simh-testsetgenerator/HP2100/hp2100_doc.txt
Bob Supnik 701f0fe028 Notes For V2.8
1. New Features

1.1 Directory and documentation

- Only common files (SCP and libraries) are in the top level
  directory.  Individual simulator files are in their individual
  directories.
- simh_doc.txt has been split up.  simh_doc.txt now documents
  only SCP.  The individual simulators are documented in separate
  text files in their own directories.
- mingw_build.bat is a batch file for the MINGW/gcc environment
  that will build all the simulators, assuming the root directory
  structure is at c:\sim.
- Makefile is a UNIX make file for the gcc environment that will
  build all the simulators, assuming the root directory is at
  c:\sim.

1.2 SCP

- DO <file name> executes the SCP commands in the specified file.
- Replicated registers in unit structures can now be declared as
  arrays for examine, modify, save, and restore.  Most replicated
  unit registers (for example, mag tape position registers) have
  been changed to arrays.
- The ADD/REMOVE commands have been replaced by SET unit ONLINE
  and SET unit OFFLINE, respectively.
- Register names that are unique within an entire simulator do
  not have to be prefaced with the device name.
- The ATTACH command can attach files read only, either under
  user option (-r), or because the attached file is ready only.
- The SET/SHOW capabilities have been extended.  New forms include:

	SET <dev> param{=value}{ param ...}
	SET <unit> param{=value}{ param ...}
	SHOW <dev> {param param ...}
	SHOW <unit> {param param ...}

- Multiple breakpoints have been implemented.  Breakpoints are
  set/cleared/displayed by:

	BREAK addr_list{[count]}
	NOBREAK addr_list
	SHOW BREAK addr_list

1.3 PDP-11 simulator

- Unibus map implemented, with 22b RP controller (URH70) or 18b
  RP controller (URH11) (in debug).
- All DMA peripherals rewritten to use map.
- Many peripherals modified for source sharing with VAX.
- RQDX3 implemented.
- Bugs fixed in RK11 and RL11 write check.

1.4 PDP-10 simulator

- ITS 1-proceed implemented.
- Bugs fixed in ITS PC sampling and LPMR

1.5 18b PDP simulator

- Interrupts split out to multiple levels to allow easier
  expansion.

1.5 IBM System 3 Simulator

- Written by Charles (Dutch) Owen.

1.6 VAX Simulator (in debug)

- Simulates MicroVAX 3800 (KA655) with 16MB-64MB memory, RQDX3,
  RLV12, TSV11, DZV11, LPV11, PCV11.
- CDROM capability has been added to the RQDX3, to allow testing
  with VMS hobbyist images.

1.7 SDS 940 Simulator (not tested)

- Simulates SDS 940, 16K-64K memory, fixed and moving head
  disk, magtape, line printer, console.

1.8 Altair Z80

- Revised from Charles (Dutch) Owen's original by Peter Schorn.
- MITS 8080 with full Z80 simulation.
- 4K and 8K BASIC packages, Prolog package.

1.9 Interdata

The I4 simulator has been withdrawn for major rework.  Look for
a complete 16b/32b Interdata simulator sometime next year.

2. Release Notes

2.1 SCP

SCP now allows replicated registers in unit structures to be
modelled as arrays.  All replicated register declarations have
been replaced by register array declarations.  As a result,
save files from prior revisions will generate errors after
restoring main memory.

2.2 PDP-11

The Unibus map code is in debug.  The map was implemented primarily
to allow source sharing with the VAX, which requires a DMA map.
DMA devices work correctly with the Unibus map disabled.

The RQDX3 simulator has run a complete RSTS/E SYSGEN, with multiple
drives, and booted the completed system from scratch.

2.3 VAX

The VAX simulator will run the boot code up to the >>> prompt.  It
can successfully process a SHOW DEVICE command.  It runs the HCORE
instruction diagnostic.  It can boot the hobbyist CD through SYSBOOT
and through the date/time dialog and restore the hobbyist CD, using
standalone backup.  On the boot of the restored disk, it gets to the
date/time dialog, and then crashes.

2.4 SDS 940

The SDS 940 is untested, awaiting real code.

2.5 GCC Optimization

At -O2 and above, GCC does not correctly compile the simulators which
use setjmp-longjmp (PDP-11, PDP-10, VAX).  A working hypothesis is
that optimized state maintained in registers is being used in the
setjmp processing routine.  On the PDP-11 and PDP-10, all of this
state has been either made global, or volatile, to encourage GCC to
keep the state up to date in memory.  The VAX is still vulnerable.

3. Work list

3.1 SCP

- Better ENABLE/DISABLE.

3.2 PDP-11 RQDX3

Software mapped mode, RCT read simulation, VMS debug.
2011-04-15 08:33:38 -07:00

471 lines
14 KiB
Text

To: Users
From: Bob Supnik
Subj: HP2100 Simulator Usage
Date: 1-Dec-01
COPYRIGHT NOTICE
The following copyright notice applies to both the SIMH source and binary:
Original code published in 1993-2001, written by Robert M Supnik
Copyright (c) 1993-2001, Robert M Supnik
Permission is hereby granted, free of charge, to any person obtaining a
copy of this software and associated documentation files (the "Software"),
to deal in the Software without restriction, including without limitation
the rights to use, copy, modify, merge, publish, distribute, sublicense,
and/or sell copies of the Software, and to permit persons to whom the
Software is furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
ROBERT M SUPNIK BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
Except as contained in this notice, the name of Robert M Supnik shall not
be used in advertising or otherwise to promote the sale, use or other dealings
in this Software without prior written authorization from Robert M Supnik.
This memorandum documents the HP 2100 simulator.
1. Simulator Files
sim/ sim_defs.h
scp.c
scp_tty.c
sim_rev.c
sim/hp2100/ hp2100_defs.h
hp2100_cpu.c
hp2100_dp.c
hp2100_lp.c
hp2100_mt.c
hp2100_stddev.c
hp2100_sys.c
2. HP2100 Features
The HP2100 simulator is configured as follows:
device simulates
name(s)
CPU 2116, 2100, or 21MX CPU with 32KW memory
DMA0, DMA1 dual channel DMA controller
PTR,PTP 12597A paper tape reader/punch
TTY 12631C buffered teleprinter
LPT 12653A line printer
CLK 12539A/B/C time base generator
DP 12557A cartridge disk controller with four drives
MT 12559C magnetic tape controller with one drives
The HP2100 simulator implements several unique stop conditions:
- decode of an undefined instruction, and STOP_INST is et
- reference to an undefined I/O device, and STOP_DEV is set
- more than INDMAX indirect references are detected during
memory reference address decoding
The HP2100 loader supports standard absolute binary format. The DUMP
command is not implemented.
2.1 CPU
CPU options include choice of instruction set and memory size.
SET CPU 2116 2116 instructions
SET CPU 2100 2100 instructions
SET CPU 21MX 21MX instructions
SET CPU 4K set memory size = 4K
SET CPU 8K set memory size = 8K
SET CPU 16K set memory size = 16K
SET CPU 24K set memory size = 24K
SET CPU 32K set memory size = 32K
If memory size is being reduced, and the memory being truncated contains
non-zero data, the simulator asks for confirmation. Data in the truncated
portion of memory is lost. Initial memory size is 32K.
CPU registers include the visible state of the processor as well as the
control registers for the interrupt system.
name size comments
P 15 program counter
A 16 A register
B 16 B register
X 16 X index register (21MX)
Y 16 Y index register (21MX)
S 16 switch/display register
E 1 extend flag
O 1 overflow flag
ION 1 interrupt enable flag
ION_DEFER 1 interrupt defer flag
IADDR 6 most recent interrupting device
MPCTL 1 memory protection enable (2100, 21MX)
MPFLG 1 memory protection flag (2100, 21MX)
MPFBF 1 memory protection flag buffer (2100, 21MX)
MFENCE 15 memory protection fence (2100, 21MX)
MADDR 16 memory protection error address (2100, 21MX)
STOP_INST 1 stop on undefined instruction
STOP_DEV 1 stop on undefined device
INDMAX 1 indirect address limit
OLDP 15 PC prior to last JMP, JSB, or interrupt
WRU 8 interrupt character
2.2 DMA Controllers
The HP2100 includes two DMA channel controllers (DMA0 and DMA1). Each
DMA channel has the following visible state:
name size comments
CMD 1 channel enabled
CTL 1 interrupt enabled
FLG 1 channel ready
FBF 1 channel ready buffer
CW1 1 command word 1
CW2 1 command word 2
CW3 1 command word 3
2.3 Variable Device Assignments
On the HP2100, I/O device take their device numbers from the backplane
slot they are plugged into. Thus, device number assignments vary
considerably from system to system, and software package to software
package. The HP2100 simulator supports dynamic device number assignment.
The current device device is shown with the command SHOW <dev> DEVNO:
sim> SHOW PTR DEV
device=10
The user can change the device number with the SET <dev> DEVNO=<num>
command:
sim> SET PTR DEV=30
sim> SHOW PTR DEV
device=30
The new device number must be in the range 010..077 (octal) and must
not be currently assigned to another device. For devices with two
device numbers, only the lower numbered device number can be changed;
the higher is automatically set to the lower + 1.
2.4 Programmed I/O Devices
2.4.1 12597A-002 Paper Tape Reader (PTR)
The paper tape reader (PTR) reads data from a disk file. The POS
register specifies the number of the next data item to be read.
Thus, by changing POS, the user can backspace or advance the reader.
The paper tape reader supports the BOOT command. BOOT PTR copies the
absolute binary loader into memory and starts it running.
The paper tape reader implements these registers:
name size comments
BUF 8 last data item processed
CMD 1 reader enable
CTL 1 device/interrupt enable
FLG 1 device ready
FBF 1 device ready buffer
POS 31 position in the input file
TIME 24 time from I/O initiation to interrupt
STOP_IOE 1 stop on I/O error
DEVNO 6 current device number (read only)
Error handling is as follows:
error STOP_IOE processed as
not attached 1 report error and stop
0 out of tape
end of file 1 report error and stop
0 out of tape or paper
OS I/O error x report error and stop
2.4.2 12597A-005 Paper Tape Punch (PTP)
The paper tape punch (PTP) writes data to a disk file. The POS
register specifies the number of the next data item to be written.
Thus, by changing POS, the user can backspace or advance the punch.
The paper tape punch implements these registers:
name size comments
BUF 8 last data item processed
CMD 1 punch enable
CTL 1 device/interrupt enable
FLG 1 device ready
FBF 1 device ready buffer
POS 31 position in the output file
TIME 24 time from I/O initiation to interrupt
STOP_IOE 1 stop on I/O error
DEVNO 6 current device number (read only)
Error handling is as follows:
error STOP_IOE processed as
not attached 1 report error and stop
0 out of tape
OS I/O error x report error and stop
2.4.3 12631C Buffered Teleprinter (TTY)
The console teleprinter has three units: keyboard (unit 0), printer
(unit 1), and punch (unit 2). The keyboard reads from the console
keyboard; the printer writes to the simulator console window. The
punch writes to a disk file. The keyboard has one option, UC; when
set, it automatically converts lower case input to upper case. This
is on by default.
The terminal implements these registers:
name size comments
BUF 8 last data item processed
MODE 16 mode
CTL 1 device/interrupt enable
FLG 1 device ready
FBF 1 device ready buffer
KPOS 31 number of characters input
KTIME 24 keyboard polling interval
TPOS 31 number of characters printed
TTIME 24 time from I/O initiation to interrupt
PPOS 31 position in the punch output file
STOP_IOE 1 punch stop on I/O error
DEVNO 6 current device number (read only)
Error handling for the punch is as follows:
error STOP_IOE processed as
not attached 1 report error and stop
0 out of tape
OS I/O error x report error and stop
2.4.4 12653A Line Printer (LPT)
The line printer (LPT) writes data to a disk file. The POS register
specifies the number of the next data item to be written. Thus,
by changing POS, the user can backspace or advance the printer.
The line printer implements these registers:
name size comments
BUF 8 last data item processed
CMD 1 printer enable
CTL 1 device/interrupt enable
FLG 1 device ready
FBF 1 device ready buffer
POS 31 position in the output file
CTIME 24 time between characters
PTIME 24 time for a print operation
STOP_IOE 1 stop on I/O error
DEVNO 6 current device number (read only)
Error handling is as follows:
error STOP_IOE processed as
not attached 1 report error and stop
0 out of tape or paper
OS I/O error x report error and stop
2.4.5 12539A/B/C Time Base Generator (CLK)
The time base generator (CLK) implements these registers:
name size comments
SEL 3 time base select
CTL 1 device/interrupt enable
FLG 1 device ready
FBF 1 device ready buffer
ERR 1 error flag
TIME[0:7] 31 clock intervals, select = 0..7
DEVNO 6 current device number (read only)
2.5 12557A Cartridge Disk (DP)
The 12557A cartridge disk has two separate devices, a data channel and
a device controller. The data channel includes a 128-word (one sector)
buffer for reads and writes. The device controller includes the four
disk drives. Disk drives can be REMOVEd or ADDed to the configuration.
The data channel implements these registers:
name size comments
IBUF 16 input buffer
OBUF 16 output buffer
BPTR 7 sector buffer pointer
CMD 1 channel enable
CTL 1 interrupt enable
FLG 1 channel ready
FBF 1 channel ready buffer
DEVNO 6 current device number (read only)
The device controller implements these registers:
name size comments
OBUF 16 output buffer
BUSY 3 busy (unit #, + 1, of active unit)
RARC 8 record address register cylinder
RARH 2 record address register head
RARS 4 record address register sector
CNT 5 check record count
CMD 1 controller enable
CTL 1 interrupt enable
FLG 1 controller ready
FBF 1 controller ready buffer
EOC 1 end of cylinder pending
CTIME 24 command delay time
STIME 24 seek delay time, per cylinder
XTIME 24 interword transfer time
STA[0:3] 16 drive status, drives 0-3
DEVNO 6 current device number (read only)
Error handling is as follows:
error processed as
not attached disk not ready
end of file assume rest of disk is zero
OS I/O error report error and stop
2.6 12559C Magnetic Tape (MT)
Magnetic tape options include the ability to make the unit write enabled
or write locked.
SET MT LOCKED set unit write locked
SET MT ENABLED set unit write enabled
The 12559C mag tape drive has two separate devices, a data channel and
a device controller. The data channel includes a maximum record sized
buffer for reads and writes. The device controller includes the tape
unit
The data channel implements these registers:
name size comments
FLG 1 channel ready
BPTR 16 buffer pointer (reads and writes)
BMAX 16 buffer size (writes)
DEVNO 6 current device number (read only)
The device controller implements these registers:
name size comments
FNC 8 current function
STA 9 tape status
BUF 8 buffer
BUSY 3 busy (unit #, + 1, of active unit)
CTL 1 interrupt enabled
FLG 1 controller ready
FBF 1 controller ready buffer
DTF 1 data transfer flop
FSVC 1 first service flop
POS 31 magtape position
CTIME 24 command delay time
XTIME 24 interword transfer delay time
STOP_IOE 1 stop on I/O error
DEVNO 6 current device number (read only)
Error handling is as follows:
error processed as
not attached tape not ready
end of file (read or space) end of physical tape
(write) ignored
OS I/O error report error and stop
2.7 Symbolic Display and Input
The HP2100 simulator implements symbolic display and input. Display is
controlled by command line switches:
-a display as ASCII character
-c display as two character string
-m display instruction mnemonics
Input parsing is controlled by the first character typed in or by command
line switches:
' or -a ASCII character
" or -c two character sixbit string
alphabetic instruction mnemonic
numeric octal number
Instruction input uses standard HP2100 assembler syntax. There are seven
instruction classes: memory reference, I/O, shift, alter skip, extended
shift, extended memory reference, extended two address reference.
Memory reference instructions have the format
memref {C/Z} address{,I}
where I signifies indirect, C a current page reference, and Z a zero page
reference. The address is an octal number in the range 0 - 077777; if C or
Z is specified, the address is a page offset in the range 0 - 01777. Normally,
C is not needed; the simulator figures out from the address what mode to use.
However, when referencing memory outside the CPU (eg, disks), there is no
valid PC, and C must be used to specify current page addressing.
IOT instructions have the format
io device{,C}
where C signifies that the device flag is to be cleared. The device is an
octal number in the range 0 - 77.
Shift and alter/skip instructions have the format
sub-op sub-op sub-op...
The simulator checks that the combination of sub-opcodes is legal.
Extended shift instructions have the format
extshift count
where count is an octal number in the range 1 - 020.
Extended memory reference instructions have the format
extmemref address{,I}
where I signifies indirect addressing. The address is an octal number in
the range 0 - 077777.
Extended two address instructions have the format
ext2addr addr1{,I},addr2{,I}
where I signifies indirect addressing. Both address 1 and address 2 are
octal numbers in the range 0 - 077777.