >> 4) & 0x03, DAR);
continue;
}
if ((OP & 0xF8) == 0x80) { /* ADD */
A += getreg(OP & 0x07);
setarith(A);
A = A & 0xFF;
continue;
}
if ((OP & 0xF8) == 0x88) { /* ADC */
carry = 0;
if (C) carry = 1;
A += getreg(OP & 0x07);
A += carry;
setarith(A);
A = A & 0xFF;
continue;
}
if ((OP & 0xF8) == 0x90) { /* SUB */
A -= getreg(OP & 0x07);
setarith(A);
A = A & 0xFF;
continue;
}
if ((OP & 0xF8) == 0x98) { /* SBB */
carry = 0;
if (C) carry = 1;
A -= (getreg(OP & 0x07)) + carry ;
setarith(A);
A = A & 0xFF;
continue;
}
if ((OP & 0xC7) == 0x04) { /* INR */
DAR = getreg((OP >> 3) & 0x07);
DAR++;
setinc(DAR);
DAR = DAR & 0xFF;
putreg((OP >> 3) & 0x07, DAR);
continue;
}
if ((OP & 0xC7) == 0x05) { /* DCR */
DAR = getreg((OP >> 3) & 0x07);
DAR--;
setinc(DAR);
DAR = DAR & 0xFF;
putreg((OP >> 3) & 0x07, DAR);
continue;
}
if ((OP & 0xCF) == 0x03) { /* INX */
DAR = getpair((OP >> 4) & 0x03);
DAR++;
DAR = DAR & 0xFFFF;
putpair((OP >> 4) & 0x03, DAR);
continue;
}
if ((OP & 0xCF) == 0x0B) { /* DCX */
DAR = getpair((OP >> 4) & 0x03);
DAR--;
DAR = DAR & 0xFFFF;
putpair((OP >> 4) & 0x03, DAR);
continue;
}
if ((OP & 0xCF) == 0x09) { /* DAD */
HL += getpair((OP >> 4) & 0x03);
C = 0;
if (HL & 0x10000)
C = 0200000;
HL = HL & 0xFFFF;
continue;
}
if ((OP & 0xF8) == 0xA0) { /* ANA */
A &= getreg(OP & 0x07);
C = 0;
setlogical(A);
A &= 0xFF;
continue;
}
if ((OP & 0xF8) == 0xA8) { /* XRA */
A ^= getreg(OP & 0x07);
C = 0;
setlogical(A);
A &= 0xFF;
continue;
}
if ((OP & 0xF8) == 0xB0) { /* ORA */
A |= getreg(OP & 0x07);
C = 0;
setlogical(A);
A &= 0xFF;
continue;
}
/* The Big Instruction Decode Switch */
switch (IR) {
/* Logical instructions */
case 0376: { /* CPI */
DAR = A & 0xFF;
DAR -= M[PC];
PC++;
setarith(DAR);
break;
}
case 0346: { /* ANI */
A &= M[PC];
PC++;
C = AC = 0;
setlogical(A);
A &= 0xFF;
break;
}
case 0356: { /* XRI */
A ^= M[PC];
PC++;
C = AC = 0;
setlogical(A);
A &= 0xFF;
break;
}
case 0366: { /* ORI */
A |= M[PC];
PC++;
C = AC = 0;
setlogical(A);
A &= 0xFF;
break;
}
/* Jump instructions */
case 0303: { /* JMP */
lo = M[PC];
PC++;
hi = M[PC];
PC++;
PC = (hi << 8) + lo;
break;
}
case 0351: { /* PCHL */
PC = HL;
break;
}
case 0315: { /* CALL */
lo = M[PC];
PC++;
hi = M[PC];
PC++;
SP--;
M[SP] = (PC >> 8) & 0xff;
SP--;
M[SP] = PC & 0xff;
PC = (hi << 8) + lo;
break;
}
case 0311: { /* RET */
PC = M[SP];
SP++;
PC |= (M[SP] << 8) & 0xff00;
SP++;
break;
}
/* Data Transfer Group */
case 062: { /* STA */
lo = M[PC];
PC++;
hi = M[PC];
PC++;
DAR = (hi << 8) + lo;
M[DAR] = A;
break;
}
case 072: { /* LDA */
lo = M[PC];
PC++;
hi = M[PC];
PC++;
DAR = (hi << 8) + lo;
A = M[DAR];
break;
}
case 042: { /* SHLD */
lo = M[PC];
PC++;
hi = M[PC];
PC++;
DAR = (hi << 8) + lo;
M[DAR] = HL;
DAR++;
M[DAR] = (HL >>8) & 0x00ff;
break;
}
case 052: { /* LHLD */
lo = M[PC];
PC++;
hi = M[PC];
PC++;
DAR = (hi << 8) + lo;
HL = M[DAR];
DAR++;
HL = HL | (M[DAR] <<8);
break;
}
case 0353: { /* XCHG */
DAR = HL;
HL = DE;
DE = DAR;
break;
}
/* Arithmetic Group */
case 0306: { /* ADI */
A += M[PC];
PC++;
setarith(A);
A = A & 0xFF;
break;
}
case 0316: { /* ACI */
carry = 0;
if (C) carry = 1;
A += M[PC];
A += carry;
PC++;
setarith(A);
A = A & 0xFF;
break;
}
case 0326: { /* SUI */
A -= M[PC];
PC++;
setarith(A);
A = A & 0xFF;
break;
}
case 0336: { /* SBI */
carry = 0;
if (C) carry = 1;
A -= (M[PC] + carry);
PC++;
setarith(A);
A = A & 0xFF;
break;
}
case 047: { /* DAA */
DAR = A & 0x0F;
if (DAR > 9 || AC > 0) {
DAR += 6;
A &= 0xF0;
A |= DAR & 0x0F;
if (DAR & 0x10)
AC = 0200000;
else
AC = 0;
}
DAR = (A >> 4) & 0x0F;
if (DAR > 9 || AC > 0) {
DAR += 6;
if (AC) DAR++;
A &= 0x0F;
A |= (DAR << 4);
}
if ((DAR << 4) & 0x100)
C = 0200000;
else
C = 0;
if (A & 0x80) {
S = 0200000;
} else {
S = 0;
}
if ((A & 0xff) == 0)
Z = 0200000;
else
Z = 0;
parity(A);
A = A & 0xFF;
break;
}
case 07: { /* RLC */
C = 0;
C = (A << 9) & 0200000;
A = (A << 1) & 0xFF;
if (C)
A |= 0x01;
break;
}
case 017: { /* RRC */
C = 0;
if ((A & 0x01) == 1)
C |= 0200000;
A = (A >> 1) & 0xFF;
if (C)
A |= 0x80;
break;
}
case 027: { /* RAL */
DAR = C;
C = 0;
C = (A << 9) & 0200000;
A = (A << 1) & 0xFF;
if (DAR)
A |= 1;
else
A &= 0xFE;
break;
}
case 037: { /* RAR */
DAR = C;
C = 0;
if ((A & 0x01) == 1)
C |= 0200000;
A = (A >> 1) & 0xFF;
if (DAR)
A |= 0x80;
else
A &= 0x7F;
break;
}
case 057: { /* CMA */
A = ~ A;
A &= 0xFF;
break;
}
case 077: { /* CMC */
C = ~ C;
C &= 0200000;
break;
}
case 067: { /* STC */
C = 0200000;
break;
}
/* Stack, I/O & Machine Control Group */
case 0: { /* NOP */
break;
}
case 0343: { /* XTHL */
lo = M[SP];
hi = M[SP + 1];
M[SP] = HL & 0xFF;
M[SP + 1] = (HL >> 8) & 0xFF;
HL = (hi << 8) + lo;
break;
}
case 0371: { /* SPHL */
SP = HL;
break;
}
case 0373: { /* EI */
INTE = 0200000;
break;
}
case 0363: { /* DI */
INTE = 0;
break;
}
case 0333: { /* IN */
DAR = M[PC] & 0xFF;
PC++;
if (DAR == 0xFF) {
A = (SR >> 8) & 0xFF;
} else {
A = dev_table[DAR].routine(0, 0);
}
break;
}
case 0323: { /* OUT */
DAR = M[PC] & 0xFF;
PC++;
dev_table[DAR].routine(1, A);
break;
}
default: {
if (cpu_unit.flags & UNIT_OPSTOP) {
reason = STOP_OPCODE;
PC--;
}
break;
}
}
}
/* Simulation halted */
saved_PC = PC;
return reason;
}
/* Test an 8080 flag condition and return 1 if true, 0 if false */
int32 cond(int32 con)
{
int32 r = 0;
switch (con) {
case 0:
if (Z == 0) return (1);
break;
case 1:
if (Z != 0) return (1);
break;
case 2:
if (C == 0) return (1);
break;
case 3:
if (C != 0) return (1);
break;
case 4:
if (P == 0) return (1);
break;
case 5:
if (P != 0) return (1);
break;
case 6:
if (S == 0) return (1);
break;
case 7:
if (S != 0) return (1);
break;
default:
break;
}
return (0);
}
/* Set the <C>arry, <S>ign, <Z>ero and <P>arity flags following
an arithmetic operation on 'reg'.
*/
void setarith(int32 reg)
{
int32 bc = 0;
if (reg & 0x100)
C = 0200000;
else
C = 0;
if (reg & 0x80) {
bc++;
S = 0200000;
} else {
S = 0;
}
if ((reg & 0xff) == 0)
Z = 0200000;
else
Z = 0;
AC = 0;
if (cpu_unit.flags & UNIT_CHIP) {
P = 0; /* parity is zero for *all* arith ops on Z80 */
} else {
parity(reg);
}
}
/* Set the <C>arry, <S>ign, <Z>ero amd <P>arity flags following
a logical (bitwise) operation on 'reg'.
*/
void setlogical(int32 reg)
{
C = 0;
if (reg & 0x80) {
S = 0200000;
} else {
S = 0;
}
if ((reg & 0xff) == 0)
Z = 0200000;
else
Z = 0;
AC = 0;
parity(reg);
}
/* Set the Parity (P) flag based on parity of 'reg', i.e., number
of bits on even: P=0200000, else P=0
*/
void parity(int32 reg)
{
int32 bc = 0;
if (reg & 0x01) bc++;
if (reg & 0x02) bc++;
if (reg & 0x04) bc++;
if (reg & 0x08) bc++;
if (reg & 0x10) bc++;
if (reg & 0x20) bc++;
if (reg & 0x40) bc++;
if (reg & 0x80) bc++;
P = ~(bc << 16);
P &= 0200000;
}
/* Set the <S>ign, <Z>ero amd <P>arity flags following
an INR/DCR operation on 'reg'.
*/
void setinc(int32 reg)
{
int32 bc = 0;
if (reg & 0x80) {
bc++;
S = 0200000;
} else {
S = 0;
}
if ((reg & 0xff) == 0)
Z = 0200000;
else
Z = 0;
if (cpu_unit.flags & UNIT_CHIP) {
P = 0; /* parity is zero for *all* arith ops on Z80 */
} else {
parity(reg);
}
}
/* Get an 8080 register and return it */
int32 getreg(int32 reg)
{
switch (reg) {
case 0:
return ((BC >>8) & 0x00ff);
case 1:
return (BC & 0x00FF);
case 2:
return ((DE >>8) & 0x00ff);
case 3:
return (DE & 0x00ff);
case 4:
return ((HL >>8) & 0x00ff);
case 5:
return (HL & 0x00ff);
case 6:
return (M[HL]);
case 7:
return (A);
default:
break;
}
return 0;
}
/* Put a value into an 8080 register from memory */
void putreg(int32 reg, int32 val)
{
switch (reg) {
case 0:
BC = BC & 0x00FF;
BC = BC | (val <<8);
break;
case 1:
BC = BC & 0xFF00;
BC = BC | val;
break;
case 2:
DE = DE & 0x00FF;
DE = DE | (val <<8);
break;
case 3:
DE = DE & 0xFF00;
DE = DE | val;
break;
case 4:
HL = HL & 0x00FF;
HL = HL | (val <<8);
break;
case 5:
HL = HL & 0xFF00;
HL = HL | val;
break;
case 6:
M[HL] = val & 0xff;
break;
case 7:
A = val & 0xff;
default:
break;
}
}
/* Return the value of a selected register pair */
int32 getpair(int32 reg)
{
switch (reg) {
case 0:
return (BC);
case 1:
return (DE);
case 2:
return (HL);
case 3:
return (SP);
default:
break;
}
return 0;
}
/* Return the value of a selected register pair, in PUSH
format where 3 means A& flags, not SP */
int32 getpush(int32 reg)
{
int32 stat;
switch (reg) {
case 0:
return (BC);
case 1:
return (DE);
case 2:
return (HL);
case 3:
stat = A << 8;
if (S) stat |= 0x80;
if (Z) stat |= 0x40;
if (AC) stat |= 0x10;
if (P) stat |= 0x04;
stat |= 0x02;
if (C) stat |= 0x01;
return (stat);
default:
break;
}
return 0;
}
/* Place data into the indicated register pair, in PUSH
format where 3 means A& flags, not SP */
void putpush(int32 reg, int32 data)
{
switch (reg) {
case 0:
BC = data;
break;
case 1:
DE = data;
break;
case 2:
HL = data;
break;
case 3:
A = (data >> 8) & 0xff;
S = Z = AC = P = C = 0;
if (data & 0x80) S = 0200000;
if (data & 0x40) Z = 0200000;
if (data & 0x10) AC = 0200000;
if (data & 0x04) P = 0200000;
if (data & 0x01) C = 0200000;
break;
default:
break;
}
}
/* Put a value into an 8080 register pair */
void putpair(int32 reg, int32 val)
{
switch (reg) {
case 0:
BC = val;
break;
case 1:
DE = val;
break;
case 2:
HL = val;
break;
case 3:
SP = val;
break;
default:
break;
}
}
/* Reset routine */
t_stat cpu_reset (DEVICE *dptr)
{
C = 0;
Z = 0;
saved_PC = 0;
int_req = 0;
sim_brk_types = sim_brk_dflt = SWMASK ('E');
return SCPE_OK;
}
/* Memory examine */
t_stat cpu_ex (t_value *vptr, t_addr addr, UNIT *uptr, int32 sw)
{
if (addr >= MEMSIZE) return SCPE_NXM;
if (vptr != NULL) *vptr = M[addr] & 0377;
return SCPE_OK;
}
/* Memory deposit */
t_stat cpu_dep (t_value val, t_addr addr, UNIT *uptr, int32 sw)
{
if (addr >= MEMSIZE) return SCPE_NXM;
M[addr] = val & 0377;
return SCPE_OK;
}
t_stat cpu_set_size (UNIT *uptr, int32 val, char *cptr, void *desc)
{
int32 mc = 0;
t_addr i;
if ((val <= 0) || (val > MAXMEMSIZE) || ((val & 07777) != 0))
return SCPE_ARG;
for (i = val; i < MEMSIZE; i++) mc = mc | M[i];
if ((mc != 0) && (!get_yn ("Really truncate memory [N]?", FALSE)))
return SCPE_OK;
MEMSIZE = val;
for (i = MEMSIZE; i < MAXMEMSIZE; i++) M[i] = 0;
return SCPE_OK;
}
int32 nulldev(int32 flag, int32 data)
{
if (flag == 0)
return (0377);
return 0;
}