simh-testsetgenerator/PDP11/pdp11_io.c
Bob Supnik 2c2dd5ea33 Notes For V2.10-0
WARNING: V2.10 has reorganized and renamed some of the definition
files for the PDP-10, PDP-11, and VAX.  Be sure to delete all
previous source files before you unpack the Zip archive, or
unpack it into a new directory structure.

WARNING: V2.10 has a new, more comprehensive save file format.
Restoring save files from previous releases will cause 'invalid
register' errors and loss of CPU option flags, device enable/
disable flags, unit online/offline flags, and unit writelock
flags.

WARNING: If you are using Visual Studio .NET through the IDE,
be sure to turn off the /Wp64 flag in the project settings, or
dozens of spurious errors will be generated.

WARNING: Compiling Ethernet support under Windows requires
extra steps; see the Ethernet readme file.  Ethernet support is
currently available only for Windows, Linux, NetBSD, and OpenBSD.

1. New Features

1.1 SCP and Libraries

- The VT emulation package has been replaced by the capability
  to remote the console to a Telnet session.  Telnet clients
  typically have more complete and robust VT100 emulation.
- Simulated devices may now have statically allocated buffers,
  in addition to dynamically allocated buffers or disk-based
  data stores.
- The DO command now takes substitutable arguments (max 9).
  In command files, %n represents substitutable argument n.
- The initial command line is now interpreted as the command
  name and substitutable arguments for a DO command.  This is
  backward compatible to prior versions.
- The initial command line parses switches.  -Q is interpreted
  as quiet mode; informational messages are suppressed.
- The HELP command now takes an optional argument.  HELP <cmd>
  types help on the specified command.
- Hooks have been added for implementing GUI-based consoles,
  as well as simulator-specific command extensions.  A few
  internal data structures and definitions have changed.
- Two new routines (tmxr_open_master, tmxr_close_master) have
  been added to sim_tmxr.c.  The calling sequence for
  sim_accept_conn has been changed in sim_sock.c.
- The calling sequence for the VM boot routine has been modified
  to add an additional parameter.
- SAVE now saves, and GET now restores, controller and unit flags.
- Library sim_ether.c has been added for Ethernet support.

1.2 VAX

- Non-volatile RAM (NVR) can behave either like a memory or like
  a disk-based peripheral.  If unattached, it behaves like memory
  and is saved and restored by SAVE and RESTORE, respectively.
  If attached, its contents are loaded from disk by ATTACH and
  written back to disk at DETACH and EXIT.
- SHOW <device> VECTOR displays the device's interrupt vector.
  A few devices allow the vector to be changed with SET
  <device> VECTOR=nnn.
- SHOW CPU IOSPACE displays the I/O space address map.
- The TK50 (TMSCP tape) has been added.
- The DEQNA/DELQA (Qbus Ethernet controllers) have been added.
- Autoconfiguration support has been added.
- The paper tape reader has been removed from vax_stddev.c and
  now references a common implementation file, dec_pt.h.
- Examine and deposit switches now work on all devices, not just
  the CPU.
- Device address conflicts are not detected until simulation starts.

1.3 PDP-11

- SHOW <device> VECTOR displays the device's interrupt vector.
  Most devices allow the vector to be changed with SET
  <device> VECTOR=nnn.
- SHOW CPU IOSPACE displays the I/O space address map.
- The TK50 (TMSCP tape), RK611/RK06/RK07 (cartridge disk),
  RX211 (double density floppy), and KW11P programmable clock
  have been added.
- The DEQNA/DELQA (Qbus Ethernet controllers) have been added.
- Autoconfiguration support has been added.
- The paper tape reader has been removed from pdp11_stddev.c and
  now references a common implementation file, dec_pt.h.
- Device bootstraps now use the actual CSR specified by the
  SET ADDRESS command, rather than just the default CSR.  Note
  that PDP-11 operating systems may NOT support booting with
  non-standard addresses.
- Specifying more than 256KB of memory, or changing the bus
  configuration, causes all peripherals that are not compatible
  with the current bus configuration to be disabled.
- Device address conflicts are not detected until simulation starts.

1.4 PDP-10

- SHOW <device> VECTOR displays the device's interrupt vector.
  A few devices allow the vector to be changed with SET
  <device> VECTOR=nnn.
- SHOW CPU IOSPACE displays the I/O space address map.
- The RX211 (double density floppy) has been added; it is off
  by default.
- The paper tape now references a common implementation file,
  dec_pt.h.
- Device address conflicts are not detected until simulation starts.

1.5 PDP-1

- DECtape (then known as MicroTape) support has been added.
- The line printer and DECtape can be disabled and enabled.

1.6 PDP-8

- The RX28 (double density floppy) has been added as an option to
  the existing RX8E controller.
- SHOW <device> DEVNO displays the device's device number.  Most
  devices allow the device number to be changed with SET <device>
  DEVNO=nnn.
- Device number conflicts are not detected until simulation starts.

1.7 IBM 1620

- The IBM 1620 simulator has been released.

1.8 AltairZ80

- A hard drive has been added for increased storage.
- Several bugs have been fixed.

1.9 HP 2100

- The 12845A has been added and made the default line printer (LPT).
  The 12653A has been renamed LPS and is off by default.  It also
  supports the diagnostic functions needed to run the DCPC and DMS
  diagnostics.
- The 12557A/13210A disk defaults to the 13210A (7900/7901).
- The 12559A magtape is off by default.
- New CPU options (EAU/NOEAU) enable/disable the extended arithmetic
  instructions for the 2116.  These instructions are standard on
  the 2100 and 21MX.
- New CPU options (MPR/NOMPR) enable/disable memory protect for the
  2100 and 21MX.
- New CPU options (DMS/NODMS) enable/disable the dynamic mapping
  instructions for the 21MX.
- The 12539 timebase generator autocalibrates.

1.10 Simulated Magtapes

- Simulated magtapes recognize end of file and the marker
  0xFFFFFFFF as end of medium.  Only the TMSCP tape simulator
  can generate an end of medium marker.
- The error handling in simulated magtapes was overhauled to be
  consistent through all simulators.

1.11 Simulated DECtapes

- Added support for RT11 image file format (256 x 16b) to DECtapes.

2. Release Notes

2.1 Bugs Fixed

- TS11/TSV05 was not simulating the XS0_MOT bit, causing failures
  under VMS.  In addition, two of the CTL options were coded
  interchanged.
- IBM 1401 tape was not setting a word mark under group mark for
  load mode reads.  This caused the diagnostics to crash.
- SCP bugs in ssh_break and set_logon were fixed (found by Dave
  Hittner).
- Numerous bugs in the HP 2100 extended arithmetic, floating point,
  21MX, DMS, and IOP instructions were fixed.  Bugs were also fixed
  in the memory protect and DMS functions.  The moving head disks
  (DP, DQ) were revised to simulate the hardware more accurately.
  Missing functions in DQ (address skip, read address) were added.

2.2 HP 2100 Debugging

- The HP 2100 CPU nows runs all of the CPU diagnostics.
- The peripherals run most of the peripheral diagnostics.  There
  is still a problem in overlapped seek operation on the disks.
  See the file hp2100_diag.txt for details.

3. In Progress

These simulators are not finished and are available in a separate
Zip archive distribution.

- Interdata 16b/32b: coded, partially tested.  See the file
  id_diag.txt for details.
- SDS 940: coded, partially tested.
2011-04-15 08:33:49 -07:00

599 lines
18 KiB
C
Raw Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/* pdp11_io.c: PDP-11 I/O simulator
Copyright (c) 1993-2002, Robert M Supnik
Permission is hereby granted, free of charge, to any person obtaining a
copy of this software and associated documentation files (the "Software"),
to deal in the Software without restriction, including without limitation
the rights to use, copy, modify, merge, publish, distribute, sublicense,
and/or sell copies of the Software, and to permit persons to whom the
Software is furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
ROBERT M SUPNIK BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
Except as contained in this notice, the name of Robert M Supnik shall not
be used in advertising or otherwise to promote the sale, use or other dealings
in this Software without prior written authorization from Robert M Supnik.
08-Oct-02 RMS Trimmed I/O bus addresses
Added support for dynamic tables
Added show I/O space, autoconfigure routines
12-Sep-02 RMS Added support for TMSCP, KW11P, RX211
26-Jan-02 RMS Revised for multiple DZ's
06-Jan-02 RMS Revised I/O access, enable/disable support
11-Dec-01 RMS Moved interrupt debug code
08-Nov-01 RMS Cloned from cpu sources
*/
#include "pdp11_defs.h"
extern uint16 *M;
extern int32 int_req[IPL_HLVL];
extern int32 ub_map[UBM_LNT_LW];
extern UNIT cpu_unit;
extern int32 cpu_bme, cpu_18b, cpu_ubm;
extern int32 trap_req, ipl;
extern int32 cpu_log;
extern FILE *sim_log;
extern DEVICE *sim_devices[];
int32 calc_ints (int32 nipl, int32 trq);
extern DIB cpu0_dib, cpu1_dib, cpu2_dib;
extern DIB cpu3_dib, cpu4_dib, ubm_dib;
/* I/O data structures */
DIB *dib_tab[DIB_MAX]; /* run time DIBs */
int32 int_vec[IPL_HLVL][32]; /* int req to vector */
int32 (*int_ack[IPL_HLVL][32])(void); /* int ack routines */
static DIB *std_dib[] = { /* standard DIBs */
&cpu0_dib,
&cpu1_dib,
&cpu2_dib,
&cpu3_dib,
&cpu4_dib,
NULL };
static int32 pirq_vloc[7] = {
IVCL (PIR7), IVCL (PIR6), IVCL (PIR5), IVCL (PIR4),
IVCL (PIR3), IVCL (PIR2), IVCL (PIR1) };
/* I/O page lookup and linkage routines
Inputs:
*data = pointer to data to read, if READ
data = data to store, if WRITE or WRITEB
pa = address
access = READ, WRITE, or WRITEB
Outputs:
status = SCPE_OK or SCPE_NXM
*/
t_stat iopageR (int32 *data, uint32 pa, int32 access)
{
int32 i;
DIB *dibp;
t_stat stat;
for (i = 0; dibp = dib_tab[i]; i++ ) {
if ((pa >= dibp->ba) &&
(pa < (dibp->ba + dibp->lnt))) {
stat = dibp->rd (data, pa, access);
trap_req = calc_ints (ipl, trap_req);
return stat; } }
return SCPE_NXM;
}
t_stat iopageW (int32 data, uint32 pa, int32 access)
{
int32 i;
DIB *dibp;
t_stat stat;
for (i = 0; dibp = dib_tab[i]; i++ ) {
if ((pa >= dibp->ba) &&
(pa < (dibp->ba + dibp->lnt))) {
stat = dibp->wr (data, pa, access);
trap_req = calc_ints (ipl, trap_req);
return stat; } }
return SCPE_NXM;
}
/* Calculate interrupt outstanding */
int32 calc_ints (int32 nipl, int32 trq)
{
int32 i;
for (i = IPL_HLVL - 1; i > nipl; i--) {
if (int_req[i]) return (trq | TRAP_INT); }
return (trq & ~TRAP_INT);
}
/* Find vector for highest priority interrupt */
int32 get_vector (int32 nipl)
{
int32 i, j, t, vec;
for (i = IPL_HLVL - 1; i > nipl; i--) { /* loop thru lvls */
t = int_req[i]; /* get level */
for (j = 0; t && (j < 32); j++) { /* srch level */
if ((t >> j) & 1) { /* irq found? */
int_req[i] = int_req[i] & ~(1u << j); /* clr irq */
if (int_ack[i][j]) vec = int_ack[i][j]();
else vec = int_vec[i][j];
if (DBG_LOG (LOG_CPU_I)) fprintf (sim_log,
">>INT: lvl=%d, flag=%d, vec=%o\n", i, j, vec);
return vec; /* return vector */
} /* end if t */
} /* end for j */
} /* end for i */
return 0;
}
/* Read and write Unibus map registers
In any even/odd pair
even = low 16b, bit <0> clear
odd = high 6b
The Unibus map is stored as an array of longwords
*/
t_stat ubm_rd (int32 *data, int32 addr, int32 access)
{
if (cpu_ubm) {
int32 pg = (addr >> 2) & UBM_M_PN;
*data = (addr & 2)? ((ub_map[pg] >> 16) & 077):
(ub_map[pg] & 0177776);
return SCPE_OK; }
return SCPE_NXM;
}
t_stat ubm_wr (int32 data, int32 addr, int32 access)
{
if (cpu_ubm) {
int32 sc, pg = (addr >> 2) & UBM_M_PN;
if (access == WRITEB) {
sc = (addr & 3) << 3;
ub_map[pg] = (ub_map[pg] & ~(0377 << sc)) |
((data & 0377) << sc); }
else { sc = (addr & 2) << 3;
ub_map[pg] = (ub_map[pg] & ~(0177777 << sc)) |
((data & 0177777) << sc); }
ub_map[pg] = ub_map[pg] & 017777776;
return SCPE_OK; }
return SCPE_NXM;
}
/* Mapped memory access routines for DMA devices */
#define BUSMASK(m) ((cpu_18b || (cpu_ubm && (m)))? UNIMASK: PAMASK)
/* Map I/O address to memory address */
t_bool Map_Addr (t_addr ba, t_addr *ma)
{
if (cpu_bme) { /* bus map on? */
int32 pg = UBM_GETPN (ba); /* map entry */
int32 off = UBM_GETOFF (ba); /* offset */
if (pg != UBM_M_PN) /* last page? */
*ma = (ub_map[pg] + off) & PAMASK; /* no, use map */
else *ma = (IOPAGEBASE + off) & PAMASK; } /* yes, use fixed */
else *ma = ba; /* else physical */
return TRUE;
}
/* I/O buffer routines, aligned access
Map_ReadB - fetch byte buffer from memory
Map_ReadW - fetch word buffer from memory
Map_WriteB - store byte buffer into memory
Map_WriteW - store word buffer into memory
*/
int32 Map_ReadB (t_addr ba, int32 bc, uint8 *buf, t_bool map)
{
t_addr alim, lim, ma;
ba = ba & BUSMASK (map); /* trim address */
lim = ba + bc;
if (map && cpu_bme) { /* map req & on? */
for ( ; ba < lim; ba++) { /* by bytes */
Map_Addr (ba, &ma); /* map addr */
if (!ADDR_IS_MEM (ma)) return (lim - ba); /* NXM? err */
if (ma & 1) *buf++ = (M[ma >> 1] >> 8) & 0377; /* get byte */
else *buf++ = M[ma >> 1] & 0377; }
return 0; }
else { /* physical */
if (ADDR_IS_MEM (lim)) alim = lim; /* end ok? */
else if (ADDR_IS_MEM (ba)) alim = MEMSIZE; /* no, strt ok? */
else return bc; /* no, err */
for ( ; ba < alim; ba++) { /* by bytes */
if (ba & 1) *buf++ = (M[ba >> 1] >> 8) & 0377; /* get byte */
else *buf++ = M[ba >> 1] & 0377; }
return (lim - alim); }
}
int32 Map_ReadW (t_addr ba, int32 bc, uint16 *buf, t_bool map)
{
t_addr alim, lim, ma;
ba = (ba & BUSMASK (map)) & ~01; /* trim, align addr */
lim = ba + (bc & ~01);
if (map && cpu_bme) { /* map req & on? */
for (; ba < lim; ba = ba + 2) { /* by words */
Map_Addr (ba, &ma); /* map addr */
if (!ADDR_IS_MEM (ma)) return (lim - ba); /* NXM? err */
*buf++ = M[ma >> 1]; }
return 0; }
else { /* physical */
if (ADDR_IS_MEM (lim)) alim = lim; /* end ok? */
else if (ADDR_IS_MEM (ba)) alim = MEMSIZE; /* no, strt ok? */
else return bc; /* no, err */
for ( ; ba < alim; ba = ba + 2) { /* by words */
*buf++ = M[ba >> 1]; }
return (lim - alim); }
}
int32 Map_WriteB (t_addr ba, int32 bc, uint8 *buf, t_bool map)
{
t_addr alim, lim, ma;
ba = ba & BUSMASK (map); /* trim address */
lim = ba + bc;
if (map && cpu_bme) { /* map req & on? */
for ( ; ba < lim; ba++) { /* by bytes */
Map_Addr (ba, &ma); /* map addr */
if (!ADDR_IS_MEM (ma)) return (lim - ba); /* NXM? err */
if (ma & 1) M[ma >> 1] = (M[ma >> 1] & 0377) |
((uint16) *buf++ << 8);
else M[ma >> 1] = (M[ma >> 1] & ~0377) | *buf++; }
return 0; }
else { /* physical */
if (ADDR_IS_MEM (lim)) alim = lim; /* end ok? */
else if (ADDR_IS_MEM (ba)) alim = MEMSIZE; /* no, strt ok? */
else return bc; /* no, err */
for ( ; ba < alim; ba++) { /* by bytes */
if (ba & 1) M[ba >> 1] = (M[ba >> 1] & 0377) |
((uint16) *buf++ << 8);
else M[ba >> 1] = (M[ba >> 1] & ~0377) | *buf++; }
return (lim - alim); }
}
int32 Map_WriteW (t_addr ba, int32 bc, uint16 *buf, t_bool map)
{
t_addr alim, lim, ma;
ba = (ba & BUSMASK (map)) & ~01; /* trim, align addr */
lim = ba + (bc & ~01);
if (map && cpu_bme) { /* map req & on? */
for (; ba < lim; ba = ba + 2) { /* by words */
Map_Addr (ba, &ma); /* map addr */
if (!ADDR_IS_MEM (ma)) return (lim - ba); /* NXM? err */
M[ma >> 1] = *buf++; } /* store word */
return 0; }
else { /* physical */
if (ADDR_IS_MEM (lim)) alim = lim; /* end ok? */
else if (ADDR_IS_MEM (ba)) alim = MEMSIZE; /* no, strt ok? */
else return bc; /* no, err */
for ( ; ba < alim; ba = ba + 2) { /* by words */
M[ba >> 1] = *buf++; }
return (lim - alim); }
}
/* Change device address */
t_stat set_addr (UNIT *uptr, int32 val, char *cptr, void *desc)
{
DEVICE *dptr;
DIB *dibp;
uint32 newba;
t_stat r;
if (cptr == NULL) return SCPE_ARG;
if ((val == 0) || (uptr == NULL)) return SCPE_IERR;
dptr = find_dev_from_unit (uptr);
if (dptr == NULL) return SCPE_IERR;
dibp = (DIB *) dptr->ctxt;
if (dibp == NULL) return SCPE_IERR;
newba = get_uint (cptr, 8, PAMASK, &r); /* get new */
if (r != SCPE_OK) return r; /* error? */
if ((newba <= IOPAGEBASE) || /* > IO page base? */
(newba % ((uint32) val))) return SCPE_ARG; /* check modulus */
dibp->ba = newba; /* store */
dptr->flags = dptr->flags & ~DEV_FLTA; /* not floating */
return auto_config (0, 0); /* autoconfigure */
}
/* Show device address */
t_stat show_addr (FILE *st, UNIT *uptr, int32 val, void *desc)
{
DEVICE *dptr;
DIB *dibp;
if (uptr == NULL) return SCPE_IERR;
dptr = find_dev_from_unit (uptr);
if (dptr == NULL) return SCPE_IERR;
dibp = (DIB *) dptr->ctxt;
if ((dibp == NULL) || (dibp->ba <= IOPAGEBASE)) return SCPE_IERR;
fprintf (st, "address=%08o", dibp->ba);
if (dibp->lnt > 1)
fprintf (st, "-%08o", dibp->ba + dibp->lnt - 1);
if (dptr->flags & DEV_FLTA) fprintf (st, "*");
return SCPE_OK;
}
/* Set address floating */
t_stat set_addr_flt (UNIT *uptr, int32 val, char *cptr, void *desc)
{
DEVICE *dptr;
if (cptr != NULL) return SCPE_ARG;
if (uptr == NULL) return SCPE_IERR;
dptr = find_dev_from_unit (uptr);
if (dptr == NULL) return SCPE_IERR;
dptr->flags = dptr->flags | DEV_FLTA; /* floating */
return auto_config (0, 0); /* autoconfigure */
}
/* Change device vector */
t_stat set_vec (UNIT *uptr, int32 arg, char *cptr, void *desc)
{
DEVICE *dptr;
DIB *dibp;
uint32 newvec;
t_stat r;
if (cptr == NULL) return SCPE_ARG;
if (uptr == NULL) return SCPE_IERR;
dptr = find_dev_from_unit (uptr);
if (dptr == NULL) return SCPE_IERR;
dibp = (DIB *) dptr->ctxt;
if (dibp == NULL) return SCPE_IERR;
newvec = get_uint (cptr, 8, VEC_Q + 01000, &r);
if ((r != SCPE_OK) || (newvec <= VEC_Q) ||
((newvec + (dibp->vnum * 4)) >= (VEC_Q + 01000)) ||
(newvec & ((dibp->vnum > 1)? 07: 03))) return SCPE_ARG;
dibp->vec = newvec;
return SCPE_OK;
}
/* Show device vector */
t_stat show_vec (FILE *st, UNIT *uptr, int32 arg, void *desc)
{
DEVICE *dptr;
DIB *dibp;
uint32 vec, numvec;
if (uptr == NULL) return SCPE_IERR;
dptr = find_dev_from_unit (uptr);
if (dptr == NULL) return SCPE_IERR;
dibp = (DIB *) dptr->ctxt;
if (dibp == NULL) return SCPE_IERR;
vec = dibp->vec;
if (arg) numvec = arg;
else numvec = dibp->vnum;
if (vec == 0) fprintf (st, "no vector");
else { fprintf (st, "vector=%o", vec);
if (numvec > 1) fprintf (st, "-%o", vec + (4 * (numvec - 1))); }
return SCPE_OK;
}
/* Test for conflict in device addresses */
t_bool dev_conflict (DIB *curr)
{
uint32 i, end;
DEVICE *dptr;
DIB *dibp;
end = curr->ba + curr->lnt - 1; /* get end */
for (i = 0; (dptr = sim_devices[i]) != NULL; i++) { /* loop thru dev */
dibp = (DIB *) dptr->ctxt; /* get DIB */
if ((dibp == NULL) || (dibp == curr) ||
(dptr->flags & DEV_DIS)) continue;
if (((curr->ba >= dibp->ba) && /* overlap start? */
(curr->ba < (dibp->ba + dibp->lnt))) ||
((end >= dibp->ba) && /* overlap end? */
(end < (dibp->ba + dibp->lnt)))) {
printf ("Device %s address conflict at %08o\n", dptr->name, dibp->ba);
if (sim_log) fprintf (sim_log,
"Device %s address conflict at %08o\n", dptr->name, dibp->ba);
return TRUE; } }
return FALSE;
}
/* Build interrupt tables */
void build_int_vec (int32 vloc, int32 ivec, int32 (*iack)(void) )
{
int32 ilvl = vloc / 32;
int32 ibit = vloc % 32;
if (iack != NULL) int_ack[ilvl][ibit] = iack;
else int_vec[ilvl][ibit] = ivec;
return;
}
/* Build dib_tab from device list */
t_stat build_dib_tab (int32 ubm)
{
int32 i, j, k;
DEVICE *dptr;
DIB *dibp;
for (i = 0; i < IPL_HLVL; i++) { /* clear int tables */
for (j = 0; j < 32; j++) {
int_vec[i][j] = 0;
int_ack[i][j] = NULL; } }
for (i = j = 0; (dptr = sim_devices[i]) != NULL; i++) { /* loop thru dev */
dibp = (DIB *) dptr->ctxt; /* get DIB */
if (dibp && !(dptr->flags & DEV_DIS)) { /* defined, enabled? */
if (dibp->vnum > VEC_DEVMAX) return SCPE_IERR;
for (k = 0; k < dibp->vnum; k++) /* loop thru vec */
build_int_vec (dibp->vloc + k, /* add vector */
dibp->vec + (k * 4), dibp->ack[k]);
if (dibp->lnt != 0) { /* I/O addresses? */
dib_tab[j++] = dibp; /* add DIB to dib_tab */
if (j >= DIB_MAX) return SCPE_IERR; } /* too many? */
} /* end if enabled */
} /* end for */
for (i = 0; (dibp = std_dib[i]) != NULL; i++) { /* loop thru std */
dib_tab[j++] = dibp; /* add to dib_tab */
if (j >= DIB_MAX) return SCPE_IERR; } /* too many? */
if (ubm) { /* Unibus map? */
dib_tab[j++] = &ubm_dib; /* add to dib_tab */
if (j >= DIB_MAX) return SCPE_IERR; } /* too many? */
dib_tab[j] = NULL; /* end with NULL */
for (i = 0; i < 7; i++) /* add PIRQ intr */
build_int_vec (pirq_vloc[i], VEC_PIRQ, NULL);
for (i = 0; (dibp = dib_tab[i]) != NULL; i++) { /* test built dib_tab */
if (dev_conflict (dibp)) {
return SCPE_STOP; } } /* for conflicts */
return SCPE_OK;
}
/* Show dib_tab */
t_stat show_iospace (FILE *st, UNIT *uptr, int32 val, void *desc)
{
int32 i, j, done = 0;
DEVICE *dptr;
DIB *dibt;
build_dib_tab (cpu_ubm); /* build table */
while (done == 0) { /* sort ascending */
done = 1; /* assume done */
for (i = 0; dib_tab[i + 1] != NULL; i++) { /* check table */
if (dib_tab[i]->ba > dib_tab[i + 1]->ba) { /* out of order? */
dibt = dib_tab[i]; /* interchange */
dib_tab[i] = dib_tab[i + 1];
dib_tab[i + 1] = dibt;
done = 0; } } /* not done */
} /* end while */
for (i = 0; dib_tab[i] != NULL; i++) { /* print table */
for (j = 0, dptr = NULL; sim_devices[j] != NULL; j++) {
if (((DIB*) sim_devices[j]->ctxt) == dib_tab[i]) {
dptr = sim_devices[j];
break; } }
fprintf (st, "%08o - %08o%c\t%s\n", dib_tab[i]->ba,
dib_tab[i]->ba + dib_tab[i]->lnt - 1,
(dptr && (dptr->flags & DEV_FLTA))? '*': ' ',
dptr? dptr->name: "CPU");
}
return SCPE_OK;
}
/* Autoconfiguration */
#define AUTO_DYN 0001
#define AUTO_VEC 0002
#define AUTO_MAXC 4
#define AUTO_CSRBASE 0010
#define AUTO_VECBASE 0300
struct auto_con {
uint32 amod;
uint32 vmod;
uint32 flags;
uint32 num;
uint32 fix;
char *dnam[AUTO_MAXC]; };
struct auto_con auto_tab[AUTO_LNT + 1] = {
{ 0x7, 0x7 }, /* DJ11 */
{ 0xf, 0x7 }, /* DH11 */
{ 0x7, 0x7 }, /* DQ11 */
{ 0x7, 0x7 }, /* DU11 */
{ 0x7, 0x7 }, /* DUP11 */
{ 0x7, 0x7 }, /* LK11A */
{ 0x7, 0x7 }, /* DMC11 */
{ 0x7, 0x7, AUTO_VEC, DZ_MUXES, 0, { "DZ" } },
{ 0x7, 0x7 }, /* KMC11 */
{ 0x7, 0x7 }, /* LPP11 */
{ 0x7, 0x7 }, /* VMV21 */
{ 0xf, 0x7 }, /* VMV31 */
{ 0x7, 0x7 }, /* DWR70 */
{ 0x7, 0x3, AUTO_DYN|AUTO_VEC, 0, IOBA_RL, { "RL", "RLB" } },
{ 0xf, 0x7 }, /* LPA11K */
{ 0x7, 0x7 }, /* KW11C */
{ 0x7, 0 }, /* reserved */
{ 0x7, 0x3, AUTO_DYN|AUTO_VEC, 0, IOBA_RX, { "RX", "RY" } },
{ 0x7, 0x3 }, /* DR11W */
{ 0x7, 0x3 }, /* DR11B */
{ 0x7, 0x7 }, /* DMP11 */
{ 0x7, 0x7 }, /* DPV11 */
{ 0x7, 0x7 }, /* ISB11 */
{ 0xf, 0x7 }, /* DMV11 */
{ 0x7, 0x3, AUTO_DYN|AUTO_VEC, 0, IOBA_XU, { "XU", "XUB" } },
{ 0x3, 0x3, AUTO_DYN|AUTO_VEC, 0, IOBA_RQ, { "RQ", "RQB", "RQC", "RQD" } },
{ 0x1f, 0x3 }, /* DMF32 */
{ 0xf, 0x7 }, /* KMS11 */
{ 0xf, 0x3 }, /* VS100 */
{ 0x3, 0x3, AUTO_DYN|AUTO_VEC, 0, IOBA_TQ, { "TQ", "TQB" } },
{ 0xf, 0x7 }, /* KMV11 */
{ 0xf, 0x7 }, /* DHU11/DHQ11 */
{ 0x1f, 0x7 }, /* DMZ32 */
{ 0x1f, 0x7 }, /* CP132 */
{ 0 }, /* padding */
};
t_stat auto_config (uint32 rank, uint32 nctrl)
{
uint32 csr = IOPAGEBASE + AUTO_CSRBASE;
uint32 vec = VEC_Q + AUTO_VECBASE;
struct auto_con *autp;
DEVICE *dptr;
DIB *dibp;
int32 i, j, k;
extern DEVICE *find_dev (char *ptr);
if (rank > AUTO_LNT) return SCPE_IERR; /* legal rank? */
if (rank) auto_tab[rank - 1].num = nctrl; /* update num? */
for (i = 0, autp = auto_tab; i < AUTO_LNT; i++) { /* loop thru table */
for (j = k = 0; (j < AUTO_MAXC) && autp->dnam[j]; j++) {
dptr = find_dev (autp->dnam[j]); /* find ctrl */
if ((dptr == NULL) || (dptr->flags & DEV_DIS) ||
!(dptr->flags & DEV_FLTA)) continue; /* enabled, floating? */
dibp = (DIB *) dptr->ctxt; /* get DIB */
if ((k++ == 0) && autp->fix) /* 1st & fixed? */
dibp->ba = autp->fix; /* gets fixed CSR */
else { /* no, float */
dibp->ba = csr; /* set CSR */
csr = (csr + autp->amod + 1) & ~autp->amod; /* next CSR */
if ((autp->flags & AUTO_DYN) == 0) /* static? */
csr = csr + ((autp->num - 1) * (autp->amod + 1));
if (autp->flags & AUTO_VEC) { /* vectors too? */
dibp->vec = (vec + autp->vmod) & ~autp->vmod;
if (autp->flags & AUTO_DYN) vec = vec + autp->vmod + 1;
else vec = vec + (autp->num * (autp->vmod + 1)); }
} /* end else flt */
} /* end for j */
autp++;
csr = (csr + autp->amod + 1) & ~autp->amod; /* gap */
} /* end for i */
return SCPE_OK;
}