simh-testsetgenerator/AltairZ80/altairZ80_sio.c
Bob Supnik 701f0fe028 Notes For V2.8
1. New Features

1.1 Directory and documentation

- Only common files (SCP and libraries) are in the top level
  directory.  Individual simulator files are in their individual
  directories.
- simh_doc.txt has been split up.  simh_doc.txt now documents
  only SCP.  The individual simulators are documented in separate
  text files in their own directories.
- mingw_build.bat is a batch file for the MINGW/gcc environment
  that will build all the simulators, assuming the root directory
  structure is at c:\sim.
- Makefile is a UNIX make file for the gcc environment that will
  build all the simulators, assuming the root directory is at
  c:\sim.

1.2 SCP

- DO <file name> executes the SCP commands in the specified file.
- Replicated registers in unit structures can now be declared as
  arrays for examine, modify, save, and restore.  Most replicated
  unit registers (for example, mag tape position registers) have
  been changed to arrays.
- The ADD/REMOVE commands have been replaced by SET unit ONLINE
  and SET unit OFFLINE, respectively.
- Register names that are unique within an entire simulator do
  not have to be prefaced with the device name.
- The ATTACH command can attach files read only, either under
  user option (-r), or because the attached file is ready only.
- The SET/SHOW capabilities have been extended.  New forms include:

	SET <dev> param{=value}{ param ...}
	SET <unit> param{=value}{ param ...}
	SHOW <dev> {param param ...}
	SHOW <unit> {param param ...}

- Multiple breakpoints have been implemented.  Breakpoints are
  set/cleared/displayed by:

	BREAK addr_list{[count]}
	NOBREAK addr_list
	SHOW BREAK addr_list

1.3 PDP-11 simulator

- Unibus map implemented, with 22b RP controller (URH70) or 18b
  RP controller (URH11) (in debug).
- All DMA peripherals rewritten to use map.
- Many peripherals modified for source sharing with VAX.
- RQDX3 implemented.
- Bugs fixed in RK11 and RL11 write check.

1.4 PDP-10 simulator

- ITS 1-proceed implemented.
- Bugs fixed in ITS PC sampling and LPMR

1.5 18b PDP simulator

- Interrupts split out to multiple levels to allow easier
  expansion.

1.5 IBM System 3 Simulator

- Written by Charles (Dutch) Owen.

1.6 VAX Simulator (in debug)

- Simulates MicroVAX 3800 (KA655) with 16MB-64MB memory, RQDX3,
  RLV12, TSV11, DZV11, LPV11, PCV11.
- CDROM capability has been added to the RQDX3, to allow testing
  with VMS hobbyist images.

1.7 SDS 940 Simulator (not tested)

- Simulates SDS 940, 16K-64K memory, fixed and moving head
  disk, magtape, line printer, console.

1.8 Altair Z80

- Revised from Charles (Dutch) Owen's original by Peter Schorn.
- MITS 8080 with full Z80 simulation.
- 4K and 8K BASIC packages, Prolog package.

1.9 Interdata

The I4 simulator has been withdrawn for major rework.  Look for
a complete 16b/32b Interdata simulator sometime next year.

2. Release Notes

2.1 SCP

SCP now allows replicated registers in unit structures to be
modelled as arrays.  All replicated register declarations have
been replaced by register array declarations.  As a result,
save files from prior revisions will generate errors after
restoring main memory.

2.2 PDP-11

The Unibus map code is in debug.  The map was implemented primarily
to allow source sharing with the VAX, which requires a DMA map.
DMA devices work correctly with the Unibus map disabled.

The RQDX3 simulator has run a complete RSTS/E SYSGEN, with multiple
drives, and booted the completed system from scratch.

2.3 VAX

The VAX simulator will run the boot code up to the >>> prompt.  It
can successfully process a SHOW DEVICE command.  It runs the HCORE
instruction diagnostic.  It can boot the hobbyist CD through SYSBOOT
and through the date/time dialog and restore the hobbyist CD, using
standalone backup.  On the boot of the restored disk, it gets to the
date/time dialog, and then crashes.

2.4 SDS 940

The SDS 940 is untested, awaiting real code.

2.5 GCC Optimization

At -O2 and above, GCC does not correctly compile the simulators which
use setjmp-longjmp (PDP-11, PDP-10, VAX).  A working hypothesis is
that optimized state maintained in registers is being used in the
setjmp processing routine.  On the PDP-11 and PDP-10, all of this
state has been either made global, or volatile, to encourage GCC to
keep the state up to date in memory.  The VAX is still vulnerable.

3. Work list

3.1 SCP

- Better ENABLE/DISABLE.

3.2 PDP-11 RQDX3

Software mapped mode, RCT read simulation, VMS debug.
2011-04-15 08:33:38 -07:00

434 lines
12 KiB
C

/* altairZ80_sio: MITS Altair serial I/O card
Written by Peter Schorn, 2001
Based on work by Charles E Owen ((c) 1997, Commercial use prohibited)
These functions support a simulated MITS 2SIO interface card.
The card had two physical I/O ports which could be connected
to any serial I/O device that would connect to a current loop,
RS232, or TTY interface. Available baud rates were jumper
selectable for each port from 110 to 9600.
All I/O is via programmed I/O. Each each has a status port
and a data port. A write to the status port can select
some options for the device (0x03 will reset the port).
A read of the status port gets the port status:
+---+---+---+---+---+---+---+---+
| X X X X X X O I |
+---+---+---+---+---+---+---+---+
I - A 1 in this bit position means a character has been received
on the data port and is ready to be read.
O - A 1 in this bit means the port is ready to receive a character
on the data port and transmit it out over the serial line.
A read to the data port gets the buffered character, a write
to the data port writes the character to the device.
*/
#include <stdio.h>
#include <ctype.h>
#include "altairZ80_defs.h"
#include "sim_sock.h"
#include "sim_tmxr.h"
#define UNIT_V_ANSI (UNIT_V_UF + 0) /* ANSI mode, strip bit 8 on output */
#define UNIT_ANSI (1 << UNIT_V_ANSI)
#define UNIT_V_UPPER (UNIT_V_UF + 1) /* uppper case mode */
#define UNIT_UPPER (1 << UNIT_V_UPPER)
#define UNIT_V_BS (UNIT_V_UF + 2) /* map delete to backspace */
#define UNIT_BS (1 << UNIT_V_BS)
#define Terminals 1 /* lines per mux */
TMLN TerminalLines[Terminals] = { { 0 } }; /* we only need one line */
TMXR altairTMXR = {Terminals, 0, &TerminalLines[0] }; /* mux descriptor */
t_stat sio_svc (UNIT *uptr);
t_stat sio_reset (DEVICE *dptr);
t_stat sio_attach (UNIT *uptr, char *cptr);
t_stat sio_detach (UNIT *uptr);
t_stat ptr_svc (UNIT *uptr);
t_stat ptr_reset (DEVICE *dptr);
t_stat ptp_svc (UNIT *uptr);
t_stat ptp_reset (DEVICE *dptr);
int32 nulldev(int32 io, int32 data);
int32 simh_dev(int32 io, int32 data);
int32 sio0d(int32 io, int32 data);
int32 sio0s(int32 io, int32 data);
int32 sio1d(int32 io, int32 data);
int32 sio1s(int32 io, int32 data);
void attachCPM();
extern t_stat sim_activate (UNIT *uptr, int32 interval);
extern t_stat sim_cancel (UNIT *uptr);
extern t_stat sim_poll_kbd (void);
extern t_stat sim_putchar (int32 out);
extern t_stat attach_unit (UNIT *uptr, char *cptr);
extern t_bool rtc_avail;
extern FILE *sim_log;
extern int32 sim_switches;
extern uint32 sim_os_msec (void);
extern uint8 M[MAXMEMSIZE];
/* 2SIO Standard I/O Data Structures */
UNIT sio_unit = { UDATA (&sio_svc, UNIT_ATTABLE, 0),
KBD_POLL_WAIT };
REG sio_reg[] = {
{ HRDATA (DATA, sio_unit.buf, 8) },
{ HRDATA (STAT, sio_unit.u3, 8) },
{ NULL } };
MTAB sio_mod[] = {
{ UNIT_ANSI, 0, "TTY", "TTY", NULL }, /* keep bit 8 as is for output */
{ UNIT_ANSI, UNIT_ANSI, "ANSI", "ANSI", NULL }, /* set bit 8 to 0 before output */
{ UNIT_UPPER, 0, "ALL", "ALL", NULL }, /* do not change case of input characters */
{ UNIT_UPPER, UNIT_UPPER, "UPPER", "UPPER", NULL }, /* change input characters to upper case */
{ UNIT_BS, 0, "BS", "BS", NULL }, /* map delete to backspace */
{ UNIT_BS, UNIT_BS, "DEL", "DEL", NULL }, /* map backspace to delete */
{ 0 } };
DEVICE sio_dev = {
"SIO", &sio_unit, sio_reg, sio_mod,
1, 10, 31, 1, 8, 8,
NULL, NULL, &sio_reset,
NULL, &sio_attach, &sio_detach };
UNIT ptr_unit = { UDATA (&ptr_svc, UNIT_SEQ + UNIT_ATTABLE + UNIT_ROABLE, 0),
KBD_POLL_WAIT };
REG ptr_reg[] = {
{ HRDATA (DATA, ptr_unit.buf, 8) },
{ HRDATA (STAT, ptr_unit.u3, 8) },
{ DRDATA (POS, ptr_unit.pos, 31) },
{ NULL } };
DEVICE ptr_dev = {
"PTR", &ptr_unit, ptr_reg, NULL,
1, 10, 31, 1, 8, 8,
NULL, NULL, &ptr_reset,
NULL, NULL, NULL };
UNIT ptp_unit = { UDATA (&ptp_svc, UNIT_SEQ + UNIT_ATTABLE, 0),
KBD_POLL_WAIT };
REG ptp_reg[] = {
{ HRDATA (DATA, ptp_unit.buf, 8) },
{ HRDATA (STAT, ptp_unit.u3, 8) },
{ DRDATA (POS, ptp_unit.pos, 31) },
{ NULL } };
DEVICE ptp_dev = {
"PTP", &ptp_unit, ptp_reg, NULL,
1, 10, 31, 1, 8, 8,
NULL, NULL, &ptp_reset,
NULL, NULL, NULL };
t_stat sio_attach (UNIT *uptr, char *cptr)
{
return tmxr_attach (&altairTMXR, uptr, cptr); /* attach mux */
}
/* Detach */
t_stat sio_detach (UNIT *uptr)
{
sio_unit.u3 = 0x02; /* Status */
sio_unit.buf = 0; /* Data */
return tmxr_detach (&altairTMXR, uptr);
}
/* Service routines to handle simulator functions */
/* service routine - actually gets char & places in buffer */
t_stat sio_svc (UNIT *uptr)
{
int32 temp;
sim_activate (&sio_unit, sio_unit.wait); /* continue poll */
if (sio_unit.flags & UNIT_ATT) {
if (sim_poll_kbd () == SCPE_STOP) { /* listen for ^E */
return SCPE_STOP;
}
temp = tmxr_poll_conn(&altairTMXR, &sio_unit); /* poll connection */
if (temp >= 0) {
altairTMXR.ldsc[temp] -> rcve = 1; /* enable receive */
}
tmxr_poll_rx(&altairTMXR); /* poll input */
tmxr_poll_tx(&altairTMXR); /* poll output */
}
else {
if ((temp = sim_poll_kbd ()) < SCPE_KFLAG) {
return temp; /* no char or error? */
}
sio_unit.buf = temp & 0xff; /* Save char */
sio_unit.u3 |= 0x01; /* Set status */
}
return SCPE_OK;
}
t_stat ptr_svc (UNIT *uptr)
{
return SCPE_OK;
}
t_stat ptp_svc (UNIT *uptr)
{
return SCPE_OK;
}
/* Reset routine */
t_stat sio_reset (DEVICE *dptr)
{
if (sio_unit.flags & UNIT_ATT) {
if (altairTMXR.ldsc[0]->conn > 0) {
tmxr_reset_ln(altairTMXR.ldsc[0]);
}
sio_unit.u3 = 0; /* Status */
}
else {
sio_unit.u3 = 0x02; /* Status */
}
sio_unit.buf = 0; /* Data */
sim_activate (&sio_unit, sio_unit.wait); /* activate unit */
return SCPE_OK;
}
t_stat ptr_reset (DEVICE *dptr)
{
ptr_unit.buf = 0;
ptr_unit.u3 = 0;
ptr_unit.pos = 0;
if (ptr_unit.flags & UNIT_ATT) { /* attached? */
rewind(ptr_dev.units -> fileref);
}
sim_cancel (&ptp_unit); /* deactivate unit */
return SCPE_OK;
}
t_stat ptp_reset (DEVICE *dptr)
{
ptp_unit.buf = 0;
ptp_unit.u3 = 0x02;
sim_cancel (&ptp_unit); /* deactivate unit */
return SCPE_OK;
}
/* I/O instruction handlers, called from the CPU module when an
IN or OUT instruction is issued.
Each function is passed an 'io' flag, where 0 means a read from
the port, and 1 means a write to the port. On input, the actual
input is passed as the return value, on output, 'data' is written
to the device.
*/
int32 sio0s(int32 io, int32 data)
{
if (io == 0) { /* IN */
if (sio_unit.flags & UNIT_ATT) {
sio_unit.u3 = (((tmxr_rqln(altairTMXR.ldsc[0]) > 0 ? 0x01 : 0) | /* read possible if character available */
(altairTMXR.ldsc[0]->conn == 0 ? 0 : 0x02))); /* write possible if connected */
}
return (sio_unit.u3);
}
else { /* OUT */
if (sio_unit.flags & UNIT_ATT) {
if (data == 0x03) { /* reset port! */
sio_unit.u3 = 0;
sio_unit.buf = 0;
}
}
else {
if (data == 0x03) { /* reset port! */
sio_unit.u3 = 0x02;
sio_unit.buf = 0;
}
}
return (0); /* ignored since OUT */
}
}
int32 sio0d(int32 io, int32 data)
{
if (io == 0) { /* IN */
if (sio_unit.flags & UNIT_ATT) {
sio_unit.buf = tmxr_getc_ln(altairTMXR.ldsc[0]) & 0xff;
}
sio_unit.u3 = sio_unit.u3 & 0xFE;
if (sio_unit.flags & UNIT_BS) {
if (sio_unit.buf == BACKSPACE_CHAR) {
sio_unit.buf = DELETE_CHAR;
}
}
else {
if (sio_unit.buf == DELETE_CHAR) {
sio_unit.buf = BACKSPACE_CHAR;
}
}
return ((sio_unit.flags & UNIT_UPPER) ? toupper(sio_unit.buf) : sio_unit.buf);
}
else { /* OUT */
if (sio_unit.flags & UNIT_ANSI) {
data &= 0x7f;
}
if (sio_unit.flags & UNIT_ATT) {
tmxr_putc_ln(altairTMXR.ldsc[0], data);
}
else {
sim_putchar(data);
}
return (0); /* ignored since OUT */
}
}
/* Port 2 controls the PTR/PTP devices */
int32 sio1s(int32 io, int32 data)
{
if (io == 0) {
/* reset I bit iff PTR unit not attached or no more data available. */
/* O bit is always set since write always possible. */
return ((ptr_unit.flags & UNIT_ATT) == 0) || (ptr_unit.u3 != 0) ? 0x02 : 0x03;
}
else { /* OUT */
if (data == 0x03) {
ptr_unit.u3 = 0;
ptr_unit.buf = 0;
ptr_unit.pos = 0;
ptp_unit.u3 = 0;
ptp_unit.buf = 0;
ptp_unit.pos = 0;
}
return (0); /* ignored since OUT */
}
}
int32 sio1d(int32 io, int32 data)
{
int32 temp;
if (io == 0) { /* IN */
if (((ptr_unit.flags & UNIT_ATT) == 0) || (ptr_unit.u3 != 0))
return (0); /* not attached or no more data available */
if ((temp = getc(ptr_dev.units -> fileref)) == EOF) { /* end of file? */
ptr_unit.u3 = 0x01;
return (CONTROLZ_CHAR); /* control Z denotes end of text file in CP/M */
}
ptr_unit.pos++;
return (temp & 0xFF);
}
else { /* OUT */
putc(data, ptp_dev.units -> fileref);
ptp_unit.pos++;
return (0); /* ignored since OUT */
}
}
int32 nulldev(int32 io, int32 data)
{
return (io == 0 ? 0xff : 0);
}
#define splimit 10
#define printTimeCmd 0
#define markTimeCmd 1
#define showTimeCmd 2
#define resetPtrCmd 3
#define attachCmd 4
#define detachCmd 5
#define resetCmd 6
#define cpmCommandLineLength 128
uint32 markTime[splimit];
int32 markTimeSP = 0;
char version[] = "SIMH001";
int32 versionPos = 0;
/* The CP/M commandline is used as the name of a file and PTR is attached to it */
void attachCPM() {
char cpmCommandLine[cpmCommandLineLength];
uint32 i, len = (M[0x80] & 0x7f) - 1; /* 0x80 contains length of commandline, discard first char */
for (i = 0; i < len; i++) {
cpmCommandLine[i] = (char)M[0x82+i]; /* the first char, typically ' ', is discarded */
}
cpmCommandLine[i] = 0; /* make C string */
sim_switches = SWMASK ('R');
attach_unit(&ptr_unit, cpmCommandLine);
}
/* port 0xfe is a device for communication SIMH <--> Altair machine */
int32 simh_dev(int32 io, int32 data) {
uint32 delta;
int32 result;
if (io == 0) { /* IN */
result = version[versionPos++];
if (result == 0) {
versionPos = 0;
}
return (result);
}
else { /* OUT */
switch(data) {
case printTimeCmd: /* print time */
if (rtc_avail) {
printf("Current time in milliseconds = %d.\n", sim_os_msec ());
if (sim_log) {
fprintf(sim_log, "Current time in milliseconds = %d.\n", sim_os_msec ());
}
}
break;
case markTimeCmd: /* mark time */
if (rtc_avail) {
if (markTimeSP < splimit) {
markTime[markTimeSP++] = sim_os_msec ();
}
else {
printf("Mark stack overflow.\n");
if (sim_log) {
fprintf(sim_log, "Mark stack overflow.\n");
}
}
}
break;
case showTimeCmd: /* show time difference */
if (rtc_avail) {
if (markTimeSP > 0) {
delta = sim_os_msec () - markTime[--markTimeSP];
printf("Delta to mark in milliseconds = %d.\n", delta);
if (sim_log) {
fprintf(sim_log, "Delta to mark in milliseconds = %d.\n", delta);
}
}
else {
printf("Missing mark.\n");
if (sim_log) {
fprintf(sim_log, "Missing mark.\n");
}
}
}
break;
case resetPtrCmd: /* reset ptr device */
ptr_reset(NULL);
break;
case attachCmd: /* attach ptr to the file with name at beginning of CP/M command line */
attachCPM();
break;
case detachCmd: /* detach ptr */
detach_unit(&ptr_unit);
break;
case resetCmd:
versionPos = 0;
break;
default:;
}
return 0; /* ignored, since OUT */
}
}