WARNING: V2.10 has reorganized and renamed some of the definition files for the PDP-10, PDP-11, and VAX. Be sure to delete all previous source files before you unpack the Zip archive, or unpack it into a new directory structure. WARNING: V2.10 has a new, more comprehensive save file format. Restoring save files from previous releases will cause 'invalid register' errors and loss of CPU option flags, device enable/ disable flags, unit online/offline flags, and unit writelock flags. WARNING: If you are using Visual Studio .NET through the IDE, be sure to turn off the /Wp64 flag in the project settings, or dozens of spurious errors will be generated. WARNING: Compiling Ethernet support under Windows requires extra steps; see the Ethernet readme file. Ethernet support is currently available only for Windows, Linux, NetBSD, and OpenBSD. 1. New Features 1.1 SCP and Libraries - The VT emulation package has been replaced by the capability to remote the console to a Telnet session. Telnet clients typically have more complete and robust VT100 emulation. - Simulated devices may now have statically allocated buffers, in addition to dynamically allocated buffers or disk-based data stores. - The DO command now takes substitutable arguments (max 9). In command files, %n represents substitutable argument n. - The initial command line is now interpreted as the command name and substitutable arguments for a DO command. This is backward compatible to prior versions. - The initial command line parses switches. -Q is interpreted as quiet mode; informational messages are suppressed. - The HELP command now takes an optional argument. HELP <cmd> types help on the specified command. - Hooks have been added for implementing GUI-based consoles, as well as simulator-specific command extensions. A few internal data structures and definitions have changed. - Two new routines (tmxr_open_master, tmxr_close_master) have been added to sim_tmxr.c. The calling sequence for sim_accept_conn has been changed in sim_sock.c. - The calling sequence for the VM boot routine has been modified to add an additional parameter. - SAVE now saves, and GET now restores, controller and unit flags. - Library sim_ether.c has been added for Ethernet support. 1.2 VAX - Non-volatile RAM (NVR) can behave either like a memory or like a disk-based peripheral. If unattached, it behaves like memory and is saved and restored by SAVE and RESTORE, respectively. If attached, its contents are loaded from disk by ATTACH and written back to disk at DETACH and EXIT. - SHOW <device> VECTOR displays the device's interrupt vector. A few devices allow the vector to be changed with SET <device> VECTOR=nnn. - SHOW CPU IOSPACE displays the I/O space address map. - The TK50 (TMSCP tape) has been added. - The DEQNA/DELQA (Qbus Ethernet controllers) have been added. - Autoconfiguration support has been added. - The paper tape reader has been removed from vax_stddev.c and now references a common implementation file, dec_pt.h. - Examine and deposit switches now work on all devices, not just the CPU. - Device address conflicts are not detected until simulation starts. 1.3 PDP-11 - SHOW <device> VECTOR displays the device's interrupt vector. Most devices allow the vector to be changed with SET <device> VECTOR=nnn. - SHOW CPU IOSPACE displays the I/O space address map. - The TK50 (TMSCP tape), RK611/RK06/RK07 (cartridge disk), RX211 (double density floppy), and KW11P programmable clock have been added. - The DEQNA/DELQA (Qbus Ethernet controllers) have been added. - Autoconfiguration support has been added. - The paper tape reader has been removed from pdp11_stddev.c and now references a common implementation file, dec_pt.h. - Device bootstraps now use the actual CSR specified by the SET ADDRESS command, rather than just the default CSR. Note that PDP-11 operating systems may NOT support booting with non-standard addresses. - Specifying more than 256KB of memory, or changing the bus configuration, causes all peripherals that are not compatible with the current bus configuration to be disabled. - Device address conflicts are not detected until simulation starts. 1.4 PDP-10 - SHOW <device> VECTOR displays the device's interrupt vector. A few devices allow the vector to be changed with SET <device> VECTOR=nnn. - SHOW CPU IOSPACE displays the I/O space address map. - The RX211 (double density floppy) has been added; it is off by default. - The paper tape now references a common implementation file, dec_pt.h. - Device address conflicts are not detected until simulation starts. 1.5 PDP-1 - DECtape (then known as MicroTape) support has been added. - The line printer and DECtape can be disabled and enabled. 1.6 PDP-8 - The RX28 (double density floppy) has been added as an option to the existing RX8E controller. - SHOW <device> DEVNO displays the device's device number. Most devices allow the device number to be changed with SET <device> DEVNO=nnn. - Device number conflicts are not detected until simulation starts. 1.7 IBM 1620 - The IBM 1620 simulator has been released. 1.8 AltairZ80 - A hard drive has been added for increased storage. - Several bugs have been fixed. 1.9 HP 2100 - The 12845A has been added and made the default line printer (LPT). The 12653A has been renamed LPS and is off by default. It also supports the diagnostic functions needed to run the DCPC and DMS diagnostics. - The 12557A/13210A disk defaults to the 13210A (7900/7901). - The 12559A magtape is off by default. - New CPU options (EAU/NOEAU) enable/disable the extended arithmetic instructions for the 2116. These instructions are standard on the 2100 and 21MX. - New CPU options (MPR/NOMPR) enable/disable memory protect for the 2100 and 21MX. - New CPU options (DMS/NODMS) enable/disable the dynamic mapping instructions for the 21MX. - The 12539 timebase generator autocalibrates. 1.10 Simulated Magtapes - Simulated magtapes recognize end of file and the marker 0xFFFFFFFF as end of medium. Only the TMSCP tape simulator can generate an end of medium marker. - The error handling in simulated magtapes was overhauled to be consistent through all simulators. 1.11 Simulated DECtapes - Added support for RT11 image file format (256 x 16b) to DECtapes. 2. Release Notes 2.1 Bugs Fixed - TS11/TSV05 was not simulating the XS0_MOT bit, causing failures under VMS. In addition, two of the CTL options were coded interchanged. - IBM 1401 tape was not setting a word mark under group mark for load mode reads. This caused the diagnostics to crash. - SCP bugs in ssh_break and set_logon were fixed (found by Dave Hittner). - Numerous bugs in the HP 2100 extended arithmetic, floating point, 21MX, DMS, and IOP instructions were fixed. Bugs were also fixed in the memory protect and DMS functions. The moving head disks (DP, DQ) were revised to simulate the hardware more accurately. Missing functions in DQ (address skip, read address) were added. 2.2 HP 2100 Debugging - The HP 2100 CPU nows runs all of the CPU diagnostics. - The peripherals run most of the peripheral diagnostics. There is still a problem in overlapped seek operation on the disks. See the file hp2100_diag.txt for details. 3. In Progress These simulators are not finished and are available in a separate Zip archive distribution. - Interdata 16b/32b: coded, partially tested. See the file id_diag.txt for details. - SDS 940: coded, partially tested.
1582 lines
51 KiB
C
1582 lines
51 KiB
C
/* pdp18b_cpu.c: 18b PDP CPU simulator
|
||
|
||
Copyright (c) 1993-2002, Robert M Supnik
|
||
|
||
Permission is hereby granted, free of charge, to any person obtaining a
|
||
copy of this software and associated documentation files (the "Software"),
|
||
to deal in the Software without restriction, including without limitation
|
||
the rights to use, copy, modify, merge, publish, distribute, sublicense,
|
||
and/or sell copies of the Software, and to permit persons to whom the
|
||
Software is furnished to do so, subject to the following conditions:
|
||
|
||
The above copyright notice and this permission notice shall be included in
|
||
all copies or substantial portions of the Software.
|
||
|
||
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
||
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
||
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
|
||
ROBERT M SUPNIK BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
|
||
IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
|
||
CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
|
||
|
||
Except as contained in this notice, the name of Robert M Supnik shall not
|
||
be used in advertising or otherwise to promote the sale, use or other dealings
|
||
in this Software without prior written authorization from Robert M Supnik.
|
||
|
||
cpu PDP-4/7/9/15 central processor
|
||
|
||
05-Oct-02 RMS Added DIBs, device number support
|
||
25-Jul-02 RMS Added DECtape support for PDP-4
|
||
06-Jan-02 RMS Revised enable/disable support
|
||
30-Dec-01 RMS Added old PC queue
|
||
30-Nov-01 RMS Added extended SET/SHOW support
|
||
25-Nov-01 RMS Revised interrupt structure
|
||
19-Sep-01 RMS Fixed bug in EAE (found by Dave Conroy)
|
||
17-Sep-01 RMS Fixed typo in conditional
|
||
10-Aug-01 RMS Removed register from declarations
|
||
17-Jul-01 RMS Moved function prototype
|
||
27-May-01 RMS Added second Teletype support, fixed bug in API
|
||
18-May-01 RMS Added PDP-9,-15 API option
|
||
16-May-01 RMS Fixed bugs in protection checks
|
||
26-Apr-01 RMS Added device enable/disable support
|
||
25-Jan-01 RMS Added DECtape support
|
||
18-Dec-00 RMS Added PDP-9,-15 memm init register
|
||
30-Nov-00 RMS Fixed numerous PDP-15 bugs
|
||
14-Apr-99 RMS Changed t_addr to unsigned
|
||
|
||
The 18b PDP family has five distinct architectural variants: PDP-1,
|
||
PDP-4, PDP-7, PDP-9, and PDP-15. Of these, the PDP-1 is so unique
|
||
as to require a different simulator. The PDP-4, PDP-7, PDP-9, and
|
||
PDP-15 are "upward compatible", with each new variant adding
|
||
distinct architectural features and incompatibilities.
|
||
|
||
The register state for the 18b PDP's is:
|
||
|
||
all AC<0:17> accumulator
|
||
all MQ<0:17> multiplier-quotient
|
||
all L link flag
|
||
all PC<0:x> program counter
|
||
all IORS I/O status register
|
||
PDP-7, PDP-9 EXTM extend mode
|
||
PDP-15 BANKM bank mode
|
||
PDP-7 USMD trap mode
|
||
PDP-9, PDP-15 USMD user mode
|
||
PDP-9, PDP-15 BR bounds register
|
||
PDP-15 XR index register
|
||
PDP-15 LR limit register
|
||
*/
|
||
|
||
/* The PDP-4, PDP-7, and PDP-9 have five instruction formats: memory
|
||
reference, load immediate, I/O transfer, EAE, and operate. The PDP-15
|
||
adds a sixth, index operate, and a seventh, floating point. The memory
|
||
reference format for the PDP-4, PDP-7, and PDP-9, and for the PDP-15
|
||
in bank mode, is:
|
||
|
||
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
|
||
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
|
||
| op |in| address | memory reference
|
||
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
|
||
|
||
The PDP-15 in page mode trades an address bit for indexing capability:
|
||
|
||
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
|
||
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
|
||
| op |in| X| address | memory reference
|
||
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
|
||
|
||
<0:3> mnemonic action
|
||
|
||
00 CAL JMS with MA = 20
|
||
04 DAC M[MA] = AC
|
||
10 JMS M[MA] = L'mem'user'PC, PC = MA + 1
|
||
14 DZM M[MA] = 0
|
||
20 LAC AC = M[MA]
|
||
24 XOR AC = AC ^ M[MA]
|
||
30 ADD L'AC = AC + M[MA] one's complement
|
||
34 TAD L'AC = AC + M[MA]
|
||
40 XCT M[MA] is executed as an instruction
|
||
44 ISZ M[MA] = M[MA] + 1, skip if M[MA] == 0
|
||
50 AND AC = AC & M[MA]
|
||
54 SAD skip if AC != M[MA]
|
||
60 JMP PC = MA
|
||
|
||
On the PDP-4, PDP-7, and PDP-9, and the PDP-15 in bank mode, memory
|
||
reference instructions can access an address space of 32K words. The
|
||
address space is divided into four 8K word fields. An instruction can
|
||
directly address, via its 13b address, the entire current field. On the
|
||
PDP-4, PDP-7, and PDP-9, if extend mode is off, indirect addresses access
|
||
the current field; if on (or a PDP-15), they can access all 32K.
|
||
|
||
On the PDP-15 in page mode, memory reference instructions can access
|
||
an address space of 128K words. The address is divided into four 32K
|
||
word blocks, each of which consists of eight 4K pages. An instruction
|
||
can directly address, via its 12b address, the current page. Indirect
|
||
addresses can access the current block. Indexed and autoincrement
|
||
addresses can access all 128K.
|
||
|
||
On the PDP-4 and PDP-7, if an indirect address in in locations 00010-
|
||
00017 of any field, the indirect address is incremented and rewritten
|
||
to memory before use. On the PDP-9 and PDP-15, only locations 00010-
|
||
00017 of field zero autoincrement; special logic will redirect indirect
|
||
references to 00010-00017 to field zero, even if (on the PDP-9) extend
|
||
mode is off.
|
||
*/
|
||
|
||
/* The EAE format is:
|
||
|
||
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
|
||
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
|
||
| 1 1 0 1| | | | | | | | | | | | | | | EAE
|
||
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
|
||
| | | | | | | | | | | | | |
|
||
| | | | | | | | | | | | | +- or SC (3)
|
||
| | | | | | | | | | | | +---- or MQ (3)
|
||
| | | | | | | | | | | +------- compl MQ (3)
|
||
| | | | | | | | \______________/
|
||
| | | | | | | | |
|
||
| | | | | \_____/ +--------- shift count
|
||
| | | | | |
|
||
| | | | | +---------------------- EAE command (3)
|
||
| | | | +---------------------------- clear AC (2)
|
||
| | | +------------------------------- or AC (2)
|
||
| | +---------------------------------- load EAE sign (1)
|
||
| +------------------------------------- clear MQ (1)
|
||
+---------------------------------------- load link (1)
|
||
|
||
The I/O transfer format is:
|
||
|
||
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
|
||
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
|
||
| 1 1 1 0 0 0| device | sdv |cl| pulse | I/O transfer
|
||
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
|
||
|
||
The IO transfer instruction sends the the specified pulse to the
|
||
specified I/O device and sub-device. The I/O device may take data
|
||
from the AC, return data to the AC, initiate or cancel operations,
|
||
or skip on status. On the PDP-4, PDP-7, and PDP-9, bits <4:5>
|
||
were designated as subdevice bits but were never used; the PDP-15
|
||
requires them to be zero.
|
||
|
||
On the PDP-15, the floating point format is:
|
||
|
||
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
|
||
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
|
||
| 1 1 1 0 0 1| subopcode | floating point
|
||
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
|
||
|in| address |
|
||
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
|
||
|
||
Indirection is always single level.
|
||
*/
|
||
|
||
/* On the PDP-15, the index operate format is:
|
||
|
||
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
|
||
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
|
||
| 1 1 1 0 1| subopcode | immediate | index operate
|
||
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
|
||
|
||
The index operate instructions provide various operations on the
|
||
index and limit registers.
|
||
|
||
The operate format is:
|
||
|
||
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
|
||
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
|
||
| 1 1 1 1 0| | | | | | | | | | | | | | operate
|
||
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
|
||
| | | | | | | | | | | | |
|
||
| | | | | | | | | | | | +- CMA (3)
|
||
| | | | | | | | | | | +---- CML (3)
|
||
| | | | | | | | | | +------- OAS (3)
|
||
| | | | | | | | | +---------- RAL (3)
|
||
| | | | | | | | +------------- RAR (3)
|
||
| | | | | | | +---------------- HLT (4)
|
||
| | | | | | +------------------- SMA (1)
|
||
| | | | | +---------------------- SZA (1)
|
||
| | | | +------------------------- SNL (1)
|
||
| | | +---------------------------- invert skip (1)
|
||
| | +------------------------------- rotate twice (2)
|
||
| +---------------------------------- CLL (2)
|
||
+------------------------------------- CLA (2)
|
||
|
||
The operate instruction can be microprogrammed to perform operations
|
||
on the AC and link.
|
||
|
||
The load immediate format is:
|
||
|
||
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
|
||
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
|
||
| 1 1 1 1 1| immediate | LAW
|
||
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
|
||
|
||
<0:4> mnemonic action
|
||
|
||
76 LAW AC = IR
|
||
*/
|
||
|
||
/* This routine is the instruction decode routine for the 18b PDP's.
|
||
It is called from the simulator control program to execute
|
||
instructions in simulated memory, starting at the simulated PC.
|
||
It runs until 'reason' is set non-zero.
|
||
|
||
General notes:
|
||
|
||
1. Reasons to stop. The simulator can be stopped by:
|
||
|
||
HALT instruction
|
||
breakpoint encountered
|
||
unimplemented instruction and STOP_INST flag set
|
||
nested XCT's
|
||
I/O error in I/O simulator
|
||
|
||
2. Interrupts. Interrupt requests are maintained in the int_hwre
|
||
array. int_hwre[0:3] corresponds to API levels 0-3; int_hwre[4]
|
||
holds PI requests.
|
||
|
||
3. Arithmetic. The 18b PDP's implements both 1's and 2's complement
|
||
arithmetic for signed numbers. In 1's complement arithmetic, a
|
||
negative number is represented by the complement (XOR 0777777) of
|
||
its absolute value. Addition of 1's complement numbers requires
|
||
propagating the carry out of the high order bit back to the low
|
||
order bit.
|
||
|
||
4. Adding I/O devices. Three modules must be modified:
|
||
|
||
pdp18b_defs.h add interrupt request definition
|
||
pdp18b_sys.c add sim_devices table entry
|
||
*/
|
||
|
||
#include "pdp18b_defs.h"
|
||
|
||
#define PCQ_SIZE 64 /* must be 2**n */
|
||
#define PCQ_MASK (PCQ_SIZE - 1)
|
||
#define PCQ_ENTRY pcq[pcq_p = (pcq_p - 1) & PCQ_MASK] = PC
|
||
#define UNIT_V_NOEAE (UNIT_V_UF) /* EAE absent */
|
||
#define UNIT_V_NOAPI (UNIT_V_UF+1) /* API absent */
|
||
#define UNIT_V_MSIZE (UNIT_V_UF+2) /* dummy mask */
|
||
#define UNIT_NOEAE (1 << UNIT_V_NOEAE)
|
||
#define UNIT_NOAPI (1 << UNIT_V_NOAPI)
|
||
|
||
#define UNIT_MSIZE (1 << UNIT_V_MSIZE)
|
||
#if defined (PDP4)
|
||
#define EAE_DFLT UNIT_NOEAE
|
||
#else
|
||
#define EAE_DFLT 0
|
||
#endif
|
||
#if defined (PDP4) || defined (PDP7)
|
||
#define API_DFLT UNIT_NOAPI
|
||
#else
|
||
#define API_DFLT UNIT_NOAPI /* for now */
|
||
#endif
|
||
|
||
int32 M[MAXMEMSIZE] = { 0 }; /* memory */
|
||
int32 saved_LAC = 0; /* link'AC */
|
||
int32 saved_MQ = 0; /* MQ */
|
||
int32 saved_PC = 0; /* PC */
|
||
int32 iors = 0; /* IORS */
|
||
int32 ion = 0; /* int on */
|
||
int32 ion_defer = 0; /* int defer */
|
||
int32 int_pend = 0; /* int pending */
|
||
int32 int_hwre[API_HLVL+1] = { 0 }; /* int requests */
|
||
int32 api_enb = 0; /* API enable */
|
||
int32 api_req = 0; /* API requests */
|
||
int32 api_act = 0; /* API active */
|
||
int32 memm = 0; /* mem mode */
|
||
#if defined (PDP15)
|
||
int32 memm_init = 1; /* mem init */
|
||
#else
|
||
int32 memm_init = 0;
|
||
#endif
|
||
int32 usmd = 0; /* user mode */
|
||
int32 usmdbuf = 0; /* user mode buffer */
|
||
int32 trap_pending = 0; /* trap pending */
|
||
int32 emir_pending = 0; /* emir pending */
|
||
int32 rest_pending = 0; /* restore pending */
|
||
int32 BR = 0; /* mem mgt bounds */
|
||
int32 nexm = 0; /* nx mem flag */
|
||
int32 prvn = 0; /* priv viol flag */
|
||
int32 SC = 0; /* shift count */
|
||
int32 eae_ac_sign = 0; /* EAE AC sign */
|
||
int32 SR = 0; /* switch register */
|
||
int32 XR = 0; /* index register */
|
||
int32 LR = 0; /* limit register */
|
||
int32 stop_inst = 0; /* stop on rsrv inst */
|
||
int32 xct_max = 16; /* nested XCT limit */
|
||
#if defined (PDP15)
|
||
int32 pcq[PCQ_SIZE] = { 0 }; /* PC queue */
|
||
#else
|
||
int16 pcq[PCQ_SIZE] = { 0 }; /* PC queue */
|
||
#endif
|
||
int32 pcq_p = 0; /* PC queue ptr */
|
||
REG *pcq_r = NULL; /* PC queue reg ptr */
|
||
|
||
extern int32 sim_int_char;
|
||
extern int32 sim_interval;
|
||
extern int32 sim_brk_types, sim_brk_dflt, sim_brk_summ; /* breakpoint info */
|
||
extern DEVICE *sim_devices[];
|
||
extern FILE *sim_log;
|
||
|
||
t_bool build_dev_tab (void);
|
||
t_stat cpu_ex (t_value *vptr, t_addr addr, UNIT *uptr, int32 sw);
|
||
t_stat cpu_dep (t_value val, t_addr addr, UNIT *uptr, int32 sw);
|
||
t_stat cpu_reset (DEVICE *dptr);
|
||
t_stat cpu_set_size (UNIT *uptr, int32 val, char *cptr, void *desc);
|
||
int32 upd_iors (void);
|
||
int32 api_eval (int32 *pend);
|
||
|
||
extern clk (int32 pulse, int32 AC);
|
||
|
||
int32 (*dev_tab[DEV_MAX])(int32 pulse, int32 AC); /* device dispatch */
|
||
|
||
int32 (*dev_iors[DEV_MAX])(void); /* IORS dispatch */
|
||
|
||
static const int32 api_ffo[256] = {
|
||
8, 7, 6, 6, 5, 5, 5, 5, 4, 4, 4, 4, 4, 4, 4, 4,
|
||
3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,
|
||
2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
|
||
2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
|
||
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
|
||
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
|
||
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
|
||
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
|
||
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
||
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
||
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
||
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
||
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
||
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
||
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
||
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 };
|
||
|
||
static const int32 api_vec[API_HLVL][32] = {
|
||
{ ACH_PWRFL }, /* API 0 */
|
||
{ ACH_DTA, ACH_MTA, ACH_DRM, ACH_RF, ACH_RP }, /* API 1 */
|
||
{ ACH_PTR, ACH_LPT, ACH_LPT }, /* API 2 */
|
||
{ ACH_CLK, ACH_TTI1, ACH_TTO1 } }; /* API 3 */
|
||
|
||
/* CPU data structures
|
||
|
||
cpu_dev CPU device descriptor
|
||
cpu_unit CPU unit
|
||
cpu_reg CPU register list
|
||
cpu_mod CPU modifier list
|
||
*/
|
||
|
||
UNIT cpu_unit = { UDATA (NULL, UNIT_FIX + UNIT_BINK + EAE_DFLT + API_DFLT,
|
||
MAXMEMSIZE) };
|
||
|
||
REG cpu_reg[] = {
|
||
{ ORDATA (PC, saved_PC, ADDRSIZE) },
|
||
{ ORDATA (AC, saved_LAC, 18) },
|
||
{ FLDATA (L, saved_LAC, 18) },
|
||
#if !defined (PDP4)
|
||
{ ORDATA (MQ, saved_MQ, 18) },
|
||
{ ORDATA (SC, SC, 6) },
|
||
{ FLDATA (EAE_AC_SIGN, eae_ac_sign, 18) },
|
||
#endif
|
||
{ ORDATA (SR, SR, 18) },
|
||
{ ORDATA (IORS, iors, 18), REG_RO },
|
||
{ BRDATA (INT, int_hwre, 8, 32, API_HLVL+1), REG_RO },
|
||
{ FLDATA (ION, ion, 0) },
|
||
{ ORDATA (ION_DELAY, ion_defer, 2) },
|
||
#if defined (PDP7)
|
||
{ FLDATA (TRAPM, usmd, 0) },
|
||
{ FLDATA (TRAPP, trap_pending, 0) },
|
||
{ FLDATA (EXTM, memm, 0) },
|
||
{ FLDATA (EXTM_INIT, memm_init, 0) },
|
||
{ FLDATA (EMIRP, emir_pending, 0) },
|
||
#endif
|
||
#if defined (PDP9)
|
||
{ FLDATA (APIENB, api_enb, 0) },
|
||
{ ORDATA (APIREQ, api_req, 8) },
|
||
{ ORDATA (APIACT, api_act, 8) },
|
||
{ ORDATA (BR, BR, ADDRSIZE) },
|
||
{ FLDATA (USMD, usmd, 0) },
|
||
{ FLDATA (USMDBUF, usmdbuf, 0) },
|
||
{ FLDATA (NEXM, nexm, 0) },
|
||
{ FLDATA (PRVN, prvn, 0) },
|
||
{ FLDATA (TRAPP, trap_pending, 0) },
|
||
{ FLDATA (EXTM, memm, 0) },
|
||
{ FLDATA (EXTM_INIT, memm_init, 0) },
|
||
{ FLDATA (EMIRP, emir_pending, 0) },
|
||
{ FLDATA (RESTP, rest_pending, 0) },
|
||
{ FLDATA (PWRFL, int_hwre[API_PWRFL], INT_V_PWRFL) },
|
||
#endif
|
||
#if defined (PDP15)
|
||
{ FLDATA (APIENB, api_enb, 0) },
|
||
{ ORDATA (APIREQ, api_req, 8) },
|
||
{ ORDATA (APIACT, api_act, 8) },
|
||
{ ORDATA (XR, XR, 18) },
|
||
{ ORDATA (LR, LR, 18) },
|
||
{ ORDATA (BR, BR, ADDRSIZE) },
|
||
{ FLDATA (USMD, usmd, 0) },
|
||
{ FLDATA (USMDBUF, usmdbuf, 0) },
|
||
{ FLDATA (NEXM, nexm, 0) },
|
||
{ FLDATA (PRVN, prvn, 0) },
|
||
{ FLDATA (TRAPP, trap_pending, 0) },
|
||
{ FLDATA (BANKM, memm, 0) },
|
||
{ FLDATA (BANKM_INIT, memm_init, 0) },
|
||
{ FLDATA (RESTP, rest_pending, 0) },
|
||
{ FLDATA (PWRFL, int_hwre[API_PWRFL], INT_V_PWRFL) },
|
||
#endif
|
||
{ BRDATA (PCQ, pcq, 8, ADDRSIZE, PCQ_SIZE), REG_RO+REG_CIRC },
|
||
{ ORDATA (PCQP, pcq_p, 6), REG_HRO },
|
||
{ FLDATA (STOP_INST, stop_inst, 0) },
|
||
{ DRDATA (XCT_MAX, xct_max, 8), PV_LEFT + REG_NZ },
|
||
{ ORDATA (WRU, sim_int_char, 8) },
|
||
{ NULL } };
|
||
|
||
MTAB cpu_mod[] = {
|
||
#if !defined (PDP4)
|
||
{ UNIT_NOEAE, UNIT_NOEAE, "no EAE", "NOEAE", NULL },
|
||
{ UNIT_NOEAE, 0, "EAE", "EAE", NULL },
|
||
#else
|
||
{ UNIT_MSIZE, 4096, NULL, "4K", &cpu_set_size },
|
||
#endif
|
||
#if defined (PDP9) || defined (PDP15)
|
||
{ UNIT_NOAPI, UNIT_NOAPI, "no API", "NOAPI", NULL },
|
||
{ UNIT_NOAPI, 0, "API", "API", NULL },
|
||
#endif
|
||
{ UNIT_MSIZE, 8192, NULL, "8K", &cpu_set_size },
|
||
#if (MAXMEMSIZE > 8192)
|
||
{ UNIT_MSIZE, 12288, NULL, "12K", &cpu_set_size },
|
||
{ UNIT_MSIZE, 16384, NULL, "16K", &cpu_set_size },
|
||
{ UNIT_MSIZE, 20480, NULL, "20K", &cpu_set_size },
|
||
{ UNIT_MSIZE, 24576, NULL, "24K", &cpu_set_size },
|
||
{ UNIT_MSIZE, 28672, NULL, "28K", &cpu_set_size },
|
||
{ UNIT_MSIZE, 32768, NULL, "32K", &cpu_set_size },
|
||
#endif
|
||
#if (MAXMEMSIZE > 32768)
|
||
{ UNIT_MSIZE, 49152, NULL, "48K", &cpu_set_size },
|
||
{ UNIT_MSIZE, 65536, NULL, "64K", &cpu_set_size },
|
||
{ UNIT_MSIZE, 81920, NULL, "80K", &cpu_set_size },
|
||
{ UNIT_MSIZE, 98304, NULL, "96K", &cpu_set_size },
|
||
{ UNIT_MSIZE, 114688, NULL, "112K", &cpu_set_size },
|
||
{ UNIT_MSIZE, 131072, NULL, "128K", &cpu_set_size },
|
||
#endif
|
||
{ 0 } };
|
||
|
||
DEVICE cpu_dev = {
|
||
"CPU", &cpu_unit, cpu_reg, cpu_mod,
|
||
1, 8, ADDRSIZE, 1, 8, 18,
|
||
&cpu_ex, &cpu_dep, &cpu_reset,
|
||
NULL, NULL, NULL };
|
||
|
||
t_stat sim_instr (void)
|
||
{
|
||
int32 PC, LAC, MQ;
|
||
int32 api_int, api_cycle, skp;
|
||
int32 iot_data, device, pulse;
|
||
t_stat reason;
|
||
extern UNIT clk_unit;
|
||
|
||
#define JMS_WORD(t) (((LAC & 01000000) >> 1) | ((memm & 1) << 16) | \
|
||
(((t) & 1) << 15) | ((PC) & 077777))
|
||
#define INCR_ADDR(x) (((x) & epcmask) | (((x) + 1) & damask))
|
||
#define SEXT(x) ((int) (((x) & 0400000)? (x) | ~0777777: (x) & 0777777))
|
||
|
||
/* The following macros implement addressing. They account for autoincrement
|
||
addressing, extended addressing, and memory protection, if it exists.
|
||
|
||
CHECK_AUTO_INC check auto increment
|
||
INDIRECT indirect addressing
|
||
CHECK_INDEX check indexing
|
||
CHECK_ADDR_R check address for read
|
||
CHECK_ADDR_W check address for write
|
||
|
||
On the PDP-4 and PDP-7,
|
||
There are autoincrement locations in every field. If a field
|
||
does not exist, it is impossible to generate an
|
||
autoincrement reference (all instructions are CAL).
|
||
Indirect addressing range is determined by extend mode.
|
||
There is no indexing.
|
||
There is no memory protection, nxm reads zero and ignores writes.
|
||
*/
|
||
|
||
#if defined (PDP4) || defined (PDP7)
|
||
#define CHECK_AUTO_INC \
|
||
if ((IR & 017770) == 010) M[MA] = (M[MA] + 1) & 0777777
|
||
#define INDIRECT \
|
||
MA = memm? M[MA] & IAMASK: (MA & epcmask) | (M[MA] & damask)
|
||
#define CHECK_INDEX /* no indexing capability */
|
||
#define CHECK_ADDR_R(x) /* no read protection */
|
||
#define CHECK_ADDR_W(x) \
|
||
if (!MEM_ADDR_OK (x)) break
|
||
#endif
|
||
|
||
/* On the PDP-9,
|
||
The autoincrement registers are in field zero only. Regardless
|
||
of extend mode, indirect addressing through 00010-00017
|
||
will access absolute locations 00010-00017.
|
||
Indirect addressing range is determined by extend mode. If
|
||
extend mode is off, and autoincrementing is used, the
|
||
resolved address is in bank 0 (KG09B maintenance manual).
|
||
There is no indexing.
|
||
Memory protection is implemented for foreground/background operation.
|
||
*/
|
||
|
||
#if defined (PDP9)
|
||
#define CHECK_AUTO_INC \
|
||
if ((IR & 017770) == 010) { \
|
||
MA = MA & 017; \
|
||
M[MA] = (M[MA] + 1) & 0777777; }
|
||
#define INDIRECT \
|
||
MA = memm? M[MA] & IAMASK: (MA & epcmask) | (M[MA] & damask)
|
||
#define CHECK_ADDR_R(x) \
|
||
if (usmd) { \
|
||
if (!MEM_ADDR_OK (x)) { \
|
||
nexm = prvn = trap_pending = 1; \
|
||
break; } \
|
||
if ((x) < BR) { \
|
||
prvn = trap_pending = 1; \
|
||
break; } } \
|
||
if (!MEM_ADDR_OK (x)) nexm = 1
|
||
#define CHECK_INDEX /* no indexing capability */
|
||
#define CHECK_ADDR_W(x) \
|
||
CHECK_ADDR_R (x); \
|
||
if (!MEM_ADDR_OK (x)) break
|
||
#endif
|
||
|
||
/* On the PDP-15,
|
||
The autoincrement registers are in page zero only. Regardless
|
||
of bank mode, indirect addressing through 00010-00017
|
||
will access absolute locations 00010-00017.
|
||
Indirect addressing range is determined by autoincrementing.
|
||
Indexing is available if bank mode is off.
|
||
Memory protection is implemented for foreground/background operation.
|
||
*/
|
||
|
||
#if defined (PDP15)
|
||
#define CHECK_AUTO_INC \
|
||
if ((IR & damask & ~07) == 00010) { \
|
||
MA = MA & 017; \
|
||
M[MA] = (M[MA] + 1) & 0777777; }
|
||
#define INDIRECT \
|
||
if (rest_pending) { \
|
||
rest_pending = 0; \
|
||
LAC = ((M[MA] << 1) & 01000000) | (LAC & 0777777); \
|
||
memm = (M[MA] >> 16) & 1; \
|
||
usmd = (M[MA] >> 15) & 1; } \
|
||
MA = ((IR & damask & ~07) != 00010)? \
|
||
(PC & BLKMASK) | (M[MA] & IAMASK): (M[MA] & ADDRMASK); \
|
||
damask = memm? 017777: 07777; \
|
||
epcmask = ADDRMASK & ~damask
|
||
#define CHECK_INDEX \
|
||
if ((IR & 0010000) && (memm == 0)) MA = (MA + XR) & ADDRMASK
|
||
#define CHECK_ADDR_R(x) \
|
||
if (usmd) { \
|
||
if (!MEM_ADDR_OK (x)) { \
|
||
nexm = prvn = trap_pending = 1; \
|
||
break; } \
|
||
if ((x) < BR) { \
|
||
prvn = trap_pending = 1; \
|
||
break; } } \
|
||
if (!MEM_ADDR_OK (x)) nexm = 1
|
||
#define CHECK_ADDR_W(x) \
|
||
CHECK_ADDR_R (x); \
|
||
if (!MEM_ADDR_OK (x)) break
|
||
#endif
|
||
|
||
/* Restore register state */
|
||
|
||
#if defined (PDP15)
|
||
int32 epcmask, damask;
|
||
|
||
damask = memm? 017777: 07777; /* set dir addr mask */
|
||
epcmask = ADDRMASK & ~damask; /* extended PC mask */
|
||
|
||
#else
|
||
#define damask 017777 /* direct addr mask */
|
||
#define epcmask (ADDRMASK & ~damask) /* extended PC mask */
|
||
#endif
|
||
|
||
if (build_dev_tab ()) return SCPE_STOP; /* build, chk tables */
|
||
PC = saved_PC & ADDRMASK; /* load local copies */
|
||
LAC = saved_LAC & 01777777;
|
||
MQ = saved_MQ & 0777777;
|
||
reason = 0;
|
||
sim_rtc_init (clk_unit.wait); /* init calibration */
|
||
if (cpu_unit.flags & UNIT_NOAPI) api_enb = api_req = api_act = 0;
|
||
api_int = api_eval (&int_pend); /* eval API */
|
||
api_cycle = 0; /* not API cycle */
|
||
|
||
/* Main instruction fetch/decode loop: check trap and interrupt */
|
||
|
||
while (reason == 0) { /* loop until halted */
|
||
int32 IR, MA, esc, t, xct_count;
|
||
int32 link_init, fill;
|
||
|
||
if (sim_interval <= 0) { /* check clock queue */
|
||
if (reason = sim_process_event ()) break;
|
||
api_int = api_eval (&int_pend); } /* eval API */
|
||
|
||
/* Protection traps work like interrupts, with these quirks:
|
||
|
||
PDP-7 extend mode forced on, M[0] = PC, PC = 2
|
||
PDP-9 extend mode ???, M[0/20] = PC, PC = 0/21
|
||
PDP-15 bank mode unchanged, M[0/20] = PC, PC = 0/21
|
||
*/
|
||
|
||
#if defined (PDP7)
|
||
if (trap_pending) { /* trap pending? */
|
||
PCQ_ENTRY; /* save old PC */
|
||
M[0] = JMS_WORD (1); /* save state */
|
||
PC = 2; /* fetch next from 2 */
|
||
ion = 0; /* interrupts off */
|
||
memm = 1; /* extend on */
|
||
emir_pending = trap_pending = 0; /* emir, trap off */
|
||
usmd = 0; } /* protect off */
|
||
#endif
|
||
#if defined (PDP9) || defined (PDP15)
|
||
if (trap_pending) { /* trap pending? */
|
||
PCQ_ENTRY; /* save old PC */
|
||
MA = ion? 0: 020; /* save in 0 or 20 */
|
||
M[MA] = JMS_WORD (1); /* save state */
|
||
PC = MA + 1; /* fetch next */
|
||
ion = 0; /* interrupts off */
|
||
emir_pending = rest_pending = trap_pending = 0; /* emir,rest,trap off */
|
||
usmd = 0; } /* protect off */
|
||
|
||
/* PDP-9 and PDP-15 automatic priority interrupt (API) */
|
||
|
||
if (api_int && !ion_defer) { /* API intr? */
|
||
int32 i, lvl = api_int - 1; /* get req level */
|
||
api_act = api_act | (0200 >> lvl); /* set level active */
|
||
if (lvl >= API_HLVL) { /* software req? */
|
||
MA = ACH_SWRE + lvl - API_HLVL; /* vec = 40:43 */
|
||
api_req = api_req & ~(0200 >> lvl); } /* remove request */
|
||
else { MA = 0; /* assume fails */
|
||
for (i = 0; i < 32; i++) { /* loop hi to lo */
|
||
if ((int_hwre[lvl] >> i) & 1) { /* int req set? */
|
||
MA = api_vec[lvl][i]; /* get vector */
|
||
break; } } } /* and stop */
|
||
if (MA == 0) { /* bad channel? */
|
||
reason = STOP_API; /* API error */
|
||
break; }
|
||
api_int = api_eval (&int_pend); /* no API int */
|
||
api_cycle = 1; /* in API cycle */
|
||
emir_pending = rest_pending = 0; /* emir, restore off */
|
||
xct_count = 0;
|
||
goto xct_instr; }
|
||
|
||
/* Standard program interrupt */
|
||
|
||
if (!(api_enb && api_act) && ion && !ion_defer && int_pend) {
|
||
#else
|
||
if (ion && !ion_defer && int_pend) { /* interrupt? */
|
||
#endif
|
||
PCQ_ENTRY; /* save old PC */
|
||
M[0] = JMS_WORD (usmd); /* save state */
|
||
PC = 1; /* fetch next from 1 */
|
||
ion = 0; /* interrupts off */
|
||
#if !defined (PDP15) /* except PDP-15, */
|
||
memm = 0; /* extend off */
|
||
#endif
|
||
emir_pending = rest_pending = 0; /* emir, restore off */
|
||
usmd = 0; } /* protect off */
|
||
|
||
/* Breakpoint */
|
||
|
||
if (sim_brk_summ && sim_brk_test (PC, SWMASK ('E'))) { /* breakpoint? */
|
||
reason = STOP_IBKPT; /* stop simulation */
|
||
break; }
|
||
|
||
/* Fetch, decode instruction */
|
||
|
||
#if defined (PDP9) || defined (PDP15)
|
||
if (usmd) { /* user mode? */
|
||
if (!MEM_ADDR_OK (PC)) { /* nxm? */
|
||
nexm = prvn = trap_pending = 1; /* abort fetch */
|
||
continue; } \
|
||
if (PC < BR) { /* bounds viol? */
|
||
prvn = trap_pending = 1; /* abort fetch */
|
||
continue; } }
|
||
else if (!MEM_ADDR_OK (PC)) nexm = 1; /* flag nxm */
|
||
if (!ion_defer) usmd = usmdbuf; /* no IOT? load usmd */
|
||
#endif
|
||
xct_count = 0; /* track nested XCT's */
|
||
MA = PC; /* fetch at PC */
|
||
PC = INCR_ADDR (PC); /* increment PC */
|
||
|
||
xct_instr: /* label for XCT */
|
||
IR = M[MA]; /* fetch instruction */
|
||
if (ion_defer) ion_defer = ion_defer - 1; /* count down defer */
|
||
if (sim_interval) sim_interval = sim_interval - 1;
|
||
MA = (MA & epcmask) | (IR & damask); /* effective address */
|
||
switch ((IR >> 13) & 037) { /* decode IR<0:4> */
|
||
|
||
/* LAC: opcode 20 */
|
||
|
||
case 011: /* LAC, indir */
|
||
CHECK_AUTO_INC;
|
||
INDIRECT;
|
||
case 010: /* LAC, dir */
|
||
CHECK_INDEX;
|
||
CHECK_ADDR_R (MA);
|
||
LAC = (LAC & 01000000) | M[MA];
|
||
break;
|
||
|
||
/* DAC: opcode 04 */
|
||
|
||
case 003: /* DAC, indir */
|
||
CHECK_AUTO_INC;
|
||
INDIRECT;
|
||
case 002: /* DAC, dir */
|
||
CHECK_INDEX;
|
||
CHECK_ADDR_W (MA);
|
||
M[MA] = LAC & 0777777;
|
||
break;
|
||
|
||
/* DZM: opcode 14 */
|
||
|
||
case 007: /* DZM, indir */
|
||
CHECK_AUTO_INC;
|
||
INDIRECT;
|
||
case 006: /* DZM, direct */
|
||
CHECK_INDEX;
|
||
CHECK_ADDR_W (MA);
|
||
M[MA] = 0;
|
||
break;
|
||
|
||
/* AND: opcode 50 */
|
||
|
||
case 025: /* AND, ind */
|
||
CHECK_AUTO_INC;
|
||
INDIRECT;
|
||
case 024: /* AND, dir */
|
||
CHECK_INDEX;
|
||
CHECK_ADDR_R (MA);
|
||
LAC = LAC & (M[MA] | 01000000);
|
||
break;
|
||
|
||
/* XOR: opcode 24 */
|
||
|
||
case 013: /* XOR, ind */
|
||
CHECK_AUTO_INC;
|
||
INDIRECT;
|
||
case 012: /* XOR, dir */
|
||
CHECK_INDEX;
|
||
CHECK_ADDR_R (MA);
|
||
LAC = LAC ^ M[MA];
|
||
break;
|
||
|
||
/* ADD: opcode 30 */
|
||
|
||
case 015: /* ADD, indir */
|
||
CHECK_AUTO_INC;
|
||
INDIRECT;
|
||
case 014: /* ADD, dir */
|
||
CHECK_INDEX;
|
||
CHECK_ADDR_R (MA);
|
||
t = (LAC & 0777777) + M[MA];
|
||
if (t > 0777777) t = (t + 1) & 0777777; /* end around carry */
|
||
if (((~LAC ^ M[MA]) & (LAC ^ t)) & 0400000) /* overflow? */
|
||
LAC = 01000000 | t; /* set link */
|
||
else LAC = (LAC & 01000000) | t;
|
||
break;
|
||
|
||
/* TAD: opcode 34 */
|
||
|
||
case 017: /* TAD, indir */
|
||
CHECK_AUTO_INC;
|
||
INDIRECT;
|
||
case 016: /* TAD, dir */
|
||
CHECK_INDEX;
|
||
CHECK_ADDR_R (MA);
|
||
LAC = (LAC + M[MA]) & 01777777;
|
||
break;
|
||
|
||
/* ISZ: opcode 44 */
|
||
|
||
case 023: /* ISZ, indir */
|
||
CHECK_AUTO_INC;
|
||
INDIRECT;
|
||
case 022: /* ISZ, dir */
|
||
CHECK_INDEX;
|
||
CHECK_ADDR_W (MA);
|
||
M[MA] = (M[MA] + 1) & 0777777;
|
||
if (M[MA] == 0) PC = INCR_ADDR (PC);
|
||
break;
|
||
|
||
/* SAD: opcode 54 */
|
||
|
||
case 027: /* SAD, indir */
|
||
CHECK_AUTO_INC;
|
||
INDIRECT;
|
||
case 026: /* SAD, dir */
|
||
CHECK_INDEX;
|
||
CHECK_ADDR_R (MA);
|
||
if ((LAC & 0777777) != M[MA]) PC = INCR_ADDR (PC);
|
||
break;
|
||
|
||
/* XCT: opcode 40 */
|
||
|
||
case 021: /* XCT, indir */
|
||
CHECK_AUTO_INC;
|
||
INDIRECT;
|
||
case 020: /* XCT, dir */
|
||
CHECK_INDEX;
|
||
CHECK_ADDR_R (MA);
|
||
if (usmd && (xct_count != 0)) { /* trap and chained? */
|
||
prvn = trap_pending = 1;
|
||
break; }
|
||
if (xct_count >= xct_max) { /* too many XCT's? */
|
||
reason = STOP_XCT;
|
||
break; }
|
||
xct_count = xct_count + 1; /* count XCT's */
|
||
#if defined (PDP9)
|
||
ion_defer = 1; /* defer intr */
|
||
#endif
|
||
goto xct_instr; /* go execute */
|
||
|
||
/* CAL: opcode 00
|
||
|
||
On the PDP-4 and PDP-7, CAL (I) is exactly the same as JMS (I) 20
|
||
On the PDP-9 and PDP-15, CAL clears user mode
|
||
On the PDP-9 and PDP-15 with API, CAL activates level 4
|
||
On the PDP-15, CAL goes to absolute 20, regardless of mode
|
||
*/
|
||
|
||
case 001: case 000: /* CAL */
|
||
t = usmd;
|
||
#if defined (PDP15)
|
||
MA = 020;
|
||
#else
|
||
MA = (memm? 0: PC & epcmask) | 020; /* MA = 20 */
|
||
#endif
|
||
#if defined (PDP9) || defined (PDP15)
|
||
usmd = 0; /* clear user mode */
|
||
if ((cpu_unit.flags & UNIT_NOAPI) == 0) { /* if API, act lvl 4 */
|
||
api_act = api_act | 010;
|
||
api_int = api_eval (&int_pend); }
|
||
#endif
|
||
if (IR & 0020000) { INDIRECT; } /* indirect? */
|
||
CHECK_ADDR_W (MA);
|
||
PCQ_ENTRY;
|
||
M[MA] = JMS_WORD (t); /* save state */
|
||
PC = INCR_ADDR (MA);
|
||
break;
|
||
|
||
/* JMS: opcode 010 */
|
||
|
||
case 005: /* JMS, indir */
|
||
CHECK_AUTO_INC;
|
||
INDIRECT;
|
||
case 004: /* JMS, dir */
|
||
CHECK_INDEX;
|
||
CHECK_ADDR_W (MA);
|
||
PCQ_ENTRY;
|
||
M[MA] = JMS_WORD (usmd); /* save state */
|
||
PC = INCR_ADDR (MA);
|
||
break;
|
||
|
||
/* JMP: opcode 60
|
||
|
||
Restore quirks:
|
||
On the PDP-7 and PDP-9, EMIR can only clear extend
|
||
On the PDP-15, any I triggers restore, but JMP I is conventional
|
||
*/
|
||
|
||
case 031: /* JMP, indir */
|
||
CHECK_AUTO_INC; /* check auto inc */
|
||
#if defined (PDP7) || defined (PDP9)
|
||
if (emir_pending && (((M[MA] >> 16) & 1) == 0)) memm = 0;
|
||
#endif
|
||
#if defined (PDP9)
|
||
if (rest_pending) { /* restore pending? */
|
||
LAC = ((M[MA] << 1) & 01000000) | (LAC & 0777777);
|
||
memm = (M[MA] >> 16) & 1;
|
||
usmd = (M[MA] >> 15) & 1; }
|
||
#endif
|
||
INDIRECT; /* complete indirect */
|
||
emir_pending = rest_pending = 0;
|
||
case 030: /* JMP, dir */
|
||
CHECK_INDEX;
|
||
PCQ_ENTRY; /* save old PC */
|
||
PC = MA;
|
||
break;
|
||
|
||
/* OPR: opcode 74 */
|
||
|
||
case 037: /* OPR, indir */
|
||
LAC = (LAC & 01000000) | IR; /* LAW */
|
||
break;
|
||
|
||
case 036: /* OPR, dir */
|
||
skp = 0; /* assume no skip */
|
||
switch ((IR >> 6) & 017) { /* decode IR<8:11> */
|
||
case 0: /* nop */
|
||
break;
|
||
case 1: /* SMA */
|
||
if ((LAC & 0400000) != 0) skp = 1;
|
||
break;
|
||
case 2: /* SZA */
|
||
if ((LAC & 0777777) == 0) skp = 1;
|
||
break;
|
||
case 3: /* SZA | SMA */
|
||
if (((LAC & 0777777) == 0) || ((LAC & 0400000) != 0))
|
||
skp = 1;
|
||
break;
|
||
case 4: /* SNL */
|
||
if (LAC >= 01000000) skp = 1;
|
||
break;
|
||
case 5: /* SNL | SMA */
|
||
if (LAC >= 0400000) skp = 1;
|
||
break;
|
||
case 6: /* SNL | SZA */
|
||
if ((LAC >= 01000000) || (LAC == 0)) skp = 1;
|
||
break;
|
||
case 7: /* SNL | SZA | SMA */
|
||
if ((LAC >= 0400000) || (LAC == 0)) skp = 1;
|
||
break;
|
||
case 010: /* SKP */
|
||
skp = 1;
|
||
break;
|
||
case 011: /* SPA */
|
||
if ((LAC & 0400000) == 0) skp = 1;
|
||
break;
|
||
case 012: /* SNA */
|
||
if ((LAC & 0777777) != 0) skp = 1;
|
||
break;
|
||
case 013: /* SNA & SPA */
|
||
if (((LAC & 0777777) != 0) && ((LAC & 0400000) == 0))
|
||
skp = 1;
|
||
break;
|
||
case 014: /* SZL */
|
||
if (LAC < 01000000) skp = 1;
|
||
break;
|
||
case 015: /* SZL & SPA */
|
||
if (LAC < 0400000) skp = 1;
|
||
break;
|
||
case 016: /* SZL & SNA */
|
||
if ((LAC < 01000000) && (LAC != 0)) skp = 1;
|
||
break;
|
||
case 017: /* SZL & SNA & SPA */
|
||
if ((LAC < 0400000) && (LAC != 0)) skp = 1;
|
||
break; } /* end switch skips */
|
||
|
||
/* OPR, continued */
|
||
|
||
switch (((IR >> 9) & 014) | (IR & 03)) { /* IR<5:6,16:17> */
|
||
case 0: /* NOP */
|
||
break;
|
||
case 1: /* CMA */
|
||
LAC = LAC ^ 0777777;
|
||
break;
|
||
case 2: /* CML */
|
||
LAC = LAC ^ 01000000;
|
||
break;
|
||
case 3: /* CML CMA */
|
||
LAC = LAC ^ 01777777;
|
||
break;
|
||
case 4: /* CLL */
|
||
LAC = LAC & 0777777;
|
||
break;
|
||
case 5: /* CLL CMA */
|
||
LAC = (LAC & 0777777) ^ 0777777;
|
||
break;
|
||
case 6: /* CLL CML = STL */
|
||
LAC = LAC | 01000000;
|
||
break;
|
||
case 7: /* CLL CML CMA */
|
||
LAC = (LAC | 01000000) ^ 0777777;
|
||
break;
|
||
case 010: /* CLA */
|
||
LAC = LAC & 01000000;
|
||
break;
|
||
case 011: /* CLA CMA = STA */
|
||
LAC = LAC | 0777777;
|
||
break;
|
||
case 012: /* CLA CML */
|
||
LAC = (LAC & 01000000) ^ 01000000;
|
||
break;
|
||
case 013: /* CLA CML CMA */
|
||
LAC = (LAC | 0777777) ^ 01000000;
|
||
break;
|
||
case 014: /* CLA CLL */
|
||
LAC = 0;
|
||
break;
|
||
case 015: /* CLA CLL CMA */
|
||
LAC = 0777777;
|
||
break;
|
||
case 016: /* CLA CLL CML */
|
||
LAC = 01000000;
|
||
break;
|
||
case 017: /* CLA CLL CML CMA */
|
||
LAC = 01777777;
|
||
break; } /* end decode */
|
||
|
||
/* OPR, continued */
|
||
|
||
if (IR & 0000004) { /* OAS */
|
||
#if defined (PDP9) || defined (PDP15)
|
||
if (usmd) prvn = trap_pending = 1;
|
||
else
|
||
#endif
|
||
LAC = LAC | SR; }
|
||
|
||
switch (((IR >> 8) & 04) | ((IR >> 3) & 03)) { /* decode IR<7,13:14> */
|
||
case 1: /* RAL */
|
||
LAC = ((LAC << 1) | (LAC >> 18)) & 01777777;
|
||
break;
|
||
case 2: /* RAR */
|
||
LAC = ((LAC >> 1) | (LAC << 18)) & 01777777;
|
||
break;
|
||
case 3: /* RAL RAR */
|
||
#if defined (PDP15) /* PDP-15 */
|
||
LAC = (LAC + 1) & 01777777; /* IAC */
|
||
#else /* PDP-4,-7,-9 */
|
||
reason = stop_inst; /* undefined */
|
||
#endif
|
||
break;
|
||
case 5: /* RTL */
|
||
LAC = ((LAC << 2) | (LAC >> 17)) & 01777777;
|
||
break;
|
||
case 6: /* RTR */
|
||
LAC = ((LAC >> 2) | (LAC << 17)) & 01777777;
|
||
break;
|
||
case 7: /* RTL RTR */
|
||
#if defined (PDP15) /* PDP-15 */
|
||
LAC = ((LAC >> 9) & 0777) | ((LAC & 0777) << 9) |
|
||
(LAC & 01000000); /* BSW */
|
||
#else /* PDP-4,-7,-9 */
|
||
reason = stop_inst; /* undefined */
|
||
#endif
|
||
break; } /* end switch rotate */
|
||
|
||
if (IR & 0000040) { /* HLT */
|
||
if (usmd) prvn = trap_pending = 1;
|
||
else reason = STOP_HALT; }
|
||
if (skp && !prvn) PC = INCR_ADDR (PC); /* if skip, inc PC */
|
||
break; /* end OPR */
|
||
|
||
/* EAE: opcode 64
|
||
|
||
The EAE is microprogrammed to execute variable length signed and
|
||
unsigned shift, multiply, divide, and normalize. Most commands are
|
||
controlled by a six bit step counter (SC). In the hardware, the step
|
||
counter is complemented on load and then counted up to zero; timing
|
||
guarantees an initial increment, which completes the two's complement
|
||
load. In the simulator, the SC is loaded normally and then counted
|
||
down to zero; the read SC command compensates.
|
||
*/
|
||
|
||
case 033: case 032: /* EAE */
|
||
if (cpu_unit.flags & UNIT_NOEAE) break; /* disabled? */
|
||
if (IR & 0020000) /* IR<4>? AC0 to L */
|
||
LAC = ((LAC << 1) & 01000000) | (LAC & 0777777);
|
||
if (IR & 0010000) MQ = 0; /* IR<5>? clear MQ */
|
||
if ((IR & 0004000) && (LAC & 0400000)) /* IR<6> and minus? */
|
||
eae_ac_sign = 01000000; /* set eae_ac_sign */
|
||
else eae_ac_sign = 0; /* if not, unsigned */
|
||
if (IR & 0002000) MQ = (MQ | LAC) & 0777777; /* IR<7>? or AC */
|
||
else if (eae_ac_sign) LAC = LAC ^ 0777777; /* if not, |AC| */
|
||
if (IR & 0001000) LAC = LAC & 01000000; /* IR<8>? clear AC */
|
||
link_init = LAC & 01000000; /* link temporary */
|
||
fill = link_init? 0777777: 0; /* fill = link */
|
||
esc = (IR & 077)? IR & 077: 0100; /* get eff SC */
|
||
|
||
switch ((IR >> 6) & 07) { /* case on IR<9:11> */
|
||
case 0: /* setup */
|
||
if (IR & 04) LAC = LAC ^ 0777777; /* IR<15>? ~AC */
|
||
if (IR & 02) LAC = LAC | MQ; /* IR<16>? or MQ */
|
||
if (IR & 01) LAC = LAC | ((-SC) & 077); /* IR<17>? or SC */
|
||
break;
|
||
|
||
case 1: /* multiply */
|
||
CHECK_ADDR_R (PC); /* validate PC */
|
||
MA = M[PC]; /* get next word */
|
||
PC = INCR_ADDR (PC); /* increment PC */
|
||
if (eae_ac_sign) MQ = MQ ^ 0777777; /* EAE AC sign? ~MQ */
|
||
LAC = LAC & 0777777; /* clear link */
|
||
for (SC = esc; SC != 0; SC--) { /* loop per step cnt */
|
||
if (MQ & 1) LAC = LAC + MA; /* MQ<17>? add */
|
||
MQ = (MQ >> 1) | ((LAC & 1) << 17);
|
||
LAC = LAC >> 1; } /* shift AC'MQ right */
|
||
if (eae_ac_sign ^ link_init) { /* result negative? */
|
||
LAC = LAC ^ 0777777;
|
||
MQ = MQ ^ 0777777; }
|
||
break;
|
||
|
||
/* EAE, continued
|
||
|
||
Divide uses a non-restoring divide. This code duplicates the PDP-7
|
||
algorithm, except for its use of two's complement arithmetic instead
|
||
of 1's complement.
|
||
|
||
The quotient is generated in one's complement form; therefore, the
|
||
quotient is complemented if the input operands had the same sign
|
||
(that is, if the quotient is positive).
|
||
*/
|
||
|
||
case 3: /* divide */
|
||
CHECK_ADDR_R (PC); /* validate PC */
|
||
MA = M[PC]; /* get next word */
|
||
PC = INCR_ADDR (PC); /* increment PC */
|
||
if (eae_ac_sign) MQ = MQ ^ 0777777; /* EAE AC sign? ~MQ */
|
||
if ((LAC & 0777777) >= MA) { /* overflow? */
|
||
LAC = (LAC - MA) | 01000000; /* set link */
|
||
break; }
|
||
LAC = LAC & 0777777; /* clear link */
|
||
t = 0; /* init loop */
|
||
for (SC = esc; SC != 0; SC--) { /* loop per step cnt */
|
||
if (t) LAC = (LAC + MA) & 01777777;
|
||
else LAC = (LAC - MA) & 01777777;
|
||
t = (LAC >> 18) & 1; /* quotient bit */
|
||
if (SC > 1) LAC = /* skip if last */
|
||
((LAC << 1) | (MQ >> 17)) & 01777777;
|
||
MQ = ((MQ << 1) | t) & 0777777; }
|
||
if (t) LAC = (LAC + MA) & 01777777;
|
||
if (eae_ac_sign) LAC = LAC ^ 0777777; /* sgn rem = sgn divd */
|
||
if (eae_ac_sign ^ link_init ^ 1) MQ = MQ ^ 0777777;
|
||
break;
|
||
|
||
/* EAE, continued
|
||
|
||
EAE shifts, whether left or right, fill from the link. If the
|
||
operand sign has been copied to the link, this provides correct
|
||
sign extension for one's complement numbers.
|
||
*/
|
||
|
||
case 4: /* normalize */
|
||
#if defined (PDP15)
|
||
if (!usmd) ion_defer = 2; /* free cycles */
|
||
#endif
|
||
for (SC = esc; (SC != 0) && ((LAC & 0400000) ==
|
||
((LAC << 1) & 0400000)); SC--) {
|
||
LAC = (LAC << 1) | ((MQ >> 17) & 1);
|
||
MQ = (MQ << 1) | (link_init >> 18); }
|
||
LAC = link_init | (LAC & 0777777); /* trim AC, restore L */
|
||
MQ = MQ & 0777777; /* trim MQ */
|
||
SC = SC & 077; /* trim SC */
|
||
break;
|
||
case 5: /* long right shift */
|
||
if (esc < 18) {
|
||
MQ = ((LAC << (18 - esc)) | (MQ >> esc)) & 0777777;
|
||
LAC = ((fill << (18 - esc)) | (LAC >> esc)) & 01777777; }
|
||
else { if (esc < 36) MQ =
|
||
((fill << (36 - esc)) | (LAC >> (esc - 18))) & 0777777;
|
||
else MQ = fill;
|
||
LAC = link_init | fill; }
|
||
SC = 0; /* clear step count */
|
||
break;
|
||
case 6: /* long left shift */
|
||
if (esc < 18) {
|
||
LAC = link_init |
|
||
(((LAC << esc) | (MQ >> (18 - esc))) & 0777777);
|
||
MQ = ((MQ << esc) | (fill >> (18 - esc))) & 0777777; }
|
||
else { if (esc < 36) LAC = link_init |
|
||
(((MQ << (esc - 18)) | (fill >> (36 - esc))) & 0777777);
|
||
else LAC = link_init | fill;
|
||
MQ = fill; }
|
||
SC = 0; /* clear step count */
|
||
break;
|
||
case 7: /* AC left shift */
|
||
if (esc < 18) LAC = link_init |
|
||
(((LAC << esc) | (fill >> (18 - esc))) & 0777777);
|
||
else LAC = link_init | fill;
|
||
SC = 0; /* clear step count */
|
||
break; } /* end switch IR */
|
||
break; /* end case EAE */
|
||
|
||
/* PDP-15 index operates: opcode 72 */
|
||
|
||
case 035: /* index operates */
|
||
#if defined (PDP15)
|
||
t = (IR & 0400)? IR | 0777000: IR & 0377; /* sext immediate */
|
||
switch ((IR >> 9) & 017) { /* case on IR<5:8> */
|
||
case 000: /* AAS */
|
||
LAC = (LAC & 01000000) | ((LAC + t) & 0777777);
|
||
if (SEXT (LAC & 0777777) >= SEXT (LR))
|
||
PC = INCR_ADDR (PC);
|
||
case 001: /* PAX */
|
||
XR = LAC & 0777777;
|
||
break;
|
||
case 002: /* PAL */
|
||
LR = LAC & 0777777;
|
||
break;
|
||
case 003: /* AAC */
|
||
LAC = (LAC & 01000000) | ((LAC + t) & 0777777);
|
||
break;
|
||
case 004: /* PXA */
|
||
LAC = (LAC & 01000000) | XR;
|
||
break;
|
||
case 005: /* AXS */
|
||
XR = (XR + t) & 0777777;
|
||
if (SEXT (XR) >= SEXT (LR)) PC = INCR_ADDR (PC);
|
||
break;
|
||
case 006: /* PXL */
|
||
LR = XR;
|
||
break;
|
||
case 010: /* PLA */
|
||
LAC = (LAC & 01000000) | LR;
|
||
break;
|
||
case 011: /* PLX */
|
||
XR = LR;
|
||
break;
|
||
case 014: /* CLAC */
|
||
LAC = LAC & 01000000;
|
||
break;
|
||
case 015: /* CLX */
|
||
XR = 0;
|
||
break;
|
||
case 016: /* CLLR */
|
||
LR = 0;
|
||
break;
|
||
case 017: /* AXR */
|
||
XR = (XR + t) & 0777777;
|
||
break; } /* end switch IR */
|
||
break; /* end case */
|
||
#endif
|
||
|
||
/* IOT: opcode 70
|
||
|
||
The 18b PDP's have different definitions of various control IOT's.
|
||
|
||
IOT PDP-4 PDP-7 PDP-9 PDP-15
|
||
|
||
700002 IOF IOF IOF IOF
|
||
700042 ION ION ION ION
|
||
700062 undefined ITON undefined undefined
|
||
701701 undefined undefined MPSK MPSK
|
||
701741 undefined undefined MPSNE MPSNE
|
||
701702 undefined undefined MPCV MPCV
|
||
701742 undefined undefined MPEU MPEU
|
||
701704 undefined undefined MPLD MPLD
|
||
701744 undefined undefined MPCNE MPCNE
|
||
703201 undefined undefined PFSF PFSF
|
||
703301 undefined TTS TTS TTS
|
||
703341 undefined SKP7 SKP7 SPCO
|
||
703302 undefined CAF CAF CAF
|
||
703304 undefined undefined DBK DBK
|
||
703344 undefined undefined DBR DBR
|
||
705501 undefined undefined SPI SPI
|
||
705502 undefined undefined RPL RPL
|
||
705504 undefined undefined ISA ISA
|
||
707701 undefined SEM SEM undefined
|
||
707741 undefined undefined undefined SKP15
|
||
707761 undefined undefined undefined SBA
|
||
707702 undefined EEM EEM undefined
|
||
707742 undefined EMIR EMIR RES
|
||
707762 undefined undefined undefined DBA
|
||
707704 undefined LEM LEM undefined
|
||
707764 undefined undefined undefined EBA
|
||
*/
|
||
|
||
case 034: /* IOT */
|
||
#if defined (PDP15)
|
||
if (IR & 0010000) { /* floating point? */
|
||
/* PC = fp15 (PC, IR); /* process */
|
||
break; }
|
||
#endif
|
||
if (usmd) { /* user mode? */
|
||
prvn = trap_pending = 1; /* trap */
|
||
break; }
|
||
device = (IR >> 6) & 077; /* device = IR<6:11> */
|
||
pulse = IR & 067; /* pulse = IR<12:17> */
|
||
if (IR & 0000010) LAC = LAC & 01000000; /* clear AC? */
|
||
iot_data = LAC & 0777777; /* AC unchanged */
|
||
|
||
/* PDP-4 system IOT's */
|
||
|
||
#if defined (PDP4)
|
||
switch (device) { /* decode IR<6:11> */
|
||
case 0: /* CPU and clock */
|
||
if (pulse == 002) ion = 0; /* IOF */
|
||
else if (pulse == 042) ion = ion_defer = 1; /* ION */
|
||
else iot_data = clk (pulse, iot_data);
|
||
break;
|
||
#endif
|
||
|
||
/* PDP-7 system IOT's */
|
||
|
||
#if defined (PDP7)
|
||
switch (device) { /* decode IR<6:11> */
|
||
case 0: /* CPU and clock */
|
||
if (pulse == 002) ion = 0; /* IOF */
|
||
else if (pulse == 042) ion = ion_defer = 1; /* ION */
|
||
else if (pulse == 062) /* ITON */
|
||
usmd = ion = ion_defer = 1;
|
||
else iot_data = clk (pulse, iot_data);
|
||
break;
|
||
case 033: /* CPU control */
|
||
if ((pulse == 001) || (pulse == 041)) PC = INCR_ADDR (PC);
|
||
else if (pulse == 002) reset_all (0); /* CAF */
|
||
break;
|
||
case 077: /* extended memory */
|
||
if ((pulse == 001) && memm) PC = INCR_ADDR (PC);
|
||
else if (pulse == 002) memm = 1; /* EEM */
|
||
else if (pulse == 042) /* EMIR */
|
||
memm = emir_pending = 1; /* ext on, restore */
|
||
else if (pulse == 004) memm = 0; /* LEM */
|
||
break;
|
||
#endif
|
||
|
||
/* PDP-9 and PDP-15 system IOT's */
|
||
|
||
#if defined (PDP9) || defined (PDP15)
|
||
ion_defer = 1; /* delay interrupts */
|
||
switch (device) { /* decode IR<6:11> */
|
||
case 000: /* CPU and clock */
|
||
if (pulse == 002) ion = 0; /* IOF */
|
||
else if (pulse == 042) ion = 1; /* ION */
|
||
else iot_data = clk (pulse, iot_data);
|
||
break;
|
||
case 017: /* mem protection */
|
||
if ((pulse == 001) && prvn) PC = INCR_ADDR (PC);
|
||
else if ((pulse == 041) && nexm) PC = INCR_ADDR (PC);
|
||
else if (pulse == 002) prvn = 0;
|
||
else if (pulse == 042) usmdbuf = 1;
|
||
else if (pulse == 004) BR = LAC & BRMASK;
|
||
else if (pulse == 044) nexm = 0;
|
||
break;
|
||
case 032: /* power fail */
|
||
if ((pulse == 001) && (TST_INT (PWRFL)))
|
||
PC = INCR_ADDR (PC);
|
||
break;
|
||
case 033: /* CPU control */
|
||
if ((pulse == 001) || (pulse == 041)) PC = INCR_ADDR (PC);
|
||
else if (pulse == 002) reset_all (0); /* CAF */
|
||
else if (pulse == 044) rest_pending = 1; /* DBR */
|
||
if (((cpu_unit.flags & UNIT_NOAPI) == 0) && (pulse & 004)) {
|
||
int32 t = api_ffo[api_act & 0377];
|
||
api_act = api_act & ~(0200 >> t); }
|
||
break;
|
||
case 055: /* API control */
|
||
if (cpu_unit.flags & UNIT_NOAPI) reason = stop_inst;
|
||
else if (pulse == 001) { /* SPI */
|
||
if (((LAC & SIGN) && api_enb) ||
|
||
((LAC & 0377) > api_act))
|
||
iot_data = iot_data | IOT_SKP; }
|
||
else if (pulse == 002) { /* RPL */
|
||
iot_data = iot_data | (api_enb << 17) |
|
||
(api_req << 8) | api_act; }
|
||
else if (pulse == 004) { /* ISA */
|
||
api_enb = (iot_data & SIGN)? 1: 0;
|
||
api_req = api_req | ((LAC >> 8) & 017);
|
||
api_act = api_act | (LAC & 0377); }
|
||
break;
|
||
#endif
|
||
#if defined (PDP9)
|
||
case 077: /* extended memory */
|
||
if ((pulse == 001) && memm) PC = INCR_ADDR (PC);
|
||
else if (pulse == 002) memm = 1; /* EEM */
|
||
else if (pulse == 042) /* EMIR */
|
||
memm = emir_pending = 1; /* ext on, restore */
|
||
else if (pulse == 004) memm = 0; /* LEM */
|
||
break;
|
||
#endif
|
||
#if defined (PDP15)
|
||
case 077: /* bank addressing */
|
||
if ((pulse == 041) || ((pulse == 061) && memm))
|
||
PC = INCR_ADDR (PC); /* SKP15, SBA */
|
||
else if (pulse == 042) rest_pending = 1; /* RES */
|
||
else if (pulse == 062) memm = 0; /* DBA */
|
||
else if (pulse == 064) memm = 1; /* EBA */
|
||
damask = memm? 017777: 07777; /* set dir addr mask */
|
||
epcmask = ADDRMASK & ~damask; /* extended PC mask */
|
||
break;
|
||
#endif
|
||
|
||
/* IOT, continued */
|
||
|
||
default: /* devices */
|
||
if (dev_tab[device]) /* defined? */
|
||
iot_data = dev_tab[device] (pulse, iot_data);
|
||
else reason = stop_inst; /* stop on flag */
|
||
break; } /* end switch device */
|
||
LAC = LAC | (iot_data & 0777777);
|
||
if (iot_data & IOT_SKP) PC = INCR_ADDR (PC);
|
||
if (iot_data >= IOT_REASON) reason = iot_data >> IOT_V_REASON;
|
||
api_int = api_eval (&int_pend); /* eval API */
|
||
break; /* end case IOT */
|
||
} /* end switch opcode */
|
||
if (api_cycle) { /* API cycle? */
|
||
api_cycle = 0; /* cycle over */
|
||
usmd = 0; /* exit user mode */
|
||
trap_pending = prvn = 0; } /* no priv viol */
|
||
} /* end while */
|
||
|
||
/* Simulation halted */
|
||
|
||
saved_PC = PC & ADDRMASK; /* save copies */
|
||
saved_LAC = LAC & 01777777;
|
||
saved_MQ = MQ & 0777777;
|
||
iors = upd_iors (); /* get IORS */
|
||
pcq_r->qptr = pcq_p; /* update pc q ptr */
|
||
return reason;
|
||
}
|
||
|
||
/* Evaluate API */
|
||
|
||
int32 api_eval (int32 *pend)
|
||
{
|
||
int32 i, hi;
|
||
|
||
for (i = *pend = 0; i < API_HLVL+1; i++) { /* any intr? */
|
||
if (int_hwre[i]) *pend = 1; }
|
||
if (api_enb == 0) return 0; /* off? no req */
|
||
api_req = api_req & ~0360; /* clr req<0:3> */
|
||
for (i = 0; i < API_HLVL; i++) { /* loop thru levels */
|
||
if (int_hwre[i]) /* req on level? */
|
||
api_req = api_req | (0200 >> i); } /* set api req */
|
||
hi = api_ffo[api_req & 0377]; /* find hi req */
|
||
if (hi < api_ffo[api_act & 0377]) return (hi + 1);
|
||
return 0;
|
||
}
|
||
|
||
/* Process IORS instruction */
|
||
|
||
int32 upd_iors (void)
|
||
{
|
||
int32 d, p;
|
||
|
||
d = (ion? IOS_ION: 0); /* ION */
|
||
for (p = 0; dev_iors[p] != NULL; p++) { /* loop thru table */
|
||
d = d | dev_iors[p](); } /* OR in results */
|
||
return d;
|
||
}
|
||
|
||
/* Reset routine */
|
||
|
||
t_stat cpu_reset (DEVICE *dptr)
|
||
{
|
||
SC = 0;
|
||
eae_ac_sign = 0;
|
||
ion = ion_defer = 0;
|
||
CLR_INT (PWRFL);
|
||
api_enb = api_req = api_act = 0;
|
||
BR = 0;
|
||
usmd = usmdbuf = 0;
|
||
memm = memm_init;
|
||
nexm = prvn = trap_pending = 0;
|
||
emir_pending = rest_pending = 0;
|
||
pcq_r = find_reg ("PCQ", NULL, dptr);
|
||
if (pcq_r) pcq_r->qptr = 0;
|
||
else return SCPE_IERR;
|
||
sim_brk_types = sim_brk_dflt = SWMASK ('E');
|
||
return SCPE_OK;
|
||
}
|
||
|
||
/* Memory examine */
|
||
|
||
t_stat cpu_ex (t_value *vptr, t_addr addr, UNIT *uptr, int32 sw)
|
||
{
|
||
if (addr >= MEMSIZE) return SCPE_NXM;
|
||
if (vptr != NULL) *vptr = M[addr] & 0777777;
|
||
return SCPE_OK;
|
||
}
|
||
|
||
/* Memory deposit */
|
||
|
||
t_stat cpu_dep (t_value val, t_addr addr, UNIT *uptr, int32 sw)
|
||
{
|
||
if (addr >= MEMSIZE) return SCPE_NXM;
|
||
M[addr] = val & 0777777;
|
||
return SCPE_OK;
|
||
}
|
||
|
||
/* Change memory size */
|
||
|
||
t_stat cpu_set_size (UNIT *uptr, int32 val, char *cptr, void *desc)
|
||
{
|
||
int32 mc = 0;
|
||
t_addr i;
|
||
|
||
if ((val <= 0) || (val > MAXMEMSIZE) || ((val & 07777) != 0))
|
||
return SCPE_ARG;
|
||
for (i = val; i < MEMSIZE; i++) mc = mc | M[i];
|
||
if ((mc != 0) && (!get_yn ("Really truncate memory [N]?", FALSE)))
|
||
return SCPE_OK;
|
||
MEMSIZE = val;
|
||
for (i = MEMSIZE; i < MAXMEMSIZE; i++) M[i] = 0;
|
||
return SCPE_OK;
|
||
}
|
||
|
||
/* Change device number for a device */
|
||
|
||
t_stat set_devno (UNIT *uptr, int32 val, char *cptr, void *desc)
|
||
{
|
||
DEVICE *dptr;
|
||
DIB *dibp;
|
||
uint32 newdev;
|
||
t_stat r;
|
||
|
||
if (cptr == NULL) return SCPE_ARG;
|
||
if (uptr == NULL) return SCPE_IERR;
|
||
dptr = find_dev_from_unit (uptr);
|
||
if (dptr == NULL) return SCPE_IERR;
|
||
dibp = (DIB *) dptr->ctxt;
|
||
if (dibp == NULL) return SCPE_IERR;
|
||
newdev = get_uint (cptr, 8, DEV_MAX - 1, &r); /* get new */
|
||
if ((r != SCPE_OK) || (newdev == dibp->dev)) return r;
|
||
dibp->dev = newdev; /* store */
|
||
return SCPE_OK;
|
||
}
|
||
|
||
/* Show device number for a device */
|
||
|
||
t_stat show_devno (FILE *st, UNIT *uptr, int32 val, void *desc)
|
||
{
|
||
DEVICE *dptr;
|
||
DIB *dibp;
|
||
|
||
if (uptr == NULL) return SCPE_IERR;
|
||
dptr = find_dev_from_unit (uptr);
|
||
if (dptr == NULL) return SCPE_IERR;
|
||
dibp = (DIB *) dptr->ctxt;
|
||
if (dibp == NULL) return SCPE_IERR;
|
||
fprintf (st, "devno=%02o", dibp->dev);
|
||
if (dibp-> num > 1) fprintf (st, "-%2o", dibp->dev + dibp->num - 1);
|
||
return SCPE_OK;
|
||
}
|
||
|
||
/* CPU device handler - should never get here! */
|
||
|
||
int32 bad_dev (int32 pulse, int32 AC)
|
||
{
|
||
return (SCPE_IERR << IOT_V_REASON) | AC; /* broken! */
|
||
}
|
||
|
||
/* Build device dispatch table */
|
||
|
||
t_bool build_dev_tab (void)
|
||
{
|
||
DEVICE *dptr;
|
||
DIB *dibp;
|
||
uint32 i, j, p;
|
||
static const uint8 std_dev[] =
|
||
#if defined (PDP4)
|
||
{ 000 };
|
||
#elif defined (PDP7)
|
||
{ 000, 033, 077 };
|
||
#else
|
||
{ 000, 017, 033, 055, 077 };
|
||
#endif
|
||
|
||
for (i = 0; i < DEV_MAX; i++) { /* clr tables */
|
||
dev_tab[i] = NULL;
|
||
dev_iors[i] = NULL; }
|
||
for (i = 0; i < ((uint32) sizeof (std_dev)); i++) /* std entries */
|
||
dev_tab[std_dev[i]] = &bad_dev;
|
||
for (i = p = 0; (dptr = sim_devices[i]) != NULL; i++) { /* add devices */
|
||
dibp = (DIB *) dptr->ctxt; /* get DIB */
|
||
if (dibp && !(dptr->flags & DEV_DIS)) { /* enabled? */
|
||
if (dibp->iors) dev_iors[p++] = dibp->iors; /* if IORS, add */
|
||
for (j = 0; j < dibp->num; j++) { /* loop thru disp */
|
||
if (dibp->dsp[j]) { /* any dispatch? */
|
||
if (dev_tab[dibp->dev + j]) { /* already filled? */
|
||
printf ("%s device number conflict at %02o\n",
|
||
dptr->name, dibp->dev + j);
|
||
if (sim_log) fprintf (sim_log,
|
||
"%s device number conflict at %02o\n",
|
||
dptr->name, dibp->dev + j);
|
||
return TRUE; }
|
||
dev_tab[dibp->dev + j] = dibp->dsp[j]; /* fill */
|
||
} /* end if dsp */
|
||
} /* end for j */
|
||
} /* end if enb */
|
||
} /* end for i */
|
||
return FALSE;
|
||
}
|